Single chain self-assembly of well-defined heterotelechelic polymers generated by ATRP and click chemistry revisited

Altintas, O., Rudolph, T., & Barner-Kowollik, C. (2011) Single chain self-assembly of well-defined heterotelechelic polymers generated by ATRP and click chemistry revisited. Journal of Polymer Science, Part A: Polymer Chemistry, 49(12).

View at publisher

Abstract

Well-defined heterotelechelic poly(styrene) carrying thymine/ diaminopyridine (DAP) (Mn,SEC = 9300, PDI = 1.04) and Hamilton wedge (HW)/cyanuric acid (CA) (Mn,SEC = 8200, PDI = 1.04) bonding motifs are prepared via a combination of controlled/living radical polymerization and copper catalyzed azide/alkyne "click" chemistry and are subsequently self-assembled as single chains to emulate-on a simple level-the self-folding behavior of natural biomacromolecules. Hydrogen nuclear magnetic resonance (1H NMR) in deuterated dichloromethane and dynamic light scattering analyses provides evidence for the hydrogen bonding interactions between the α-thymine and ω-DAP as well as α-CA and ω-HW chain ends of the heterotelechelic polymers leading to circular entropy driven single chain self-assembly. This study demonstrates that the choice of NMR solvent is important for obtaining well-resolved NMR spectra of the self-assembled structures. In addition, steric effects on the HW can affect the efficiency of the self-assembly process. © 2011 Wiley Periodicals, Inc.

Impact and interest:

31 citations in Scopus
Search Google Scholar™
31 citations in Web of Science®

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

ID Code: 99261
Item Type: Journal Article
Refereed: Yes
Additional Information: Cited By :31
Export Date: 5 September 2016
CODEN: JPACE
Correspondence Address: Barner-Kowollik, C.; Preparative Macromolecular Chemistry, Institut für Technische Chemie und Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstr. 18, 76128 Karlsruhe, Germany; email: christopher.barner-kowollik@kit.edu
References: Kato, M., Kamigaito, M., Sawamoto, M., Higashimura, T., (1995) Macromolecules, 28, pp. 1721-1723; Percec, V., Barboiu, B., (1995) Macromolecules, 28, pp. 7970-7972; Wang, J.S., Matyjaszewski, K., (1995) Macromolecules, 28, pp. 7901-7910; Matyjaszewski, K., Xia, J., (2001) Chem Rev, 101, pp. 2921-2990; Kolb, H.C., Finn, M.G., Sharpless, K.B., (2001) Angew Chem Int Ed, 40, pp. 2004-2021; Barner-Kowollik, C., Inglis, A.J., (2009) Macromol Chem Phys, 210, pp. 987-992; Altintas, O., Hizal, G., Tunca, U., (2006) J Polym Sci Part A: Polym Chem, 44, pp. 5699-5707; Binder, W.H., Sachsenhofer, R., (2008) Macromol Rapid Commun, 29, pp. 952-981; Hawker, C.J., Wooley, K.L., (2005) Science, 309, pp. 1200-1205; Braunecker, W.A., Matyjaszewski, K., (2007) Prog Polym Sci, 32, pp. 93-146; Boyer, C., Liu, J., Bulmus, V., Davis, T.P., Barner-Kowollik, C., Stenzel, M.H., (2008) Macromolecules, 41, pp. 5641-5650; Tasdelen, M.A., Kahveci, M.U., Yagci, Y., (2011) Prog Poly Sci, 36, pp. 455-567; Lehn, J.M., (2007) Chem Soc Rev, 36, pp. 151-160; Krische, M.J., Lehn, J.M., (2000) Struct Bonding, 96, pp. 3-29; Beijer, F.H., Kooijman, H., Spek, A.L., Sijbesma, R.P., Meijer, E.W., (1998) Angew Chem Int Ed, 37, pp. 75-78; Knapp, R., Schott, A., Rehahn, M., (1996) Macromolecules, 29, pp. 478-480; Sauvage, J.P., Collin, J.P., Chambron, J.C., Guillerez, S., Coudret, C., (1994) Chem Rev, 94, pp. 993-1019; Chiper, M., Meier, M.A.R., Wouters, D., Hoeppener, S., Fustin, C.A., Gohy, J.F., Schubert, U.S., (2008) Macromolecules, 41, pp. 2771-2777; Altintas, O., Yilmaz, I., Hizal, G., Tunca, U., (2006) J Polym Sci Part A: Polym Chem, 44, pp. 3242-3249; Nuckolls, C., Katz, T.J., Katz, G., Collings, P.J., Castellanos, L., (1999) J Am Chem Soc, 121, pp. 79-88; Brunsveld, L., Meijer, E.W., Prince, R.B., Moore, J.S., (2001) J Am Chem Soc, 123, pp. 7978-7984; Yamaguchi, N., Gibson, H.W., (1999) Angew Chem Int Ed, 38, pp. 143-147; Ashton, P.R., Campbell, P.J., Chrystal, E.J.T., Glink, P.T., Menzer, S., Philp, D., Spencer, N., Williams, D.J., (1995) Angew Chem Int Ed, 34, pp. 1865-1869; Fox, J.D., Rowan, S.J., (2009) Macromolecules, 42, pp. 6823-6835; Brunsveld, L., Folmer, B.J.B., Meijer, E.W., Sijbesma, R.P., (2001) Chem Rev, 101, pp. 4071-4098; De Greef, T.F.A., Smulders, M.M.J., Wolffs, M., Schenning, A.P.H.J., Sijbesma, R.P., Meijer, E.W., (2009) Chem Rev, 109, pp. 5687-5754; Foster, E.J., Berda, E.B., Meijer, E.W., (2009) J Am Chem Soc, 131, pp. 6964-6966; Berda, E.B., Foster, E.J., Meijer, E.W., (2010) Macromolecules, 43, pp. 1430-1437; Berda, E.B., Foster, E.J., Meijer, E.W., (2011) J Polym Sci Part A: Polym Chem, 49, pp. 118-126; Pollino, J.M., Stubbs, L.P.P., Weck, M., (2004) J Am Chem Soc, 126, pp. 563-567; Higley, M.N., Pollino, J.M., Hollembeak, E., Weck, M., (2005) Chem Eur J, 11, pp. 2946-2953; Binder, W.H., Kluger, C., (2004) Macromolecules, 37, pp. 9321-9330; Enders, C., Tanner, S., Binder, W.H., (2010) Macromolecules, 43, pp. 8436-8446; Altintas, O., Gerstel, P., Dingenouts, N., Barner-Kowollik, C., (2010) Chem Commun, 46, pp. 6291-6293; Altintas, O., Tunca, U., Barner-Kowollik, C., (2011) Polym Chem, 2, pp. 1146-1155; Strazielle, C., Benoit, H.O., Vogl, O., (1978) Eur Polym J, 14, pp. 331-334; Eldrup, A.B., Christensen, C., Haaima, G., Nielsen, P.E., (2002) J Am Chem Soc, 124, pp. 3254-3262; Bernard, J., Lortie, F., Fenet, B., (2009) Macromol Rapid Commun, 30, pp. 83-88; Altintas, O., Yankul, B., Hizal, G., Tunca, U., (2006) J Polym Sci Part A: Polym Chem, 44, pp. 6458-6465; Chen, S., Bertrand, A., Chang, X., Alcouffe, P., Ladaviere, C., Gerard, J.F., Lortie, F., Bernard, J., (2010) Macromolecules, 43, pp. 5981-5988; Yang, S.K., Ambade, A.V., Weck, M., (2010) J Am Chem Soc, 132, pp. 1637-1645
Keywords: atom transfer radical polymerization (ATRP), click chemistry, cyanuric acid, diaminopyridine, dynamic light scattering, Hamilton wedge, host-guest systems, poly(styrene), polymer synthesis, self-assembly, single chain self-folding, telechelics, thymine, Hamiltons, Host-guest system, Chemical analysis, Deuterium, Dichloromethane, Free radical reactions, Hydrogen, Hydrogen bonds, Natural polymers, Nuclear magnetic resonance, Nuclear magnetic resonance spectroscopy, Polymerization, Polymers, Refraction, Resonance, Scattering, Self assembly, Styrene, Atom transfer radical polymerization
DOI: 10.1002/pola.24688
ISSN: 0887624X
Divisions: Current > Schools > School of Chemistry, Physics & Mechanical Engineering
Current > Institutes > Institute for Future Environments
Current > QUT Faculties and Divisions > Science & Engineering Faculty
Deposited On: 22 Sep 2016 04:50
Last Modified: 05 Oct 2016 04:55

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page