Cyclodextrin-complexed RAFT agents for the ambient temperature aqueous living/controlled radical polymerization of acrylamido monomers

Schmidt, B. V. K. J., Hetzer, M., Ritter, H., & Barner-Kowollik, C. (2011) Cyclodextrin-complexed RAFT agents for the ambient temperature aqueous living/controlled radical polymerization of acrylamido monomers. Macromolecules, 44(18).

View at publisher


The first aqueous reversible addition-fragmentation transfer (RAFT) polymerization of N,N-dimethylacrylamide (DMAAm), N,N-diethylacrylamide (DEAAm), and N-isopropylacrylamide (NIPAAm) utilizing host/guest complexes of cyclodextrin and hydrophobic chain transfer agents (CTAs) at 25 °C is described. Three novel guest-functionalized CTAs, namely 4-(tert-butyl)phenyl 2-(((ethylthio)carbonothioyl)thio)-2-methylpropanoate, bis(4-tert-butyl)benzyl carbonotrithioate, and benzyl (3-((4-(tert-butyl)phenyl)amino)-3-oxopropyl) carbonotrithioate, were synthesized and employed in aqueous RAFT polymerizations. The presented technique allows for the facile preparation of hydrophilic polymers with hydrophobic end groups in aqueous environments. The living/controlled radical polymerization afforded high molecular masses (7500 ≥ Mn ≥ 116 000 g mol-1 for poly(DMAAm), 2500 ≥ Mn ≥ 150 000 g mol-1 for poly(DEAAm), and 4000 ≥ Mn ≥ 50 000 g mol-1 for poly(NIPAAm)) with low PDIs (1.06 ≥ PDI ≥ 1.54 for poly(DMAAm), 1.05 ≥ PDI ≥ 1.39 for poly(DEAAm), and 1.15 ≥ PDI ≥ 1.46 for poly(NIPAAm)). To confirm the living character of the polymerizations, kinetic measurements were undertaken that evidence a linear evolution of molecular weight with conversion. Furthermore, chain extensions were carried out that indicate a very high reinitiation efficiency (poly(DMAAm): from 10 500 to 97 500 g mol-1, PDI = 1.08; poly(DEAAm): from 8500 to 83 000 g mol-1, PDI = 1.13; poly(NIPAAm): from 9000 to 90 000 g mol-1, PDI = 1.11). The resulting polymers were thoroughly characterized via N,N-dimethylacetamide (DMAc) size exclusion chromatography, 1H NMR, and electrospray ionization-mass spectrometry (ESI-MS). © 2011 American Chemical Society.

Impact and interest:

21 citations in Scopus
Search Google Scholar™
22 citations in Web of Science®

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

ID Code: 99282
Item Type: Journal Article
Refereed: Yes
Additional Information: Cited By :20
Export Date: 5 September 2016
Correspondence Address: Ritter, H.; Lehrstuhl für Präparative Polymerchemie, Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine Universität, Universitätsstrasse 1, Geb. 26.33.00, 40225 Düsseldorf, Germany; email:
References: Van De Manakker, F., Vermonden, T., Van Nostrum, C.F., Hennink, W.E., (2009) Biomacromolecules, 10, pp. 3157-3175; Yhaya, F., Gregory, A.M., Stenzel, M.H., (2010) Aust. J. Chem., 63, pp. 195-210; Stadermann, J., Komber, H., Erber, M., Dabritz, F., Ritter, H., Voit, B., (2011) Macromolecules, 44, pp. 3250-3259; Zeng, J., Shi, K., Zhang, Y., Sun, X., Zhang, B., (2008) Chem. Commun., pp. 3753-3755; Zhang, Z.-X., Liu, K.L., Li, J., (2011) Macromolecules, 44, pp. 1182-1193; Jazkewitsch, O., Ritter, H., (2010) Macromolecules, 44, pp. 375-382; Zhao, Q., Wang, S., Cheng, X., Yam, R.C.M., Kong, D., Li, R.K.Y., (2010) Biomacromolecules, 11, pp. 1364-1369; Zhou, J., Ritter, H., (2010) Polym. Chem., 1, pp. 1552-1559; Kretschmann, O., Choi, S.W., Miyauchi, M., Tomatsu, I., Harada, A., Ritter, H., (2006) Angew. Chem., 118, pp. 4468-4472; Harada, A., Hashidzume, A., Takashima, Y., Cyclodextrin-Based Supramolecular Polymers (2006) Supramolecular Polymers Polymeric Betains Oligomers, 201, pp. 1-43. , In; Springer: Berlin, Vol; Felici, M., Marzá-Pérez, M., Hatzakis, N.S., Nolte, R.J.M., Feiters, M.C., (2008) Chem.-Eur. J., 14, pp. 9914-9920; Ng, S.M., Narayanaswamy, R., (2009) Sens. Actuators, B, 139, pp. 156-165; Hawker, C.J., Bosman, A.W., Harth, E., (2001) Chem. Rev., 101, pp. 3661-3688; Grubbs, R.B., (2011) Polym. Rev., 51, pp. 104-137; Ouchi, M., Terashima, T., Sawamoto, M., (2009) Chem. Rev., 109, pp. 4963-5050; Braunecker, W.A., Matyjaszewski, K., (2007) Prog. Polym. Sci., 32, pp. 93-146; Barner-Kowollik, C., Perrier, S., (2008) J. Polym. Sci., Part A: Polym. Chem., 46, pp. 5715-5723; Chiefari, J., Chong, Y.K., Ercole, F., Krstina, J., Jeffery, J., Le, T.P.T., Mayadunne, R.T.A., Thang, S.H., (1998) Macromolecules, 31, pp. 5559-5562; Moad, G., Rizzardo, E., Thang, S.H., (2008) Polymer, 49, pp. 1079-1131; Barner-Kowollik, C., (2008) Handbook of RAFT-Polymerization, , Wiley-VCH: Weinheim, Germany; Moad, G., Rizzardo, E., Thang, S.H., (2009) Aust. J. Chem., 62, pp. 1402-1472; Lowe, A.B., McCormick, C.L., (2007) Prog. Polym. Sci., 32, pp. 283-351; Smith, A.E., Xu, X., McCormick, C.L., (2010) Prog. Polym. Sci., 35, pp. 45-93; Millard, P.-E., Barner, L., Reinhardt, J., Buchmeiser, M.R., Barner-Kowollik, C., Müller, A.H.E., (2010) Polymer, 51, pp. 4319-4328; Millard, P.-E., Barner, L., Stenzel, M.H., Davis, T.P., Barner-Kowollik, C., Müller, A.H.E., (2006) Macromol. Rapid Commun., 27, pp. 821-828; Xiong, Q., Ni, P., Zhang, F., Yu, Z., (2004) Polym. Bull., 53, pp. 1-8; Scales, C.W., Vasilieva, Y.A., Convertine, A.J., Lowe, A.B., McCormick, C.L., (2005) Biomacromolecules, 6, pp. 1846-1850; Mitsukami, Y., Donovan, M.S., Lowe, A.B., McCormick, C.L., (2001) Macromolecules, 34, pp. 2248-2256; Garnier, S., Laschewsky, A., (2005) Macromolecules, 38, pp. 7580-7592; Glatzel, S., Badi, N., Pach, M., Laschewsky, A., Lutz, J.F., (2010) Chem. Commun., 46, pp. 4517-9; Convertine, A.J., Lokitz, B.S., Lowe, A.B., Scales, C.W., Myrick, L.J., McCormick, C.L., (2005) Macromol. Rapid Commun., 26, pp. 791-795; Thomas, D.B., Convertine, A.J., Myrick, L.J., Scales, C.W., Smith, A.E., Lowe, A.B., Vasilieva, Y.A., McCormick, C.L., (2004) Macromolecules, 37, pp. 8941-8950; Ritter, H., Mondrzik, B.E., Rehahn, M., Gallei, M., (2010) Beilstein J. Org. Chem., 6, p. 60; Schwarz-Barac, S., Ritter, H., (2003) J. Macromol. Sci., Pure Appl. Chem., 40, pp. 437-448; Köllisch, H.S., Barner-Kowollik, C., Ritter, H., (2009) Chem. Commun., pp. 1097-1099; Köllisch, H., Barner-Kowollik, C., Ritter, H., (2006) Macromol. Rapid Commun., 27, pp. 848-853; Storsberg, J., Hartenstein, M., Müller, A.H.E., Ritter, H., (2000) Macromol. Rapid Commun., 21, pp. 1342-1346; Pang, Y., Ritter, H., Tabatabai, M., (2003) Macromolecules, 36, pp. 7090-7093; Ding, L., Li, Y., Deng, J., Yang, W., (2011) Polym. Chem., 2, pp. 694-701; Weickenmeier, M., Wenz, G., Huff, J., (1997) Macromol. Rapid Commun., 18, pp. 1117-1123; Höfler, T., Wenz, G., (1996) J. Inclusion Phenom. Macrocyclic Chem., 25, pp. 81-84; Kujawa, P., Segui, F., Shaban, S., Diab, C., Okada, Y., Tanaka, F., Winnik, F.M., (2005) Macromolecules, 39, pp. 341-348; Li, H., Yu, B., Matsushima, H., Hoyle, C.E., Lowe, A.B., (2009) Macromolecules, 42, pp. 6537-6542; Vogt, A.P., Sumerlin, B.S., (2008) Macromolecules, 41, pp. 7368-7373; Mertoglu, M., Laschewsky, A., Skrabania, K., Wieland, C., (2005) Macromolecules, 38, pp. 3601-3614; Fetzner, A., Böhm, S., Schreder, S., Schubert, R., (2004) Eur. J. Pharm. Biopharm., 58, pp. 91-97; Suetsugu, N., Koyama, S., Takeo, K.I., Kuge, T., (1974) J. Biochem., 76, pp. 57-63; Kuo, C., Provder, T., Koehler, M.E., (1991) International GPC Symposium Proceedings, pp. 147-159. , pp; Convertine, A.J., Lokitz, B.S., Vasileva, Y., Myrick, L.J., Scales, C.W., Lowe, A.B., McCormick, C.L., (2006) Macromolecules, 39, pp. 1724-1730; Skey, J., O'Reilly, R.K., (2008) Chem. Commun., pp. 4183-4185; Loftsson, T., Jarho, P., Másson, M., Järvinen, T., (2005) Expert Opin. Drug Delivery, 2, pp. 335-351; Glockner, P., Schollmeyer, D., Ritter, H., (2002) Des. Monomers Polym., 5, pp. 163-172; Funasaki, N., Yodo, H., Hada, S., Neya, S., (1992) Bull. Chem. Soc. Jpn., 65, pp. 1323-1330; Rekharsky, M.V., Inoue, Y., (1998) Chem. Rev., 98, pp. 1875-1918; Thomas, D.B., Convertine, A.J., Hester, R.D., Lowe, A.B., McCormick, C.L., (2004) Macromolecules, 37, pp. 1735-1741; Baussard, J.-F., Habib-Jiwan, J.-L., Laschewsky, A., Mertoglu, M., Storsberg, J., (2004) Polymer, 45, pp. 3615-3626; Jodái, I., Kandra, L., Harangi, J., Nánási, P., Debrecen, Szejtli, J., (1984) Starch/Staerke, 36, pp. 140-143; Gan, L.H., Cai, W., Tam, K.C., (2001) Eur. Polym. J., 37, pp. 1773-1778; Delaittre, G., Rieger, J., Charleux, B., (2011) Macromolecules, 44, pp. 462-470; Heskins, M., Guillet, J.E., (1968) J. Macromol. Sci., Chem., 2, pp. 1441-1455; Del Valle, E.M.M., (2004) Process Biochem., 39, pp. 1033-1046
Keywords: Aqueous environment, Chain extension, Electrospray ionization mass spectrometry, End groups, Facile preparation, High molecular mass, Host/guest complex, Hydrophilic polymers, Hydrophobic chains, Kinetic measurement, Living/controlled radical polymerization, N ,N-Dimethylacetamide, N ,n-dimethylacrylamide, N-isopropylacrylamides, RAFT agents, RAft polymerization, Reinitiation, Reversible addition-fragmentation transfers, Acrylic monomers, Amides, Atom transfer radical polymerization, Electrospray ionization, Free radical polymerization, Hydrophobicity, Living polymerization, Mass spectrometry, Size exclusion chromatography, Functional polymers
DOI: 10.1021/ma2011969
ISSN: 00249297
Divisions: Current > Schools > School of Chemistry, Physics & Mechanical Engineering
Current > Institutes > Institute for Future Environments
Current > QUT Faculties and Divisions > Science & Engineering Faculty
Deposited On: 22 Sep 2016 04:50
Last Modified: 05 Oct 2016 01:55

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page