Degradation of poly(Butyl acrylate) and poly(2- hydroxyethyl methacrylate) model compounds under extreme environmental conditions

Benneto, F., Barker, P. J., Davis, T. P., Soeriyadi, A. H., & Barner-Kowollik, C. (2010) Degradation of poly(Butyl acrylate) and poly(2- hydroxyethyl methacrylate) model compounds under extreme environmental conditions. Macromolecular Chemistry and Physics, 211(18).

View at publisher


The degradation of low-MW (Mn = 500 g . mol-1) model compounds of pBA and pHEMA were studied under conditions corresponding to the worst-case temperatures and irradiation intensities likely to be experienced by a surface coating exposed to the harsh Australian environment. Vinyl-terminated polymers were compared to their saturated analogues; the terminal vinyl bond was found to be a source of instability which rendered the polymers more susceptible to degradation. The cyclic degradation mechanism derived from degradation of pMMA in our previous publication is also relevant to pBA and pHEMA. In addition, pBA and pHEMA are susceptible to other degradation and crosslinking reactions; crosslinking is particularly rapid in pHEMA exposed to UV radiation. © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Impact and interest:

14 citations in Scopus
Search Google Scholar™
11 citations in Web of Science®

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

ID Code: 99235
Item Type: Journal Article
Refereed: Yes
Additional Information: Cited By :13
Export Date: 5 September 2016
Correspondence Address: Benneto, F.; Preparative Macromolecular Chemistry, Institut für Technische Chemie und Polymerchemie, Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany
References: Bennet, F., Hart-Smith, G., Gruendling, T., Davis, T.P., Barker, P.J., Barner-Kowollik, C., Macromol. Chem. Phys., 2010 (211), p. 1083; McNeill, I.C., (1968) Eur. Polym. J., 4, p. 21; Cacioli, P., Moad, G., Rizzardo, E., Serelis, A.K., Solomon, D.H., (1984) Polym. Bull., 11, p. 325; Meisters, A., Moad, G., Rizzardo, E., Solomon, D.H., (1988) Polym. Bull., 20, p. 499; Hanton, S.D., (2001) Chem. Rev., 101, p. 527; Peacock, P.M., McEwen, C.N., (2006) Anal. Chem., 78, p. 3957; Weidner, S.M., Trimpin, S., (2008) Anal. Chem., 80, p. 4349; Kashiwagi, T., Inaba, A., Brown, J.E., Hatada, K., Kitayama, T., Masuda, E., (1986) Macromolecules, 19, p. 2160; Inaba, A., Kashiwagi, T., (1986) Macromolecules, 19, p. 2412; Kashiwagi, T., Inabi, A., Hamins, A., (1989) Polym. Degrad. Stab., 26, p. 161; Manring, L.E., (1988) Macromolecules, 21, p. 528; Manring, L.E., (1989) Macromolecules, 22, p. 2673; Manring, L.E., Sogah, D.Y., Cohen, G.M., (1989) Macromolecules, 22, p. 4652; Manring, L.E., (1991) Macromolecules, 24, p. 3304; Manring, L.E., Hertler, W.R., (1993) Polym. Prepr. ACS, Div. Polym. Chem., 34, p. 118; Grassie, N., Speakman, J.G., (1971) J. Polym. Sci. Part A: Polym. Chem., 9, p. 919; Grassie, N., Speakman, J.G., Davis, T.I., (1971) J. Polym. Sci. Part A: Polym. Chem., 9, p. 931; Grassie, N., Speakman, J.G., (1971) J. Polym. Sci., Part A: Polym. Chem., 9, p. 949; Fourie, J., McGill, W.J., (1979) S. A. J. Chem., 32, p. 161; Wallisch, K.L., (1974) J. Appl. Polym. Sci., 18, p. 203; Haken, J.K., McKay, T.R., (1973) Anal. Chem., 45, p. 1251; Haken, J.K., Tan, L., (1987) J. Polym. Sci., Part A: Polym. Chem., 25, p. 1451; Haken, J.K., Tan, L., (1988) J. Polym. Sci., Part A: Polym. Chem., 26, p. 1315; Sazanov, Y.N., Shibaev, L.A., Stepanov, N.G., Sokolovskaya, N.A., (1990) Int. J. Polym. Mater., 14, p. 85; Bertini, F., Audisio, G., Zuev, V.V., (2005) Polym. Degrad. Stab., 89, p. 223; DePuy, C.H., King, R.W., (1960) Chem. Rev., 60, p. 431; Razga, J., Petranek, J., (1975) Eur. Polym. J., 11, p. 805; Demirelli, K., Coskun, M., Kaya, E., (2001) Polym. Degrad. Stab., 72, p. 75; Choudhary, M.S., Lederer, K., (1982) Eur. Polym. J., 18, p. 1021; Miller, K.J., Hellman, J.H., Moore, J.A., (1993) Macromolecules, 26, p. 4945; Nagai, N., Matsunobe, T., Imai, T., (2005) Polym. Degrad. Stab., 88, p. 224; Krajnovich, D.J., (1997) J. Phys. Chem. A, 101, p. 2033; Wochnowski, C., Shams Eldin, M.A., Metev, S., (2005) Polym. Degrad. Sta., 89, p. 252; Estler, R.C., Nogar, N.S., (1986) Appl. Phys. Lett., 49, p. 1175; Okudaira, K.K., Hasegawa, S., Sprunger, P.T., Morikawa, E., Saile, V., Seki, K., Harada, Y., Ueno, N., (1998) J. Appl. Phys., 83, p. 4292; Morimoto, K., Suzuki, S., (1972) J. Appl. Polym. Sci., 16, p. 2947; Sarantopolou, E., Cefalas, A.C., Argitis, P., Gogolides, E., (2001) Mater. Sci. Eng. C, C15, p. 159; Küper, S., Stuke, M., (1989) Appl. Phys. A, 49, p. 211; Turro, N.J., (1978) Modern Molecular Photochemistry, , Benjamin/ Cummings, Reading; Liang, R.H., Tsay, F.-D., Gupta, A., (1982) Macromolecules, 15, p. 974; Bennet, F., Lovestead, T.M., Barker, P.J., Davis, T.P., Stenzel, M.H., Barner-Kowollik, C., (2007) Macromol. Rapid Commun., 28, p. 1593; McBay, H.C., Tucker, C., (1954) J. Org. Chem., 19, p. 1003; McGill, W.J., Ackerman, L., (1974) J. Polym. Sci., Part A: Polym. Chem., 12, p. 1541; McGill, W.J., Ackerman, L., (1974) J. Polym. Sci. Polym. Chem. Ed., 12, p. 2697; McGill, W.J., Ackerman, L., (1975) J. Appl. Polym. Sci., 19, p. 2773; Simha, R., Wall, L.A., Blatz, P.J., (1950) J. Polym. Sci., 5, p. 615; Grassie, N., Melville, H.W., (1949) Proc. R. Soc. A, 199, p. 14; Cowley, P.R.E.J., Melville, H.W., (1953) Natl. Bur. Stand. Circ. (U. S.), 525, p. 59; Bywater, S., (1953) J. Phys. Chem., 57, p. 879; Hill, D.J.T., O'Donnell, J.H., Pomery, P.J., Saadat, G., (1996) Rad. Phys. Chem., 48, p. 605; Bakac, A., Brynildson, M.E., Espenson, J.H., (1986) Inorg. Chem., 25, p. 4108;
Keywords: Chains, Electrospray ionization mass spectrometry, Polymer degradation, Radiation, Crosslinking reaction, Cyclic degradations, Environmental conditions, Irradiation intensity, Model compound, Poly (2hydroxyethyl methacrylate), Poly(butyl acrylate), Source of instability, Surface coatings, UV radiation, Coatings, Electrospray ionization, Ionization, Manganese, Manganese compounds, Mass spectrometry, Particle detectors, Polymers, Ultraviolet radiation, Degradation
DOI: 10.1002/macp.201000133
ISSN: 10221352
Divisions: Current > Schools > School of Chemistry, Physics & Mechanical Engineering
Current > Institutes > Institute for Future Environments
Current > QUT Faculties and Divisions > Science & Engineering Faculty
Deposited On: 22 Sep 2016 04:50
Last Modified: 06 Oct 2016 04:56

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page