Detailed investigation of the propagation rate of urethane acrylates

Barner-Kowollik, C., Bennet, F., Schneider-Baumann, M., Voll, D., Rölle, T., Fäcke, T., Weiser, M. S., Bruder, F. K., & Junkers, T. (2010) Detailed investigation of the propagation rate of urethane acrylates. Polymer Chemistry, 1(4).

View at publisher

Abstract

Temperature dependent propagation rate coefficients, kp, are determined for four acrylate monomers containing a carbamate moiety via the pulsed laser polymerization-size exclusion chromatography (PLP-SEC) technique. Therefore, the Mark-Houwink-Kuhn-Sakurada coefficients K and a of the respective polymers were additionally determined via triple-detection SEC. The monomers under investigation were synthesized from hydroxyethyl acrylate, hydroxyl(iso)propyl acrylate as well as phenyl isocyanate and hexyl isocyanate, respectively, in all four possible combinations. For 2-(phenylcarbamoyloxy)ethyl acrylate (PhCEA) an activation energy of 14.3 kJ mol-1 and a frequency factor of A = 1.2 × 107 L·mol-1 s-1 are obtained for kp. The MHKS parameters for poly(PhCEA) are K = 8.3 × 10-5 dL g-1 and a = 0.677. For 2-(phenylcarbamoyloxy)isopropyl acrylate (PhCPA) an activation energy of 14.2 kJ mol-1 and a frequency factor of A = 4.9 × 10 6 L mol-1 s-1 are found for kp and the MHKS parameters for poly(PhCPA) read K = 10.3 × 10-5 dL g-1 and a = 0.657. The activation parameters of kp of 2-(hexylcarbamoyloxy)ethyl acrylate (HCEA) are EA = 13.3 kJ mol -1 and A = 6.6 × 106 L mol-1 s -1 with K = 36.0 × 10-5 dL g-1 and a = 0.552 for poly(HCEA). For 2-(hexylcarbamoyloxy)isopropyl acrylate (HCPA) E A is 14.1 kJ mol-1 and A = 6.6 × 106 L mol-1 s-1 with K = 26.0 × 10-5 dL g -1 and a = 0.587 for poly(HCPA). All rate measurements were performed in 1 M solutions in butyl acetate. The fast propagating nature and reduced activation energy of the monomers may be understood on the basis of the increased nucleophilicity that is induced by the carbamate functionality present in all monomers. Rate-increasing effects from solvent polarity and/or from H-bonding can, however, not be excluded and might also contribute to the observed high propagation rates. © 2010 The Royal Society of Chemistry.

Impact and interest:

13 citations in Scopus
Search Google Scholar™
14 citations in Web of Science®

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

ID Code: 99232
Item Type: Journal Article
Refereed: Yes
Additional Information: Cited By :11
Export Date: 5 September 2016
Correspondence Address: Barner-Kowollik, C.; Preparative Macromolecular Chemistry, Institut für Technische Chemie und Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstr. 18, 76128 Karlsruhe, Germany; email: christopher.barner-kowollik@kit.edu
References: Aleksandrov, A.P., Genkin, V.N., Kitay, M.S., Smirnova, I.M., Sokolov, V.V., (1977) Sov. J. Quantum Electron., 5, pp. 976-981; Olaj, O.F., Bitai, I., Hinkelmann, F., (1987) Makromol. Chem., 188, pp. 1689-1702; Olaj, O.F., Schnöll-Bitai, I., (1989) Eur. Polym. J., 25, pp. 635-641; Beuermann, S., Buback, M., (2002) Prog. Polym. Sci., 27, pp. 191-254; Buback, M., Gilbert, R.G., Hutchinson, R.A., Klumpermann, B., Kuchta, F.D., O'Driscoll, K.F., Russell, G.T., Schweer, J., (1995) Macromol. Chem. Phys., 196, pp. 3267-3280; Beuermann, S., Buback, M., Davis, T.P., Gilbert, R.G., Hutchinson, R.A., Olaj, O.F., Russell, G.T., Van Herk, A.M., (1997) Macromol. Chem. Phys., 198, pp. 1545-1560; Beuermann, S., Buback, M., Davis, T.P., Gilbert, R.G., Hutchinson, R.A., Kajiwara, A., Klumpermann, B., Russell, G.T., (2000) Macromol. Chem. Phys., 201, pp. 1355-1364; Beuermann, S., Buback, M., Davis, T.P., Gilbert, R.G., Hutchinson, R.A., Kajiwara, A., Kamachi, M., Russell, G.T., (2003) Macromol. Chem. Phys., 204, pp. 1338-1350; Asua, J.M., Beuermann, S., Buback, M., Castignolles, P., Charleux, B., Gilbert, R.G., Hutchinson, R.A., Van Herk, A.M., (2004) Macromol. Chem. Phys., 205, pp. 2151-2160; Beuermann, S., Buback, M., Hesse, P., Kuchta, F.D., Lacik, I., Van Herk, A.M., (2007) Pure Appl. Chem., 79, pp. 1463-1469; Gruendling, T., Guilhaus, M., Barner-Kowollik, C., (2009) Macromolecules, 42, pp. 6366-6374; Gruendling, T., Guilhaus, M., Barner-Kowollik, C., (2008) Anal. Chem., 80, pp. 6915-6927; Gruendling, T., Voll, D., Guilhaus, M., Barner-Kowollik, C., (2010) Macromol. Chem. Phys., 211, pp. 80-90; Beuermann, S., (2009) Macromol. Rapid Commun., 30, pp. 1066-1088; Beuermann, S., Buback, M., Hesse, P., Lacik, I., (2006) Macromolecules, 39, pp. 184-193; Beuermann, S., Nelke, D., (2003) Macromol. Chem. Phys., 204, pp. 460-470; Beckel, E.R., Stansbury, J.W., Bowman, C.N., (2005) Macromolecules, 38, pp. 3093-3098; Kilambi, H., Beckel, E.R., Berchtold, K.A., Stansbury, J.W., Bowman, C.N., (2005) Polymer, 46, pp. 4735-4742; Kilambi, H., Konopka, D., Stansbury, J.W., Bowman, C.N., (2007) J. Polym. Sci., Part A: Polym. Chem., 45, pp. 1287-1295; Kilambi, H., Stansbury, J.W., Bowman, C.N., (2007) Macromolecules, 40, pp. 47-54; Cramer, N.B., O'Brien, C.P., Bowman, C.N., (2008) Polymer, 49, pp. 4756-4761; Kilambi, H., Reddy, S.K., Schneidewind, L., Stansbury, J.W., Bowman, C.N., (2009) Macromolecules, 42, pp. 4859-4870; Fischer, W., Weikard, J., Luhmann, E., Fäcke, T., (2003) Eur. Coat. J., 11, pp. 28-30; Barner-Kowollik, C., Günzler, F., Junkers, T., (2008) Macromolecules, 41, pp. 8971-8973; Junkers, T., Voll, D., Barner-Kowollik, C., (2009) E-polymers, p. 076; Dervaux, B., Junkers, T., Schneider-Baumann, M., Du Prez, F.E., Barner-Kowollik, C., (2009) J. Polym. Sci., Part A: Polym. Chem., 47, pp. 6641-6654; Junkers, T., Barner-Kowollik, C., (2008) J. Polym. Sci., Part A: Polym. Chem., 46, pp. 7585-7605; Couvreur, L., Piteau, G., Castignolles, P., Tonge, M., Coutin, B., Charleux, B., Vairon, J.P., (2001) Macromol. Symp., 174, pp. 197-207; Nikitin, A.N., Hutchinson, R.A., (2005) Macromolecules, 38, pp. 1581-1590; Flory, P.J., (1937) J. Am. Chem. Soc., 59, pp. 241-253; Roedel, M.J., (1953) J. Am. Chem. Soc., 75, pp. 6110-6112; Castignolles, P., Graf, R., Parkinson, M., Wilhelm, M., Gaborieau, M., (2009) Polymer, 50, pp. 2373-2383; Castignolles, P., (2009) Macromol. Rapid Commun., 30, pp. 1995-2001; Nikitin, A.N., Hutchinson, R.A., Buback, M., Hesse, P., (2007) Macromolecules, 40, pp. 8631-8641; Junkers, T., Koo S P, S., Davis, T.P., Stenzel, M.H., Barner-Kowollik, C., (2007) Macromolecules, 40, pp. 8906-8912; Koo, S.P.S., Junkers, T., Barner-Kowollik, C., (2009) Macromolecules, 42, pp. 62-69
DOI: 10.1039/b9py00352e
ISSN: 17599954
Divisions: Current > Schools > School of Chemistry, Physics & Mechanical Engineering
Current > Institutes > Institute for Future Environments
Current > QUT Faculties and Divisions > Science & Engineering Faculty
Deposited On: 22 Sep 2016 04:50
Last Modified: 06 Oct 2016 04:07

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page