Formation efficiency of ABA blockcopolymers via enhanced spin capturing polymerization (ESCP): Locating the alkoxyamine function

Junkers, T., Wong, E. H. H., Stenzel, M. H., & Barner-Kowollik, C. (2009) Formation efficiency of ABA blockcopolymers via enhanced spin capturing polymerization (ESCP): Locating the alkoxyamine function. Macromolecules, 42(14).

View at publisher

Abstract

Enhanced spin capturing polymerization (ESCP) constitutes a versatile method for controlling the molecular weights during free radical macromolecular growth. The methodology employs nitrones as controlling agents, which are incorporated as alkoxyamines into the macromolecules in a midchain position (Ri-NO-Rj). It is demonstrated;via both simulations and experiments;that if the radical initiator and the nitrone are judiciously chosen, midchain functionalizations of over 90% can be achieved. Macromolecules with a nitroxide position in the midchain position can be employed in subsequent nitroxide mediated polymerizations to prepare ABA-type block copolymers. It is demonstrated that high yields of midchain macroalkoxyamine are generated as long as the employed nitrone displays low primary radical addition (governed by the addition rate coefficient k ad) in combination with a relatively rapid chain growth initiation rate (characterized by the primary radical initiation rate coefficient, k i). The absolute value of kad appears to be unproblematic for the success of Ri-NO-Rj formation by ESCP. In addition, it is of relatively high importance to employ a large nitrone concentration to achieve high degrees of Ri-NO-R j. The structure of ESCP prepared polystyrenes was confirmed (among other approaches) via thermally cleaving the Ri-NO-R j species and a subsequent quenching of the reaction to obtain a high yield of the individual arm species of half the length of the macroalkoxyamine. © 2009 American Chemical Society.

Impact and interest:

27 citations in Scopus
Search Google Scholar™
26 citations in Web of Science®

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

ID Code: 99221
Item Type: Journal Article
Refereed: Yes
Additional Information: Cited By :27
Export Date: 5 September 2016
CODEN: MAMOB
Correspondence Address: Junkers, T.; Preparative Macromolecular Chemistry, Institut für Technische Chemie und Polymerchemie, Universität Karlsruhe (TH), Engesserstrasse 18, 76128 Karlsruhe, Germany; email: thomas.junkers@polymer.uni-karlsruhe.de
References: Barner, L., Davis, T.P., Stenzel, M.H., Barner-Kowollik, C., (2007) Macromol. Rapid Commun., 28, pp. 539-559; Matyjaszewski, K., (2005) Prog. Polym. Sci., 30, pp. 858-875; Wong, E.H.H., Junkers, T., Barner-Kowollik, C., (2008) J. Polym. Sci. Polym. Chem., 46, pp. 7273-7279; Wong, E.H.H., Stenzel, M.H., Junkers, T., Barner-Kowollik, C., (2009) J. Polym. Sci. Polym. Chem., 47, pp. 1098-1107; Ah Toy, A., Chaffey-Millar, H., Davis, T.P., Stenzel, M.H., Izgorodina, E.I., Coote, M.L., Barner-Kowollik, C., (2006) Chem. Commun., pp. 835-837; Chaffey-Millar, H., Izgorodina, E.I., Barner-Kowollik, C., Coote, M.L., (2006) J. Chem. Theory Comput., 2, pp. 1632-1645; Junkers, T., Stenzel, M.H., Davis, T.P., Barner-Kowollik, C., (2007) Macromol. Rapid Commun., 28, pp. 746-753; Unzler, F., Junkers, T., Barner-Kowollik, C., (2009) J. Polym. Sci. Polym. Chem., 47, pp. 1864-1876; Junkers, T., Wong, E.H.H., Szablan, Z., Davis, T.P., Stenzel, M.H., Barner-Kowollik, C., (2008) Macromol. Rapid Commun., 29, pp. 503-510; Hawker, C.J., Bosman, A.W., Harth, E., (2001) Chem. Rev., 101, pp. 3661-3688; Fischer, H., (2001) Chem. Rev., 101, pp. 3581-3610; Sciannamea, V., Jerome, R., Detrembleur, C., (2008) Chem. Rev., 108, pp. 1104-1126; Sciannamea, V., Catala, J.M., Jerome, R., Detrembleur, C., (2007) J. Polym. Sci. Polym. Chem., 45, pp. 1219-1235; Sciannamea, V., Guerrero-Sanchez, A., Schubert, U.S., Catala, J.M., Jerome, R., Detrembleur, C., (2005) Polymer, 46, pp. 9632-9641; Sciannamea, V., Catala, J.-M., Jerome, R., Jerome, C., Detrembleur, C., (2009) J. Polym. Sci., Polym. Chem., (47), pp. 1085-1097; Kolb, H.C., Finn, M.G., Sharpless, K.B., (2001) Angew. Chem. Int. Ed., 40, pp. 2004-2021; Sinnwell, S., Inglis, A.J., Davis, T.P., Stenzel, M.H., Barner-Kowollik, C., (2008) Chem. Commun., pp. 2052-2054; Inglis, A.J., Sinnwell, S., Stenzel, M.H., Barner-Kowollik, C., (2009) Angew. Chem., 48, pp. 2411-2414; Wulkow, M., (1996) Macromol Theory Simul., 5, p. 393; Wulkow, M., Busch, M., Davis, T.P., Barner-Kowollik, C., (2004) J. Polym. Sci. Polym. Chem., 42, pp. 1441-1448; Strazielle, C., Benoit, H., Vogl, O., (1978) Eur. Polym. J., 14, pp. 331-334; Van Hook, J.P., Tobolsky, A.V., (1958) J. Am. Chem. Soc., 80, p. 779; Buback, M., Gilbert, R.G., Hutchinson, R.A., Klumpermann, B., Kuchta, F.D., O'Driscoll, K.F., Russell, G.T., Schweer, J., (1995) Macromol. Chem. Phys., 196, pp. 3267-3280; Buback, M., Kuchta, F.D., (1997) Macromol. Chem. Phys., 198, pp. 1455-1480; Fischer, H., Radom, L., (2001) Angew. Chem., Int. Ed., 40, pp. 1340-1371; Kemp, T., (1999) J. Prog. React. Kinet. Mech., 24, pp. 287-358; Grishin, D.F., Semenycheva, L.L., Kolyakina, E.V., (2001) Russ. J. Appl. Chem., 74, pp. 494-497; Moad, G., Barner-Kowollik, C., (2007) Handbook of RAFT Polymerization, pp. 51-104. , Barner-Kowollik C., Ed.; Wiley-VCH: Weinheim, Germany; Inglis, A., Sinnwell, S., Davis, T.P., Barner-Kowollik, C., Stenzel, M.H., (2008) Macromolecules, 41, pp. 4120-4126; Detrembleur, C., Sciannamea, V., Koulic, C., Claes, M., Hoebeke, M., Jerome, R., (2002) Macromolecules, 35, pp. 7214-7223; An increase of the propagation rate coefficient by orders of magnitude is most likely associated with an increase of the addition rate to a similar extent. Indeed, we have experimentally observed such a behavior for k ad,macro in our previous work.3,4Zammit, M.D., Davis, T.P., Haddleton, D.M., Suddaby, K.G., (1997) Macromolecules, 30, pp. 1915-1920
Keywords: Absolute values, Addition rate, Alkoxyamine, Alkoxyamines, Chain growth, Controlling agent, Functionalizations, High yield, Initiation rate, Nitrone, Nitrones, Nitroxide, Nitroxide mediated polymerization, Primary radicals, Radical initiators, Versatile methods, Amines, Block copolymers, Macromolecules, Polymers, Polystyrenes, Quenching, Spin dynamics, Supramolecular chemistry, Free radical polymerization
DOI: 10.1021/ma900356p
ISSN: 00249297
Divisions: Current > Schools > School of Chemistry, Physics & Mechanical Engineering
Current > Institutes > Institute for Future Environments
Current > QUT Faculties and Divisions > Science & Engineering Faculty
Deposited On: 22 Sep 2016 04:50
Last Modified: 07 Oct 2016 05:08

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page