Low temperature aqueous living/controlled (RAFT) polymerization of carboxybetaine methacrylamide up to high molecular weights

Rodriguez-Emmenegger, C., Schmidt, B. V. K. J., Sedlakova, Z., Šubr, V., Alles, A. B., Brynda, E., & Barner-Kowollik, C. (2011) Low temperature aqueous living/controlled (RAFT) polymerization of carboxybetaine methacrylamide up to high molecular weights. Macromolecular Rapid Communications, 32(13).

View at publisher

Abstract

Among the class of zwitterionic polymers poly(carboxybetaine)s (poly(CB)s) are unique, emerging as the only ultra-low fouling materials known allowing the preparation of biosensors, fouling resistant nanoparticles, and non-adhesive surfaces for bacteria. Poly(carboxybetaine methacrylate) and poly(carboxybetaine acrylamide) have been prepared via atom transfer radical polymerization (ATRP), however a polymerization with living characteristics has not been achieved yet. Herein, the first successful living/controlled reversible addition fragmentation transfer (RAFT) polymerization of (3-methacryloylamino-propyl)-(2- carboxy-ethyl)-dimethyl-ammonium (carboxybetaine methacrylamide) (CBMAA-3) in acetate buffer (pH 5.2) at 70 and 37 °C is reported. The polymerization afforded very high molecular weight polymers (determined by absolute size exclusion chromatography, close to 250 000 g · mol -1 in less than 6 h) with low PDI (<1.3) at 70 °C. The polymerization was additionally carried out at 37 °C allowing to achieve yet lower PDIs (1.06 1.15) even at 90% conversion, demonstrating the suitability of the polymerization conditions for bioconjugate grafting. The living character of the polymerization is additionally evidenced by chain extending poly(CBMAA-3) at 70 and 37 °C. Block copolymerization from biologically relevant poly[N-(2-hydroxypropyl)methacrylamide] macroCTAs was additionally performed. The first living/controlled polymerization of a carboxybetaine monomer is presented. Aqueous RAFT polymerization of carboxybetaine methacrylamide at 70 or 37°C affords high molecular weight polymers (up to 250000 g·mol -1) with low PDI in less than 6h. Block copolymers with the bio-relevant poly(2-hydroxypropyl methacrylamide) are additionally prepared. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Impact and interest:

28 citations in Scopus
Search Google Scholar™
25 citations in Web of Science®

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

ID Code: 99280
Item Type: Journal Article
Refereed: Yes
Additional Information: Cited By :27
Export Date: 5 September 2016
CODEN: MRCOE
Correspondence Address: Rodriguez-Emmenegger, C.; Institute of Macromolecular Chemistry AS CR, Heyrovskeho Sq. 2, Prague 6, 162 06, Czech Republic; email: rodriguez@imc.cas.cz
Chemicals/CAS: methacrylamide, 79-39-0; Acrylamides; Polymers; methacrylamide, 79-39-0; poly(carboxybetaine acrylamide)
References: Hucknall, A., Rangarajan, S., Chilkoti, A., (2009) Adv. Mater., 21, p. 2441; Jiang, S., Cao, Z., (2010) Adv. Mater., 22, p. 920; Rodriguez Emmenegger, C., Brynda, E., Riedel, T., Sedlakova, Z., Houska, M., Alles, A.B., (2009) Langmuir, 25, p. 6328; Rana, D., Matsuura, T., (2010) Chem. Rev., 110, p. 2448; Homola, J., (2008) Chem. Rev., 108, p. 462; Rodriguez-Emmenegger, C., Jäger, A., Jäger, E., Stepanek, P., Alles, A.B., Guterres, S.S., Pohlmann, A.R., Brynda, E., (2011) Colloids Surf., B: Biointerfaces, 83, p. 376; Thissen, H., Gengenbach, T., Du Toit, R., Sweeney, D.F., Kingshott, P., Griesser, H.J., Meagher, L., (2010) Biomaterials, 31, p. 5510; Ratner, B.D., (2007) Biomaterials, 28, p. 5144; Ratner, B.D., (1993) J. Biomed. Mater. Res., 27, p. 283; Lynch, I., Dawson, K.A., (2008) Nano Today, 3, p. 40; Kitano, H., Tada, S., Mori, T., Takaha, K., Gemmei-Ide, M., Tanaka, M., Fukuda, M., Yokoyama, Y., (2005) Langmuir, 21, p. 11932; Ladd, J., Zhang, Z., Chen, S., Hower, J.C., Jiang, S., (2008) Biomacromolecules, 9, p. 1357; Lewis, A.L., (2000) Colloids Surf., B: Biointerfaces, 18, p. 261; Zhang, Z., Vaisocherovać, H., Cheng, G., Yang, W., Xue, H., Jiang, S., (2008) Biomacromolecules, 9, p. 2686; Chen, S., Jiang, S., (2008) Adv. Mater., 20, p. 335; Li, G., Xue, H., Gao, C., Zhang, F., Jiang, S., (2009) Macromolecules, 43, p. 14; Cheng, G., Li, G., Xue, H., Chen, S., Bryers, J.D., Jiang, S., (2009) Biomaterials, 30, p. 5234; Kudaibergenov, S., Jaeger, W., Laschewsky, A., (2006) Polymeric Betaines: Synthesis, Characterization, and Application, p. 157. , in: Supramolecular Polymers Polymeric Betains Oligomers, Springer-Verlag, Berlin, Berlin, p; Rodriguez-Emmenegger, C., Kylian, O., Houska, M., Brynda, E., Artemenko, A., Kousal, J., Bologna Alles, A., Biederman, H., (2011) Biomacromolecules, 12, p. 1058; Hawker, C.J., Bosman, A.W., Harth, E., (2001) Chem. Rev., 101, p. 3661; Moad, G., Rizzardo, E., Thang, S.H., (2009) Aust. J. Chem., 62, p. 1402; Barner-Kowollik, C., (2008) Handbook of RAFT Polymerization, , Wiley-VCH, Weinheim, Germany; Barner-Kowollik, C., Perrier, S., (2008) J. Polym. Sci., Part A: Polym. Chem., 46, p. 5715; Barner, L., Davis, T.P., Stenzel, M.H., Barner-Kowollik, C., (2007) Macromol. Rapid Commun., 28, p. 539; Lowe, A.B., McCormick, C.L., RAFT Polymerization in Homogeneous Aqueous Media: Initiation Systems, RAFT Agent Stability, Monomers and Polymer Structures (2008) Handbook of RAFT Polymerization, p. 235. , in:, C. Barner-Kowollik, (Ed., Wiley-VCH, p; Rihova, B., Jelinkova, M., Strohalm, J., Subr, V., Plocova, D., Hovorka, O., Novak, M., Ulbrich, K., (2000) J. Controlled Release, 64, p. 241; Ulbrich, K., Subr, V., (2010) Adv. Drug Delivery Rev., 62, p. 150; Kopecek, J., Kopecková, P., (2010) Adv. Drug Delivery Rev., 62, p. 122; Armarego, W.L.F., Chai, C.L.L., (2009) Purification of Laboratory Chemicals, , 5 th edition Butterworth-Heinemann, Oxford; Mitsukami, Y., Donovan, M.S., Lowe, A.B., McCormick, C.L., (2001) Macromolecules, 34, p. 2248; Ramachandran, J., Ramadas, S.R., Pillai, C.N., (1981) Org. Prep. Proced. Int., 13, p. 71; Ulbrich, K., Subr, V., Strohalm, J., Plocova, D., Jelinkova, M., Rihova, B., (2000) J. Controlled Release, 64, p. 63; Vasilieva, Y.A., Thomas, D.B., Scales, C.W., McCormick, C.L., (2004) Macromolecules, 37, p. 2728; Thomas, D.B., Sumerlin, B.S., Lowe, A.B., McCormick, C.L., (2003) Macromolecules, 36, p. 1436; Thomas, D.B., Convertine, A.J., Hester, R.D., Lowe, A.B., McCormick, C.L., (2004) Macromolecules, 37, p. 1735; Boyer, C., Whittaker, M.R., Nouvel, C., Davis, T.P., (2010) Macromolecules, 43, p. 1792; Donovan, M.S., Lowe, A.B., Sumerlin, B.S., McCormick, C.L., (2002) Macromolecules, 35, p. 4123; Depp, V., Alikhani, A., Grammer, V., Lele, B.S., (2009) Acta Biomater., 5, p. 560; Kopecek, J., Bazilová, H., (1973) Eur. Polym. J., 9, p. 7; Hruby, M., Konak, C., Kucka, J., Vetrik, M., Filippov, S.K., Vetvicka, D., MacKova, H., Ulbrich, K., (2009) Macromol. Biosci., 9, p. 1016; Lammers, T., Subr, V., Ulbrich, K., Peschke, P., Huber, P.E., Hennink, W.E., Storm, G., (2009) Biomaterials, 30, p. 3466; Vetvicka, D., Hruby, M., Hovorka, O., Etrych, T., Vetrik, M., Kovar, L., Kovar, M., Rihova, B., (2009) Bioconjugate. Chem., 20, p. 2090; Sirova, M., Mrkvan, T., Etrych, T., Chytil, P., Rossmann, P., Ibrahimova, M., Kovar, L., Rihova, B., (2010) Pharm. Res., 27, p. 200
Keywords: biofouling, carboxybetaine methacrylamide, low temperature polymerization, monomers, reversible addition fragmentation chain transfer polymerization (RAFT), Acetate buffers, Acrylamides, Bioconjugates, Block copolymerization, Carboxybetaine, Chain-extending, High molecular weight, High-molecular weight polymers, Low temperatures, Methacrylamides, Polymerization conditions, RAft polymerization, Reversible addition-fragmentation chain transfer polymerization, Reversible addition-fragmentation transfers, Zwitterionic polymers, Acrylic monomers, Amides, Ammonium compounds, Biosensors, Block copolymers, Copolymerization, Free radical polymerization, Gel permeation chromatography, Living polymerization, Molecular weight, Polymers, Size exclusion chromatography, Atom transfer radical polymerization, acrylamide derivative, methacrylamide, poly(carboxybetaine acrylamide), polymer, article, chemistry, evaluation, methodology, organic chemistry, polymerization, synthesis, temperature, Chemistry, Organic
DOI: 10.1002/marc.201100176
ISSN: 10221336
Divisions: Current > Schools > School of Chemistry, Physics & Mechanical Engineering
Current > Institutes > Institute for Future Environments
Current > QUT Faculties and Divisions > Science & Engineering Faculty
Deposited On: 22 Sep 2016 04:50
Last Modified: 05 Oct 2016 04:29

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page