Ambient temperature polymer modification by in situ phototriggered deprotection and thiol-ene chemistry

Pauloehrl, T., Delaittre, G., Bastmeyer, M., & Barner-Kowollik, C. (2012) Ambient temperature polymer modification by in situ phototriggered deprotection and thiol-ene chemistry. Polymer Chemistry, 3(7).

View at publisher


A novel and efficient methodology for the light-triggered release of thiols at ambient temperature is presented, which can be utilized for the in situ modification of polymeric backbones prepared via radical polymerization. Initially, a model reaction on poly(ethylene glycol) methyl ether was examined via size-exclusion chromatography coupled with electrospray ionization-mass spectrometry (SEC/ESI-MS) to establish the photodeprotection feasibility of 2-nitrobenzyl thioether moieties in the presence of variable activators or catalysts employed are Michael-type or radical thiol-ene chemistries, respectively. When 0.01 eq. of dimethylphenylphosphine is employed, disulfide coupling is reduced to its minimum and quantitative phototriggered formation of thiol-capped poly(ethylene glycol) methyl ether species is observed after a 16 hour irradiation period at 320 nm by a low-cost light source. The concept is extended to polymer backbone modification by atom transfer radical polymerization of the novel photosensitive monomer: 2-((3-((2-nitrobenzyl)thio) propanoyl)oxy)ethyl methacrylate containing the 2-nitrobenzyl thioether moiety. Well-defined homopolymers (4700 g·mol -1 ≤ M n ≤ 20000 g·mol -1, 1.29 ≤ PDI ≤ 1.40) containing one protected thiol per repeating unit were obtained and, upon a light stimulus (λ max = 320 nm), thiol entities are released along the lateral polymer chain. The photodeprotection process is mapped by exploiting the increased absorbance of photocleaved o-nitrosobenzaldehyde molecules at 345 nm and UV-Vis data suggests a quantitative backbone deprotection after a 16 hour irradiation time period. Further in situ functionalization of polymeric backbone is achieved via base-catalyzed maleimide-thiol addition at ambient temperature and its outcome is evidenced by a re-increased molecular weight in SEC, by virtue of decreased signal intensity of the 2-nitrobenzyl thioether moiety and the appearance of characteristic product protons in NMR spectroscopy (the polymer backbone functionalization is estimated as >90% by NMR analysis). © 2012 The Royal Society of Chemistry.

Impact and interest:

32 citations in Scopus
Search Google Scholar™
34 citations in Web of Science®

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

ID Code: 99317
Item Type: Journal Article
Refereed: Yes
Additional Information: Cited By :31
Export Date: 5 September 2016
Correspondence Address: Barner-Kowollik, C.; Preparative Macromolecular Chemistry, Institut für Technische Chemie und Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstr. 18, 76128 Karlsruhe, Germany; email:
References: Campos, L.M., Killops, K.L., Sakai, R., Paulusse, J.M.J., Damiron, D., Drockenmuller, E., Messmore, B.W., Hawker, C.J., (2008) Macromolecules, 41, pp. 7063-7070; Sinnwell, S., Inglis, A.J., Stenzel, M.H., Barner-Kowollik, C., (2009) Click Chemistry for Biotechnology and Materials Science, pp. 89-117. , John Wiley & Sons, Ltd; Hawker, C.J., Wooley, K.L., (2005) Science, 309, pp. 1200-1205; Binder, W.H., Sachsenhofer, R., (2008) Macromol. Rapid Commun., 29, pp. 952-981; Barner-Kowollik, C., Du Prez, F.E., Espeel, P., Hawker, C.J., Junkers, T., Schlaad, H., Van Camp, W., (2011) Angew. Chem., Int. Ed., 50, pp. 60-62; Hoyle, C.E., Bowman, C.N., (2010) Angew. Chem., Int. Ed., 49, pp. 1540-1573; Becer, C.R., Hoogenboom, R., Schubert, U.S., (2009) Angew. Chem., Int. Ed., 48, pp. 4900-4908; Kade, M.J., Burke, D.J., Hawker, C.J., (2010) J. Polym. Sci., Part A: Polym. Chem., 48, pp. 743-750; Hoyle, C.E., Lee, T.Y., Roper, T., (2004) J. Polym. Sci., Part A: Polym. Chem., 42, pp. 5301-5338; Lowe, A.B., (2010) Polym. Chem., 1, pp. 17-36; Killops, K.L., Campos, L.M., Hawker, C.J., (2008) J. Am. Chem. Soc., 130, pp. 5062-5064; Campos, L.M., Meinel, I., Guino, R.G., Schierhorn, M., Gupta, N., Stucky, G.D., Hawker, C.J., (2008) Adv. Mater., 20, pp. 3728-3733; Koo, S.P.S., Stamenović, M.M., Prasath, R.A., Inglis, A.J., Du Prez, F.E., Barner-Kowollik, C., Van Camp, W., Junkers, T., (2010) J. Polym. Sci., Part A: Polym. Chem., 48, pp. 1699-1713; Kim, B.J., Given-Beck, S., Bang, J., Hawker, C.J., Kramer, E.J., (2007) Macromolecules, 40, pp. 1796-1798; Jana, N.R., Erathodiyil, N., Jiang, J., Ying, J.Y., (2010) Langmuir, 26, pp. 6503-6507; Garamszegi, L., Donzel, C., Carrot, G., Nguyen, T.Q., Hilborn, J., (2003) React. Funct. Polym., 55, pp. 179-183; Liras, M., García, O., Quijada-Garrido, I., París, R., (2011) Macromolecules, 44, pp. 1335-1339; Uygun, M., Tasdelen, M.A., Yagci, Y., (2010) Macromol. Chem. Phys., 211, pp. 103-110; Boyer, C., Soeriyadi, A.H., Roth, P.J., Whittaker, M.R., Davis, T.P., (2011) Chem. Commun., 47, pp. 1318-1320; Trollsås, M., Hawker, C.J., Hedrick, J.L., Carrot, G., Hilborn, J., (1998) Macromolecules, 31, pp. 5960-5963; Stenzel, M.H., Davis, T.P., Barner-Kowollik, C., (2004) Chem. Commun., pp. 1546-1547; Xu, J., He, J., Fan, D., Wang, X., Yang, Y., (2006) Macromolecules, 39, pp. 8616-8624; Boyer, C., Granville, A., Davis, T.P., Bulmus, V., (2009) J. Polym. Sci., Part A: Polym. Chem., 47, pp. 3773-3794; Sumerlin, B.S., Lowe, A.B., Stroud, P.A., Zhang, P., Urban, M.W., McCormick, C.L., (2003) Langmuir, 19, pp. 5559-5562; Gramlich, W.M., Robertson, M.L., Hillmyer, M.A., (2010) Macromolecules, 43, pp. 2313-2321; Rudin, A., Hoegy, H.L.W., (1972) J. Polym. Sci., Part A-1: Polym. Chem., 10, pp. 217-235; Gruendling, T., Guilhaus, M., Barner-Kowollik, C., (2008) Anal. Chem., 80, pp. 6915-6927; Gruendling, T., Oehlenschlaeger, K.K., Frick, E., Glassner, M., Schmid, C., Barner-Kowollik, C., (2011) Macromol. Rapid Commun., 32, pp. 807-812; Nebhani, L., Barner-Kowollik, C., (2010) Macromol. Rapid Commun., 31, pp. 1298-1305; Chong, S.-F., Chandrawati, R., Städler, B., Park, J., Cho, J., Wang, Y., Jia, Z., Caruso, F., (2009) Small, 5, pp. 2601-2610; Chan, J.W., Hoyle, C.E., Lowe, A.B., (2009) J. Am. Chem. Soc., 131, pp. 5751-5753; Chan, J.W., Hoyle, C.E., Lowe, A.B., Bowman, M., (2010) Macromolecules, 43, pp. 6381-6388; Li, G.-Z., Randev, R.K., Soeriyadi, A.H., Rees, G., Boyer, C., Tong, Z., Davis, T.P., Haddleton, D.M., (2010) Polym. Chem., 1, pp. 1196-1204; Syrett, J.A., Jones, M.W., Haddleton, D.M., (2010) Chem. Commun., 46, pp. 7181-7183; Il'Ichev, Y.V., Schwörer, M.A., Wirz, J., (2004) J. Am. Chem. Soc., 126, pp. 4581-4595; Johnson, J.A., Finn, M.G., Koberstein, J.T., Turro, N.J., (2007) Macromolecules, 40, pp. 3589-3598; Kang, M., Moon, B., (2008) Macromolecules, 42, pp. 455-458; Katz, J.S., Zhong, S., Ricart, B.G., Pochan, D.J., Hammer, D.A., Burdick, J.A., (2010) J. Am. Chem. Soc., 132, pp. 3654-3655; Braun, F., Eng, L., Trogisch, S., Voit, B., (2003) Macromol. Chem. Phys., 204, pp. 1486-1496; Xie, Z., Hu, X., Chen, X., Sun, J., Shi, Q., Jing, X., (2007) Biomacromolecules, 9, pp. 376-380; Bajpai, U.D.N., Bajpai, A.K., Bajpai, J., (1991) J. Appl. Polym. Sci., 42, pp. 2005-2012; He, Y.Z., Cui, J.P., Mallard, W.G., Tsang, W., (1988) J. Am. Chem. Soc., 110, pp. 3754-3759; Schumers, J.-M., Fustin, C.-A., Can, A., Hoogenboom, R., Schubert, U.S., Gohy, J.-F., (2009) J. Polym. Sci., Part A: Polym. Chem., 47, pp. 6504-6513; Borman, C.D., Jackson, A.T., Bunn, A., Cutter, A.L., Irvine, D.J., (2000) Polymer, 41, pp. 6015-6020; Jackson, A.T., Bunn, A., Priestnall, I.M., Borman, C.D., Irvine, D.J., (2006) Polymer, 47, pp. 1044-1054; Gruendling, T., Guilhaus, M., Barner-Kowollik, C., (2009) Macromol. Rapid Commun., 30, pp. 589-597; Marriott, G., Miyata, H., Kinosita Jr., K., (1992) Biochem. Int., 26, pp. 943-951; Bennet, F., Hart-Smith, G., Gruendling, T., Davis, T.P., Barker, P.J., Barner-Kowollik, C., (2010) Macromol. Chem. Phys., 211, pp. 1083-1097; Inglis, A.J., Paulöhrl, T., Barner-Kowollik, C., (2010) Macromolecules, 43, pp. 33-36; Inglis, A.J., Sinnwell, S., Stenzel, M.H., Barner-Kowollik, C., (2009) Angew. Chem., Int. Ed., 48, pp. 2411-2414; Hall, D.J., Van Den Berghe, H.M., Dove, A.P., (2011) Polym. Int., 60, pp. 1149-1157; Stanford, M.J., Pflughaupt, R.L., Dove, A.P., (2010) Macromolecules, 43, pp. 6538-6541; Khan, M.N., (1984) J. Pharm. Sci., 73, pp. 1767-1771
Keywords: 2-nitrobenzyl, Absorbances, Deprotection, Disulfide coupling, Electrospray ionization mass spectrometry, Ethyl methacrylates, Functionalizations, In-situ, Irradiation time, Light stimuli, Methyl ethers, Model reactions, NMR analysis, Polymer backbones, Polymer chains, Polymer modifications, Polymeric backbone, Repeating unit, Signal intensities, Thioether moieties, Thiol-enes, Atom transfer radical polymerization, Electrospray ionization, Ethers, Irradiation, Light sources, Mass spectrometry, Nuclear magnetic resonance spectroscopy, Organic polymers, Polyethylene glycols, Polymerization, Size exclusion chromatography, Temperature
DOI: 10.1039/c1py00372k
ISSN: 17599954
Divisions: Current > Schools > School of Chemistry, Physics & Mechanical Engineering
Current > Institutes > Institute for Future Environments
Current > QUT Faculties and Divisions > Science & Engineering Faculty
Deposited On: 22 Sep 2016 04:50
Last Modified: 04 Oct 2016 23:48

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page