Quantitative comparison of the mesitoyl vs the benzoyl fragment in photoinitiation: A question of origin

Voll, D., Junkers, T., & Barner-Kowollik, C. (2011) Quantitative comparison of the mesitoyl vs the benzoyl fragment in photoinitiation: A question of origin. Macromolecules, 44(8).

View at publisher


Photolytically generated radicals (at a wavelength of 351 nm) derived from the acetophenone-type photoinitiators benzoin (2-hydroxy-1,2-diphenylethanone) and 2,4,6-trimethylbenzoin (2-hydroxy-1-mesityl-2-phenylethanone, TMB) (specifically the benzoyl and mesitoyl radical) are quantified in their ability to serve as initiating species in methyl methacrylate (MMA), ethyl methacrylate (EMA), and butyl methacrylate (BMA) bulk free radical polymerizations under optimized conditions. Herein, 2,4,6-trimethylbenzoin is employed for the first time as photoinitiator in pulsed laser polymerizations (PLP) employing a high-frequency excimer laser, constituting a new source for mesitoyl radicals. The current work presents an improved method for quantifying radical efficiency of photoinitiation processes using coupled online size exclusion chromatography-electrospray ionization mass spectrometry (SEC/ESI-MS) to analyze the obtained polymers. Because of the occurrence of side reactions during the benzoin-initiated MMA polymerization, reduced laser energies (∼0.35 mJ/pulse) as well as low polymerization temperatures (∼-5 °C) were employed, which avoids side product formation. A plot of the ratio of benzoyl to mesitoyl (derived from 2,4,6-trimethylbenzoin) end groups vs the ratio of both initiators in the reaction mixture indicates that the benzoin-derived benzoyl radical is 3.0 (2.6, 2.4) times more likely to initiate the polymerization process of MMA (EMA, BMA) than the TMB-derived mesitoyl fragment. This observation is in sharp contrast to the case when mesitil is employed as a source of mesitoyl radicals (8.6 times higher likelihood of benzoyl incorporation). These results clearly support the notion that the origin of a radical species significantly determines its propensity to be incorporated at a polymer chain's terminus. The cause of such an origin dependence is tentatively assigned-at least in part-to different triplet lifetimes or intersystem crossing efficiencies (ΦISC) or both of TMB and mesitil. © 2011 American Chemical Society.

Impact and interest:

16 citations in Scopus
14 citations in Web of Science®
Search Google Scholar™

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

ID Code: 99284
Item Type: Journal Article
Refereed: Yes
Additional Information: Cited By :15
Export Date: 5 September 2016
Correspondence Address: Barner-Kowollik, C.; Preparative Macromolecular Chemistry, Institut für Technische Chemie und Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstr. 18, 76128 Karlsruhe, Germany; email: christopher.barner-kowollik@kit.edu
References: Kaur, M., Srivastava, A.K., (2002) J. Macromol. Sci., Part C: Polym. Rev., 42, pp. 481-512; Ge, J., Trujillo, M., Stansbury, J.W., (2005) J. Dent. Matter, 21, pp. 1163-1169; Anseth, K.S., Newman, S.M., Bowman, C.N., (1995) Adv. Polym. Sci., 122, pp. 177-217; Fisher, J.P., Dean, D., Engel, P.S., Mikos, A.G., (2001) Annu. Rev. Mater. Res., 31, pp. 171-181; Anseth, K.S., Metters, A.T., Bryant, S.J., Martens, P.J., Elisseeff, J.H., Bowman, C.N., (2002) J. Controlled Release, 78, pp. 199-209; Sun, H.B., Kawata, S., (2004) Adv. Polym. Sci., 170, pp. 169-273; Arsu, N., Reetz, I., Yagci, Y., Mishra, M.K., Mishra, M.K., Yagci, Y., (2009) Handbook of Vinyl Polymers: Radical Polymerization, Process, and Technology, 20, p. 141. , Photoinitiated Radical Vinyl Polymerization. In;;, Eds.; CRC Press: Boca Raton, FL,; Vol., pp - 204; Yagci, Y., Reetz, I., (1998) Prog. Polym. Sci., 23, pp. 1485-1538; Kutal, C., Grutsch, P.A., Yang, D.B., (1991) Macromolecules, 24, pp. 6872-6873; Gruber, H.F., (1992) Prog. Polym. Sci., 17, pp. 953-1044; Hageman, H., (1985) J. Prog. Org. Coat., 13, pp. 123-150; Arsu, N., Aydin, M., Yagci, Y., Jockusch, S., Turro, N.J., Fouassier, J.P., (2006) Photochemistry and UV Curing: New Trends, pp. 37/661. , Ed.; Research Signpost, Fort P.O.: Trivandrum,; p; Yagci, Y., Jockusch, S., Turro, N.J., (2010) Macromolecules, 43, pp. 6245-6260; Olaj, O.F., Bitai, I., Hinkelmann, F., (1987) Makromol. Chem., 188, pp. 1689-1702; Buback, M., Gilbert, R.G., Hutchinson, R.A., Klumperman, B., Kuchta, F.-D., Manders, B.G., O'Driscoll, K.F., Schweer, J., (1995) Macromol. Chem. Phys., 196, pp. 3267-3280; Beuermann, S., Buback, M., Davis, T.P., Gilbert, R.G., Hutchinson, R.A., Olaj, O.F., Russell, G.T., Van Herk, A.M., (1997) Macromol. Chem. Phys., 198, pp. 1545-1560; Beuermann, S., Buback, M., Davis, T.P., Gilbert, R.G., Hutchinson, R.A., Kajiwara, A., Klumperman, B., Russell, G.T., (2000) Macromol. Chem. Phys., 201, pp. 1355-1364; Beuermann, S., Buback, M., Davis, T.P., García, N., Gilbert, R.G., Hutchinson, R.A., Kajiwara, A., Russell, G.T., (2003) Macromol. Chem. Phys., 204, pp. 1338-1350; Asua, J.M., Beuermann, S., Buback, M., Castignolles, P., Charleux, B., Gilbert, R.G., Hutchinson, R.A., Van Herk, A.M., (2004) Macromol. Chem. Phys., 205, pp. 2151-2160; Beuermann, S., Buback, M., (2002) Prog. Polym. Sci., 27, pp. 191-254; Gruendling, T., Voll, D., Guilhaus, M., Barner-Kowollik, C., (2010) Macromol. Chem. Phys., 211, pp. 80-90; Aaserud, D.J., Prokai, L., Simonsick, J.W.J., (1999) Anal. Chem., 71, pp. 4793-4799; Gruendling, T., Guilhaus, M., Barner-Kowollik, C., (2008) Anal. Chem., 80, pp. 6915-6927; Gruendling, T., Guilhaus, M., Barner-Kowollik, C., (2009) Macromolecules, 42, pp. 6366-6374; Barner-Kowollik, C., Günzler, F., Junkers, T., (2008) Macromolecules, 41, pp. 8971-8973; Junkers, T., Voll, D., Barner-Kowollik, C., (2009) E-Polym., p. 076; Barner-Kowollik, C., Bennet, F., Schneider-Baumann, M., Voll, D., Rölle, T., Facke, T., Weiser, M.-S., Junkers, T., (2010) Polym. Chem., 1, pp. 470-479; Szablan, Z., Lovestead, T.M., Davis, T.P., Stenzel, M.H., Barner-Kowollik, C., (2006) Macromolecules, 40, pp. 26-39; Szablan, Z., Junkers, T., Koo, S.P.S., Lovestead, T.M., Davis, T.P., Stenzel, M.H., Barner-Kowollik, C., (2007) Macromolecules, 40, pp. 6820-6833; Vana, P., Davis, T.P., Barner-Kowollik, C., (2002) Aust. J. Chem., 55, pp. 315-318; Günzler, F., Wong, E.H.H., Koo, S.P.S., Junkers, T., Barner-Kowollik, C., (2009) Macromolecules, 42, pp. 1488-1493; The term "(net) initiation efficiency" is employed to denote the propensity of a radical to commence macromolecular growth from the point of the laser pulse hitting the source molecule. It thus summarizes a true initiator efficiency (net efficiency), including all effects from the ability of the initiator to absorb light to the reactivity of the radical towards the monomer unitsSpichty, M., Turro, N.J., Rist, G., Birbaum, J.-L., Dietliker, K., Wolf, J.-P., Gescheidt, G., (2001) J. Photochem. Photobiol., A, 142, pp. 209-213; Günzler, F., (2008), PhD Thesis, GöttingenBuback, M., Günzler, F., Russell, G.T., Vana, P., (2009) Macromolecules, 42, pp. 652-662; Weinstock, H.H., Fuson, R.C., (1936) J. Am. Chem. Soc., 58, pp. 1986-1988; Fuson, R.C., Weinstock, H.H., Ullyot, G.E., (1935) J. Am. Chem. Soc., 57, pp. 1803-1804; Gray, A.R., Fuson, R.C., (1934) J. Am. Chem. Soc., 56, pp. 739-741; Gruendling, T., Guilhaus, M., Barner-Kowollik, C., (2009) Macromol. Rapid Commun., 30, pp. 589-597; Weinstock, H.H., Fuson, R.C., (1936) J. Am. Chem. Soc., 58, pp. 1233-1236; Colley, C.S., Grills, D.C., Besley, N.A., Jockusch, S., Matousek, P., Parker, A.W., Towrie, M., George, M.W., (2002) J. Am. Chem. Soc., 124, pp. 14952-14958
Keywords: Acetophenones, Benzoyl radicals, Bulk free radical polymerization, Butyl methacrylates, Electrospray ionization mass spectrometry, End groups, Ethyl methacrylates, High frequency HF, Improved methods, Intersystem crossing, Laser energies, Methyl methacrylates, MMA polymerization, New sources, Optimized conditions, Photo-initiator, Photoinitiation, Photoinitiators, Polymer chains, Polymerization process, Polymerization temperature, Pulsed laser polymerization, Quantitative comparison, Radical species, Reaction mixture, Sharp contrast, Side products, Side reactions, Acrylic monomers, Electrospray ionization, Esters, Excimer lasers, Free radical polymerization, Free radicals, Gas lasers, Ketones, Mass spectrometry, Pulsed lasers, Size exclusion chromatography, Polymers
DOI: 10.1021/ma2001977
ISSN: 00249297
Divisions: Current > Schools > School of Chemistry, Physics & Mechanical Engineering
Current > Institutes > Institute for Future Environments
Current > QUT Faculties and Divisions > Science & Engineering Faculty
Deposited On: 22 Sep 2016 04:50
Last Modified: 05 Oct 2016 01:47

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page