A detailed surface analytical study of degradation processes in (meth)acrylic polymers

Soeriyadi, A. H., Trouillet, V., Bennet, F., Bruns, M., Whittaker, M. R., Boyer, C., Barker, P. J., Davis, T. P., & Barner-Kowollik, C. (2012) A detailed surface analytical study of degradation processes in (meth)acrylic polymers. Journal of Polymer Science, Part A: Polymer Chemistry, 50(9).

View at publisher


The present study investigates the degradation behavior of various high-molecular-weight acrylic polymers (50,000 < M n/g mol -1 < 100,000), namely poly(methyl methacrylate) (PMMA), poly(n-butyl methacrylate) (PBMA), poly(n-butyl acrylate) (PBA), and poly(lauryl methacrylate) (PLMA), under extreme environmental conditions. These polymers were synthesized via various polymerization techniques to create different end-groups. The polymers chosen are readily applicable in the formulation of surface coatings and were degraded under conditions which replicate the harsh Australian climate, where surface coatings may reach temperatures of up to 95 °C and are exposed to broad-spectrum UV radiation of up to 1 kW m -2. The degradation behavior of the polymeric materials on their surface was followed via ATR-IR spectroscopy, high resolution FTIR microscopy, and X-ray photoelectron spectroscopy. The extent of the observed thermal and photo-oxidation is directly related to the length of the ester side group, with the degradation susceptibility decreasing in the order of PLMA > PBMA/PBA > PMMA, with PMMA still stable even after 5 months exposure to the harshest condition used (UV light at 95 °C). The general degradation mechanism involves the loss of the ester side groups to form methacrylic acid followed by cross-linking. The effect of the variable end groups was found to be minimal. The results from this study are in good agreement with previous studies of low-molecular-weight model polymers under identical conditions. © 2012 Wiley Periodicals, Inc.

Impact and interest:

5 citations in Scopus
Search Google Scholar™
5 citations in Web of Science®

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

ID Code: 99324
Item Type: Journal Article
Refereed: Yes
Additional Information: Cited By :5
Export Date: 5 September 2016
Correspondence Address: Davis, T.P.; Centre for Advanced Macromolecular Design, School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia; email: t.davis@unsw.edu.au
References: Chiantore, O., Trossarelli, L., Lazzari, M., (2000) Polymer, 41, pp. 1657-1668; Lazzari, M., Chiantore, O., (2000) Polymer, 41, pp. 6447-6455; Chiantore, O., Lazzari, M., (2001) Polymer, 42, pp. 17-27; Soeriyadi, A.H., Bennet, F., Whittaker, M.R., Barker, P.J., Barner-Kowollik, C., Davis, T.P., (2011) J. Polym. Sci. Part A: Polym. Chem., 49, pp. 848-861; Gryn'Ova, G., Hodgson, J.L., Coote, M.L., (2011) Org. Biomol. Chem., 9, pp. 480-490; Bennet, F., Lovestead, T.M., Barker, P.J., Davis, T.P., Stenzel, M.H., Barner-Kowollik, C., (2007) Macromol. Rapid Commun., 28, pp. 1593-1600; Bennet, F., Hart-Smith, G., Gruendling, T., Davis, T.P., Barker, P.J., Barner-Kowollik, C., (2010) Macromol. Chem. Phys., 211, pp. 1083-1097; Bennet, F., Barker, P.J., Davis, T.P., Soeriyadi, A.H., Barner-Kowollik, C., (2010) Macromol. Chem. Phys., 211, pp. 2034-2052; MacCallum, J.R., (1964) Polymer, 5, pp. 213-226; Allison, J.P., (1966) J. Polym. Sci. Part A: Polym. Chem., 4, pp. 1209-1212; Kaczmarek, H., Kaminska, A., Van Herk, A., (2000) Eur. Polym. J., 36, pp. 767-777; Kaczmarek, H., Chaberska, H., (2009) Appl. Surf. Sci., 255, pp. 6729-6735; Liang, R.H., Tsay, F.D., Gupta, A., (1982) Macromolecules, 15, pp. 974-980; Wochnowski, C., Shams Eldin, M.A., Metev, S., (2005) Polym. Degrad. Stab., 89, pp. 252-264; Grant, D.H., Grassie, N., (1960) Polymer, 1, pp. 445-455; Grassie, N., MacCallum, J.R., (1964) J. Polym. Sci. Part A: Polym. Chem., 2, pp. 983-1000; Grassie, N., Speakman, J.G., (1971) J. Polym. Sci. Part A: Polym. Chem., 9, pp. 919-929; Bertini, F., Audisio, G., Zuev, V.V., (2005) Polym. Degrad. Stab., 89, pp. 233-239; Inaba, A., Kashiwagi, T., (1986) Macromolecules, 19, pp. 2412-2419; Kashiwagi, T., Inaba, A., Brown, J.E., Hatada, K., Kitayama, T., Masuda, E., (1986) Macromolecules, 19, pp. 2160-2168; Kashiwagi, T., Inabi, A., Hamins, A., (1989) Polym. Degrad. Stab., 26, pp. 161-184; Wochnowski, C., Metev, S., Sepold, G., (2000) Appl. Surf. Sci., 154, pp. 706-711; Kaczmarek, H., Chaberska, H., (2006) Appl. Surf. Sci., 252, pp. 8185-8192; Geertz, G., Brüll, R., Wieser, J., Maria, R., Wenzel, M., Engelsing, K., Wüst, J., Rudschuck, M., (2009) Polym. Degrad. Stab., 94, pp. 1092-1102; Bodzay, B., Marosfoi, B.B., Igrics, T., Bocz, K., Marosi, G., (2009) 18th International Symposium on Analytical and Applied Pyrolysis, pp. 313-320. , In, Lanzarote, Spain, May; Patel, K., Doyle, C.S., James, B.J., Hyland, M.M., (2010) Polym. Degrad. Stab., 95, pp. 792-797; Odian, G., (2004) Priciples of Polymerization, , John Wiley: NJ; Heuts, J.P.A., Roberts, G.E., Biasutti, J.D., (2002) Aust. J. Chem., 55, pp. 381-398; Heuts, J.P.A., Smeets, N.M.B., (2011) Polym. Chem., 2, pp. 2407-2423; Davis, T.P., Kukulj, D., Haddleton, D.M., Maloney, D.R., (1995) Trends Polym. Sci., 3, pp. 365-373; Soeriyadi, A.H., Li, G.-Z., Slavin, S., Jones, M.W., Amos, C.M., Becer, C.R., Whittaker, M.R., Davis, T.P., (2011) Polym. Chem., 2, pp. 815-822; Bakac, A., Brynildson, M.E., Espenson, J.H., (1986) Inorg. Chem., 25, pp. 4108-4114; Gruendling, T., Junkers, T., Guilhaus, M., Barner-Kowollik, C., (2010) Macromol. Chem. Phys., 211, pp. 520-528; Mahabadi, H.K., O'Driscoll, K.F., (1977) J. Appl. Polym. Sci., 21, pp. 1283-1287; Strazielle, C., Benoit, H., Vogl, O., (1978) Eur. Polym. J., 14, pp. 331-334; Parry, K.L., Shard, A.G., Short, R.D., White, R.G., Whittle, J.D., Wright, A., (2006) Surf. Interface Anal., 38, pp. 1497-1504; Scofield, J.H., (1976) J. Electron Spectrosc. Relat. Phenom., 8, pp. 129-137; Tanuma, S., Powell, C.J., Penn, D.R., (1994) Surf. Interface Anal., 21, pp. 165-176; Nebhani, L., Gerstel, P., Atanasova, P., Bruns, M., Barner-Kowollik, C., (2009) J. Polym. Sci. Part A: Polym. Chem., 47, pp. 7090-7095; Lock, E.H., Petrovykh, D.Y., MacK, P., Carney, T., White, R.G., Walton, S.G., Fernsler, R.F., (2010) Langmuir, 26, pp. 8857-8868; De Marco, C., Eaton, S.M., Suriano, R., Turri, S., Levi, M., Ramponi, R., Cerullo, G., Osellame, R., (2010) ACS Appl. Mater. Interfaces, 2, pp. 2377-2384; Zydziak, N., Hubner, C., Bruns, M., Barner-Kowollik, C., (2011) Macromolecules, 44, pp. 3374-3380
Keywords: (meth)acrylic polymers, high resolution FTIR microscopy, polymer degradation, X-ray photoelectron spectroscopy (XPS), Acrylic polymers, ATR-IR spectroscopy, Degradation behavior, Degradation mechanism, Degradation process, End groups, Environmental conditions, FTIR microscopy, High molecular weight, High resolution, Identical conditions, Lauryl methacrylate, Low molecular weight, Methacrylic acids, Poly(n-butyl acrylate), Poly(n-butyl methacrylate) (Pn-BMA), Surface coatings, Acrylic monomers, Coatings, Degradation, Esterification, Esters, Fourier transform infrared spectroscopy, Polyacrylates, Ultraviolet radiation, X ray photoelectron spectroscopy, Polymers
DOI: 10.1002/pola.25947
ISSN: 0887624X
Divisions: Current > Schools > School of Chemistry, Physics & Mechanical Engineering
Current > Institutes > Institute for Future Environments
Current > QUT Faculties and Divisions > Science & Engineering Faculty
Deposited On: 22 Sep 2016 04:50
Last Modified: 04 Oct 2016 22:52

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page