Thermally reversible Diels-Alder-based polymerization: An experimental and theoretical assessment

Zhou, J., Guimard, N. K., Inglis, A. J., Namazian, M., Lin, C. Y., Coote, M. L., Spyrou, E., Hilf, S., Schmidt, F. G., & Barner-Kowollik, C. (2012) Thermally reversible Diels-Alder-based polymerization: An experimental and theoretical assessment. Polymer Chemistry, 3(3).

View at publisher


A pair of monomers capable of undergoing reversible polymerization - based on reversible Diels-Alder (DA) chemistry - as a function of the applied reaction temperature is presented. Specifically, the reaction of isophorone bis(sorbic carbamate), a difunctional diene, with 1,4-phenylenebis(methylene) bis((diethoxyphosphoryl)methanedithioformate), a difunctional dithioester, was studied in detail. Various factors, including the monomer concentration, the type of solvent, and the presence of a Lewis acid, that influence this step-growth polymerization were evaluated. The solvent type was found to have a significant effect on the DA reaction rate. Under the optimized conditions, which are 1.8 g mol -1 of each monomer in acetonitrile with 1.1 equivalents of zinc chloride at 50°C for 4 h, a polymer with a peak molecular weight of 9600 g mol -1 (relative to poly(styrene) standards) was obtained. The resulting polymer was employed to investigate the correlation between time, temperature, and percentage of debonded monomers achieved during the retro DA (rDA) reaction. In addition, theoretical predictions of the rDA temperature were obtained via ab initio quantum chemical calculations. The monomeric diene and dienophile system was employed for the calculations of the equilibrium constants at various rDA reaction temperatures to correlate the percentage of bonded molecules with the applied temperature. It was calculated that 60% of the polymer becomes debonded at a temperature (T qc) of around 220°C, a result that agrees well with that obtained experimentally (T exp = 219°C). © 2012 The Royal Society of Chemistry.

Impact and interest:

20 citations in Scopus
Search Google Scholar™
18 citations in Web of Science®

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

ID Code: 99333
Item Type: Journal Article
Refereed: Yes
Additional Information: Cited By :19 Export Date: 5 September 2016 Correspondence Address: Coote, M.L.; ARC Centre of Excellence for Free-Radical Chemistry and Biotechnology, Research School of Chemistry, Australian National University, Canberra ACT 0200, Australia; email: References: Diels, O., Justus Alder, K., (1928) Justus Liebigs Ann. Chem., 460, p. 98; Nicolaou, K.C., Snyder, S.A., Montagnon, T., Vaailikogiannakis, G., (2002) Angew. Chem., Int. Ed., 41, p. 1668; Wiggins, K.M., Syrett, J.A., Haddleton, D.M., Bielawski, C.W., (2011) J. Am. Chem. Soc., 133, p. 7180; Sanyal, A., (2010) Macromol. Chem. Phys., 211, p. 1417; Murphy, E.B., Wudl, F., (2010) Prog. Polym. Sci., 35, p. 223; Chen, X., Dam, M.A., Ono, K., Mal, A., Shen, H., Nutt, S.R., Sheran, K., Wudl, F., (2002) Science, 295, p. 1698; Bergmann, S.D., Wudl, F., (2008) J. Mater. Chem., 18, p. 41; Peterson, A.M., Palmese, G.R., Reversible diels-alder cycloaddition for the design of multifunctional network polymers (2009) Click Chemistry for Biotechnology and Materials Science, , ed. J. Lahann, John Wiley & Sons, Ltd, Chichester, UK, 10.1002/9780470748862.ch9; Gandini, A., (2010) Polym. Chem., 1, p. 245; Voit, B., (2007) New J. Chem., 31, p. 1139; Jen, A.K.-Y., (2006) Polym. Prepr., 47, p. 988; Kavitha, A.A., Singha, N.K., (2007) J. Polym. Sci., Part A: Polym. Chem., 45, p. 4441; Watanabe, M., Yoshie, N., (2006) Polymer, 47, p. 4946; Peterson, A.M., Jensen, R.E., Palmese, G.R., (2010) ACS Appl. Mater. Interfaces, 2, p. 1141; McElhanon, J.R., Wheeler, D.R., (2001) Org. Lett., 3, p. 2681; Zhang, Y., Broekhuis, A.A., Picchioni, F., (2009) Macromolecules, 42, p. 1906; McElhanon, J.R., Zifer, T., Kline, S.R., Wheeler, D.R., Loy, D.A., Jamison, G.M., Long, T.M., Simmons, B.A., (2005) Langmuir, 21, p. 3259; Polaske, N.W., McGrath, D.V., McElhanon, J.R., (2010) Macromolecules, 43, p. 1270; Patel, H.S., Patel, B.P., Patel, D.B., (2009) Int. J. Polym. Mater., 58, p. 625; Patel, H.S., Patel, B.P., Patel, D.B., (2010) Polym.-Plast. Technol. Eng., 49, p. 394; Patel, H.S., Vyas, H.S., (1991) Eur. Polym. J., 27, p. 93; Jiang, B., Hao, J., Wang, W., Jiang, L., Cai, X., (2001) Eur. Polym. J., 37, p. 463; Patel, H.S., Patel, H.D., Vyas, H.S., (1994) Macromol. Rep., 31, p. 511; Costanzo, P.J., Demaree, J.D., Beyer, F.L., (2006) Langmuir, 22, p. 10251; Peterson, A.M., Jensen, R.E., Palmese, G.R., (2009) ACS Appl. Mater. Interfaces, 1, p. 992; Peterson, A.M., Palmese, G.R., (2009) Reversible Diels-Alder Cycloaddition for the Design of Multifunctional Network Polymers, , Wiley, New York; White, S.R., Sottos, N.R., Geubelle, P.H., Moore, J.S., Kessler, M.R., Sriram, S.R., Brown, E.N., Viswanathan, S., (2001) Nature, 409, p. 794; Cho, S.H., White, S.R., Braun, P.V., (2009) Adv. Mater., 21, p. 645; Burnworth, M., Tang, L., Kumpfer, J.R., Duncan, A.J., Beyer, F.L., Fiore, G.L., Rowan, S.J., Weder, C., (2011) Nature, 472, p. 334; Inglis, A.J., Barner-Kowollik, C., (2010) Macromol. Rapid Commun., 31, p. 1247; Willcock, H., O'Reilly, R.K., (2010) Polym. Chem., 1, p. 149; Sinnwell, S., Inglis, A.J., Davis, T.P., Stenzel, M.H., Barner-Kowollik, C., (2008) Chem. Commun., 17, p. 2052; Inglis, A.J., Sinnwell, S., Davis, T.P., Stenzel, M.H., Barner-Kowollik, C., (2008) Macromolecules, 41, p. 4120; Sinnwell, S., Inglis, A.J., Davis, T.P., Stenzel, M.H., Barner-Kowollik, C., (2008) Macromol. Rapid Commun., 29, p. 1090; Hart-Smith, G., Lammens, M., Du Prez, F.E., Guilhaus, M., Barner-Kowollik, C., (2009) Polymer, 50, p. 1986; Zydziak, N., Hübner, C., Bruns, M., Barner-Kowollik, C., (2011) Macromolecules, 44, p. 3374; Nebhani, L., Barner-Kowollik, C., (2010) Macromol. Rapid Commun., 31, p. 1298; Nebhani, L., Sinnwell, S., Inglis, A.J., Davis, T.P., Stenzel, M.H., Barner-Kowollik, C., Barner, L., (2008) Macromol. Rapid Commun., 29, p. 1431; Nebhani, L., Gerstel, P., Atanasova, P., Bruns, M., Barner-Kowollik, C., (2009) J. Polym. Sci., Part A: Polym. Chem., 47, p. 7090; Goldmann, A.S., Tischer, T., Barner, L., Bruns, M., Barner-Kowollik, C., (2011) Biomacromolecules, 12, p. 1137; Portella, C., Shermolovich, Y.G., Tschenn, O., (1997) Bull. Soc. Chim. Fr., 134, p. 697; Vyas, D.M., Hay, G.W., (1971) Can. J. Chem., 49, pp. 3755-3758; Vyas, D.M., Hay, G.W., (1975) J. Chem. Soc., Perkin Trans. 1, p. 180; Vedejs, E., Arnost, M.J., Dolphin, J.M., Eustache, J., (1980) J. Org. Chem., 45, p. 2601; Kirby, G.W., Lochead, A.W., Williamson, S., (1996) J. Chem. Soc., Perkin Trans. 1, p. 977; Heuze, B., Gasparova, R., Heras, M., Masson, S., (2000) Tetrahedron Lett., 41, p. 7327; Heras, M., Gulea, M., Masson, S., (2001) Chem. Commun., p. 611; Heras, M., Gulea, M., Masson, S., Philouze, C., (2004) Eur. J. Org. Chem., p. 160; Bastin, R., Albadri, H., Gaumont, A.C., Gulea, M., (2006) Org. Lett., 8, p. 1033; Boerma, J.A., Nilsson, N.H., Senning, A., (1974) Tetrahedron, 30, p. 2735; El-Sayed, I., Ali, O.M., Fischer, A., Senning, A., (2003) Heteroat. Chem., 14, p. 170; Inglis, A.J., Sinnwell, S., Stenzel, M.H., Barner-Kowollik, C., (2009) Angew. Chem., Int. Ed., 48, p. 2411; Inglis, A.J., Stenzel, M.H., Barner-Kowollik, C., (2009) Macromol. Rapid Commun., 30, p. 1792; Inglis, A.J., Paulöhrl, T., Barner-Kowollik, C., (2010) Macromolecules, 43, p. 33; Inglis, A.J., Nebhani, L., Altintas, O., Schmidt, F.G., Barner-Kowollik, C., (2010) Macromolecules, 43, pp. 5515-5520; (1988) Encyclopedia of Polymer Science and Engineering, , Wiley, New York, 2nd edn; Patel, H.S., Mathur, A.B., Bhardwaj, I.S., (1995) J. Macromol. Sci., Part A: Pure Appl. Chem., 32, p. 2025; Gaina, V., Gaina, C., (2002) Polym.-Plast. Technol. Eng., 41, p. 523; Sinnwell, S., Synatschke, C.V., Junkers, T., Stenzel, M.H., Barner-Kowollik, C., (2008) Macromolecules, 41, p. 7904; Carothers, W.H., (1936) Trans. Faraday Soc., 32, p. 39; Strazielle, C., Benoit, H., Vogl, O., (1978) Eur. Polym. J., 14, p. 331; Laus, M., Papa, R., Sparnacci, K., Alberti, A., Benaglia, M., MacCiantelli, D., (2001) Macromolecules, 34, p. 7269; Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery, Jr.J.A., Pople, J.A., (2003) Gaussian 03, Revision B.03, , Gaussian, Inc., Pittsburgh PA; Baboul, A.G., Curtiss, L.A., Redfern, P.C., Raghavachari, K., (1999) J. Chem. Phys., 110, p. 7650; Coote, M.L., (2009) Macromol. Theory Simul., 18, p. 388; Lin, C.Y., Coote, M.L., (2009) Aust. J. Chem., 62, p. 1479; Lin, C.Y., Izgorodina, E.I., Coote, M.L., (2010) Macromolecules, 43, p. 553; Hodgson, J.L., Roskop, L.B., Gordon, M.S., Lin, C.Y., Coote, M.L., (2010) J. Phys. Chem. A, 114, p. 10458; Kyne, S.H., Lin, C.Y., Ryu, I., Coote, M.L., Schiesser, C.H., (2010) Chem. Commun., 46, p. 6521; Coote, M.L., Lin, C.Y., Beckwith, A.L.J., Zavitsas, A.A., (2010) Phys. Chem. Chem. Phys., 12, p. 9597; Zare, H., Eslami, M., Namazian, M., Coote, M.L., (2009) J. Phys. Chem. B, 113, p. 8080; Ho, J., Coote, M.L., (2010) Theor. Chem. Acc., 125, p. 3; Scott, A.P., Radom, L., (1996) J. Phys. Chem., 100, p. 16502; Izgorodina, E.I., Lin, C.Y., Coote, M.L., (2007) Phys. Chem. Chem. Phys., 9, p. 2507; Izgorodina, E.I., Brittain, D.R.B., Hodgson, J.L., Krenske, E.H., Lin, C.Y., Namazian, M., Coote, M.L., (2007) J. Phys. Chem. A, 111, p. 10754; Stull, D.R., Westrum Jr., E.F., Sinke, G.C., (1969) The Thermodynamics of Organic Compounds, , John Wiley & Sons, New York; Robinson, P.J., (1978) J. Chem. Educ., 55, p. 509; Steinfeld, J.I., Francisco, J.S., Hase, W.L., (1989) Chemical Kinetics and Dynamics, , Prentice Hall, Englewood Cliffs, New Jersey, These formulae are outlined in full in the ESI of an earlier publication; Coote, M.L., Radom, L., (2004) Macromolecules, 37, p. 590; Ellingson, B.A., Lynch, V.A., Mielke, S.L., Truhlar, D.G., (2006) J. Chem. Phys., 125, p. 084305;, This program is freely available fromLiptak, M.D., Gross, K.G., Seybold, P.G., Feldgus, S., Shields, G.C., (2002) J. Am. Chem. Soc., 124, p. 6421; Klamt, A., (1995) J. Phys. Chem., 99, p. 2224; Klamt, A., (2005) COSMO-RS: From Quantum Chemistry to Fluid Phase Thermodynamics and Drug Design, , Elsevier Science Ltd., Amsterdam, The Netherlands; Klamt, A., Jonas, V., Burger, T., Lohrenz, J.C.W., (1998) J. Phys. Chem. A, 102, p. 5074; Louwen, J.N., Pye, C., Lenthe, E.V., (2008) ADF2008.01 COSMO-RS, SCM, Theoretical Chemistry, ,, Vrije Universiteit, Amsterdam, The Netherlands; Pye, C.C., Ziegler, T., Van Lenthe, E., Louwen, J.N., (2009) Can. J. Chem., 87, p. 790; Kobayashi, S., Sugiura, M., Kitagawa, H., Lam, W.W.-L., (2002) Chem. Rev., 102, p. 2227; Bastin, R., Albadri, H., Gaumont, A.-C., Gulea, M., (2006) Org. Lett., 8, p. 1033
Keywords: Ab initio quantum chemical calculations, Bonded molecule, Diels-Alder, Dienophiles, Difunctional, Dithioesters, Isophorones, Lewis Acid, Monomer concentration, Optimized conditions, Reaction temperature, Reversible polymerization, Step-growth polymerizations, Theoretical prediction, Zinc chloride, Acetonitrile, Calculations, Chlorine compounds, Equilibrium constants, Olefins, Polymerization, Polymers, Quantum chemistry, Reaction rates, Styrene, Monomers
DOI: 10.1039/c1py00356a
ISSN: 17599954
Divisions: Current > Schools > School of Chemistry, Physics & Mechanical Engineering
Current > Institutes > Institute for Future Environments
Current > QUT Faculties and Divisions > Science & Engineering Faculty
Deposited On: 22 Sep 2016 04:50
Last Modified: 30 Sep 2016 02:52

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page