Modeling the effects of reactor backmixing on RAFT polymerization

Bitsch, B., Barner-Kowollik, C., & Zhu, S. (2011) Modeling the effects of reactor backmixing on RAFT polymerization. Macromolecular Reaction Engineering, 5(1).

View at publisher

Abstract

The effects of reactor backmixing on the outcome of RAFT polymerizations are examined. The kinetic model for the RAFT reaction is based on the first principle of mass balances and the method of moments. Two reactor models were applied for the simulation of backmixing, i.e., a PFTR with loop and multiple CSTRs in series. The models predict the behavior of monomer conversion, molecular weights, their distributions as well as the polydispersities for various chain types at different levels of backmixing. Both models demonstrated that a significant impact of reactor backmixing on RAFT kinetics and polymer molecular weight development exists. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Impact and interest:

10 citations in Scopus
Search Google Scholar™
10 citations in Web of Science®

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

ID Code: 99267
Item Type: Journal Article
Refereed: Yes
Additional Information: Cited By :10
Export Date: 5 September 2016
Correspondence Address: Barner-Kowollik, C.; Preparative Macromolecular Chemistry, Institut für Technische Chemie und Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstrasse 18, 76128 Karlsruhe, Germany; email: christopher.barner-kowollik@kit.edu
References: Chiefari, J., Chong, Y.K., Ercole, F., Krstina, J., Jeffery, J., Le, T.P., Tam, P.T., Thang, S.H., (1998) Macromolecules, 31, p. 5559; Le, T.P., Moad, G., Rizzardo, E., Thang, S.H., (1998), Int. Pat. 9801478 (1998) invs., Chem. Abstr., 128, 115390Webster, O.W., (1991) Science, 251, p. 887; Aida, T., (1994) Prog. Polym. Sci., 19, p. 469; Chiefari, J., Chong, Y.K., Ercole, F., Kristina, J., Meijs, G.F., Moad, C.L., Moad, G., Thang, S.H., (1998) Macromolecules, 31, p. 5559; Hawthorne, D.G., Moad, G., Rizzardo, E., Thang, S.H., (1999) Macromolecules, 32, p. 5457; Goto, A., Sato, K., Tsujji, Y., Fukuda, T., Moad, G., Rizzardo, E., Thang, S.H., (2001) Macromolecules, 34, p. 402; Hawker, C.J., Bosman, A.W., Harth, E., (2001) Chem. Rev., 101, p. 3661; Matyjaszewski, K., Xia, J., (2001) Chem. Rev., 101, p. 2921; Wang, A.R., Zhu, S., (2003) J. Polym. Sci., Part A: Polym. Chem., 11, p. 1553; Barner-Kowollik, C., Quinn, J.F., Morsley, D.R., Davis, T.P., (2001) J. Polym. Sci., Part A: Polym. Chem., 39, p. 1353; Barner-Kowollik, C., Quinn, J.F., Uyen Nguyen, T.L., Heuts, J.P.A., Davis, T.P., (2001) Macromolecules, 34, p. 7849; Russum, J.P., Jones, C.W., Schork, F.J., (2005) Ind. Eng. Chem. Res., 44, p. 2484; Smulders, W.W., Jones, C.W., Schork, F.J., (2005) AIChE J., 51, p. 1009; Müller, M., Cunningham, M.F., Hutchinson, R.A., (2008) Macromol. React. Eng., 2, p. 31; Enright, T.E., Cunningham, M.F., Keoshkerian, B., (2005) Macromol. Rapid Commun., 26, p. 221; Wang, R., Luo, Y., Li, B., Sun, X., Zhu, S., (2006) Macromol. Theor. Simul., 15, p. 356; Qi, G., Jones, C.W., Schork, J.F., (2006) Ind. Eng. Chem. Res., 45, p. 7084; Schork, J.F., Guo, J., (2008) Macromol. React. Eng., 2, p. 287; Enright, T.E., Cunningham, M.F., Keoshkerian, B., (2010) Macromol. React. Eng., 4, p. 186; Ye, Y., Schork, F.J., (2010) Macromol. React. Eng., 4, p. 197; Wang, W.J., Wang, D.M., Li, B.G., Zhu, S., (2010) Macromolecules, 43, p. 4062; Levenspiel, O., Chemical Reaction Engineering (1998), 3rd Edition., John Wiley and Sons, New YorkKonkolewicz, D., Hawkett, B.S., Gray-Weale, A., Perrier, S., (2008) Macromolecules, 41, p. 6400; Barner-Kowollik, C., Buback, M., Charleux, B., Coote, M.L., Drache, M., Fukuda, T., Goto, A., Vana, P., (2006) J. Polym. Sci., Part A: Polym. Chem., 44, p. 5809; Monteiro, M.J., de Brouwer, H., (2001) Macromolecules, 34, p. 349; Monteiro, M.J., (2005) J. Polym. Sci., Part A: Polym. Chem., 43, p. 3189; Barner-Kowollik, C., Coote, M.L., Davis, T.P., Radom, L., Vana, P., (2003) J. Polym. Sci. Part A: Polym. Chem., 41, p. 2828; Chernikova, E., Golubev, V., Filippov, A., Yeh Lin, C., Coote, M.L., (2010) Polym. Chem., , DOI: 10.1039/C0PY00245C; Wang, A.R., Zhu, S., Kwak, Y., Goto, A., Fukuda, T., Monteiro, M.S., (2003) J. Polym. Sci., Part A: Polym. Chem., 41, p. 2833; Braun, W., Rajbenbach, L., Eirich, F.R., (1962) J. Phys. Chem., 66 (9), p. 1591; Demisov, E.T., Demisova, T.G., Pokidova, T.S., Handbook of Free Radical Initiators (2003), John Wiley and Sons, New YorkRussell, G.T., Barner-Kowollik, C., (2009) Prog. Polym. Sci., 34, p. 1211; Bamford, C.H., Tompa, H., (1954) Trans Faraday Soc., 50, p. 1097; Tobita, H., (2006) Macromol. Theory Simul., 15, p. 12
Keywords: Backmixing, Chemical reactors, Kinetic modeling, RAFT, Resident time distribution (RTD), Chain-type, First-principles, Kinetic models, Mass balance, Monomer conversions, Polymer molecular weight, RAft polymerization, Reactor models, Resident time distribution, Significant impacts, Chemicals, Igneous rocks, Living polymerization, Method of moments, Polydispersity, Polymers, Computer simulation
DOI: 10.1002/mren.201000034
ISSN: 1862832X
Divisions: Current > Schools > School of Chemistry, Physics & Mechanical Engineering
Current > Institutes > Institute for Future Environments
Current > QUT Faculties and Divisions > Science & Engineering Faculty
Deposited On: 22 Sep 2016 04:50
Last Modified: 06 Oct 2016 00:47

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page