RAFT-based polystyrene and polyacrylate melts under thermal and mechanical stress

Altintas, O., Riazi, K., Lee, R., Lin, C. Y., Coote, M. L., Wilhelm, M., & Barner-Kowollik, C. (2013) RAFT-based polystyrene and polyacrylate melts under thermal and mechanical stress. Macromolecules, 46(20).

View at publisher

Abstract

Although controlled/living radical polymerization processes have significantly facilitated the synthesis of well-defined low polydispersity polymers with specific functionalities, a detailed and systematic knowledge of the thermal stability of the products-highly important for most industrial processes-is not available. Linear polystyrene (PS) carrying a trithiocarbonate mid-chain functionality (thus emulating the structure of the Z-group approach via reversible addition-fragmentation chain transfer (RAFT) based macromolecular architectures) with various chain lengths (20 kDa ≤ Mn,SEC ≤ 150 kDa, 1.27 ≤ Crossed D sign = Mw/Mn ≤ 1.72) and chain-end functionality were synthesized via RAFT polymerization. The thermal stability behavior of the polymers was studied at temperatures ranging from 100 to 200 C for up to 504 h (3 weeks). The thermally treated polymers were analyzed via size exclusion chromatography (SEC) to obtain the dependence of the polymer molecular weight distribution on time at a specific temperature under air or inert atmospheres. Cleavage rate coefficients of the mid-chain functional polymers in inert atmosphere were deduced as a function of temperature, resulting in activation parameters for two disparate Mn starting materials (Ea = 115 ± 4 kJ·mol-1, A = 0.85 × 109 ± 1 × 109 s-1, M n,SEC = 21 kDa and Ea = 116 ± 4 kJ·mol -1, A = 6.24 × 109 ± 1 × 109 s-1, Mn,SEC = 102 kDa). Interestingly, the degradation proceeds significantly faster with increasing chain length, an observation possibly associated with entropic effects. The degradation mechanism was explored in detail via SEC-ESI-MS for acrylate based polymers and theoretical calculations suggesting a Chugaev-type cleavage process. Processing of the RAFT polymers via small scale extrusion as well as a rheological assessment at variable temperatures allowed a correlation of the processing conditions with the thermal degradation properties of the polystyrenes and polyacrylates in the melt. © 2013 American Chemical Society.

Impact and interest:

8 citations in Scopus
Search Google Scholar™
8 citations in Web of Science®

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

ID Code: 99335
Item Type: Journal Article
Refereed: Yes
Additional Information: Cited By :8
Export Date: 5 September 2016
CODEN: MAMOB
Correspondence Address: Wilhelm, M.; Polymeric Materials, Institut für Technische Chemie und Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstrasse 18, 76128 Karlsruhe, Germany; email: manfred.wilhelm@kit.edu
Funding Details: ARC, Australian Research Council
References: Braunecker, W.A., Matyjaszewski, K., (2007) Prog. Polym. Sci., 32, pp. 93-146; Roland, A.I., Schmidt-Naake, G., (2001) J. Anal. Appl. Pyrolysis, 58, pp. 143-154; Wang, J.S., Matyjaszewski, K., (1995) J. Am. Chem. Soc., 117, pp. 5614-5615; Matyjaszewski, K., Xia, J., (2001) Chem. Rev., 101, pp. 2921-2990; Percec, V., Barboiu, B., (1995) Macromolecules, 28, pp. 7970-7972; Haddleton, D.M., Crossman, M.C., Dana, B.H., Duncalf, D.J., Heming, A.M., Kukulj, D., Shooter, A.J., (1999) Macromolecules, 32, pp. 2110-2119; Hawker, C.J., (1995) Angew. Chem., Int. Ed., 34, pp. 1456-1459; Hawker, C.J., Bosman, A.W., Harth, E., (2001) Chem. Rev., 101, pp. 3661-3688; Mayadunne, R.T.A., Rizzardo, E., Chiefari, J., Chong, Y.K., Moad, G., Thang, S.H., (1999) Macromolecules, 32, pp. 6977-6980; Barner-Kowollik, D.T.P., Heuts, J.P.A., Stenzel, M.H., Vana, P., Whittaker, M., (2003) J. Polym. Sci., Part A: Polym. Chem., 41, pp. 365-375; Barner-Kowollik, C., Buback, M., Charleux, B., Coote, M.L., Drache, M., Fukuda, T., Goto, A., Vana, P., (2006) J. Polym. Sci., Part A: Polym. Chem, 44, pp. 5809-5831; Willcock, H., O'Reilly, R.K., (2010) Polym. Chem, 1, pp. 149-157; Barner-Kowollik, C., (2008) Handbook of RAFT-Polymerization, , Ed. Wiley-VCH: Weinheim, Germany; Kaiser, A., Brandau, S., Klimpel, M., Barner-Kowollik, C., (2010) Macromol. Rapid Commun., 31, pp. 1616-1621; Barner-Kowollik, C., Perrier, S., (2008) J. Polym. Sci., Part A: Polym. Chem., 46, pp. 5715-5723; Barner, L., Davis, T.P., Stenzel, M.H., Barner-Kowollik, C., (2007) Macromol. Rapid Commun., 28, pp. 539-559; Chaffey-Millar, H., Stenzel, M.H., Davis, T.P., Coote, M.L., Barner-Kowollik, C., (2006) Macromolecules, 39, pp. 6406-6419; Boyer, C., Bulmus, V., Davis, T.P., Ladmiral, V., Liu, J., Perrier, S., (2009) Chem. Rev., 109, pp. 5402-5436; Favier, A., Charreyre, M., (2006) Macromol. Rapid Commun., 27, pp. 653-692; Dürr, C.J., Hlalele, L., Kaiser, A., Brandau, S., Barner-Kowollik, C., (2013) Macromolecules, 46, pp. 49-62; Inglis, A.J., Sinnwell, S., Davis, T.P., Barner-Kowollik, C., Stenzel, M.H., (2008) Macromolecules, 41, pp. 4120-4126; Gondi, S.R., Vogt, A.P., Sumerlin, B.S., (2007) Macromolecules, 40, pp. 474-481; Li, H., Li, M., Yu, X., Bapat, A.P., Sumerlin, B.S., (2011) Polym. Chem., 2, pp. 1531-1535; Inglis, A.J., Sinnwell, S., Martina, H., Stenzel, M.H., Barner-Kowollik, C., (2009) Angew. Chem., Int. Ed., 48, pp. 2411-2414; Glassner, M., Oehlenschlaeger, K.K., Gruendling, T., Barner-Kowollik, C., (2011) Macromolecules, 44, pp. 4681-4689; Kempf, M., Ahirwal, D., Cziep, M., Wilhelm, M., (2013) Macromolecules, 46, pp. 4978-4994; Kempf, M., Barroso, V.C., Wilhelm, M., (2010) Macromol. Rapid Commun., 31, pp. 2140-2145; Castignolles, P., Graf, R., Parkinson, M., Wilhelm, M., Gaborieau, M., (2009) Polymer, 50, pp. 2373-2383; De Gennes, P.G., (1979) Scaling Concepts in Polymer Physics, , Cornell University Press: London; Strazielle, C., Benoit, H.O., Vogl, O., (1978) Eur. Polym. J., 14, pp. 331-334; Penzel, E., Götz, N., (1990) Angew. Makromol. Chem., 178, pp. 191-200; Gruendling, T., Guilhaus, M., Barner-Kowollik, C., (2008) Anal. Chem., 80, pp. 6915-6927; Shaw, M.T., (2012) Introduction to Polymer Rheology, , John Wiley & Sons: Hoboken, NJ; Larson, R.G., (1999) The Structure and Rheology of Complex Fluids, , Oxford University Press: New York; Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Fox, D.J., (2009) Gaussian 09, Revision C.01, , Gaussian Inc. Wallingford CT; Zhao, Y., Truhlar, D.G., (2008) Theor. Chem. Acc., 120, pp. 215-241; Zhao, Y., Truhlar, D.G., (2008) Acc. Chem. Res., 41, pp. 157-167; Ditchfield, R., Hehre, W.J., Pople, J.A., (1971) J. Chem. Phys., 54, pp. 724-728; Hehre, W.J., Ditchfield, R., Pople, J.A., (1972) J. Chem. Phys., 56, pp. 2257-2261; Hariharan, P.C., Pople, J.A., (1973) Theor. Chem. Acc., 28, pp. 213-222; Coote, M.L., Collins, M.A., Radom, L., (2003) Mol. Phys., 101, pp. 1329-1338; Bennet, F., Lovestead, T.M., Barker, P.J., Stenzel, M.H., Davis, T.P., Barner- Kowollik, C., (2007) Macromol. Rapid Commun., 28, pp. 1593-1600; Gruendling, T., Weidner, S., Falkenhagen, J., Barner-Kowollik, C., (2010) Polym. Chem., 1, pp. 599-617; Luo, G., Marginean, I., Vertes, A., (2002) Anal. Chem., 74, pp. 6185-6190; Jiang, X., Schoenmakers, P.J., Van Dongen, J.L.J., Lou, X., Lima, V., Brokken-Zijp, J., (2004) Anal. Chem., 75, pp. 5517-5524; Guimard, N.K., Ho, J., Brandt, J., Lin, C.Y., Namazian, M., Mueller, J.O., Oehlenschlager, K.K., Barner- Kowollik, C., (2013) Chem. Sci., 4, pp. 2752-2759; Chugaev, L., (1899) Ber. Dtsch. Chem. Ges., 32, p. 3332; Alexander, E.R., Mudrak, A., (1950) J. Am. Chem. Soc., 72, pp. 3194-3198; Legge, T.M., Slark, A.T., Perrier, S., (2006) J. Polym. Sci., Part A: Polym. Chem., 44, pp. 6980-6987; Liu, Y., He, J., Xu, J., Fan, D., Tang, W., Yang, Y., (2005) Macromolecules, 38, pp. 10332-10335; Zhou, Y., He, J., Li, C., Hong, L., Yang, Y., (2011) Macromolecules, 44, pp. 8446-8457; Akhtar, J., Afzaal, M., Vincent, M.A., Burton, N.A., Hillier, I.H., O'Brien, P., (2011) Chem. Commun., 47, pp. 1991-1993; Hyun, K., Wilhelm, M., (2009) Macromolecules, 42, pp. 411-422; MacOsko, C.W., (1994) Rheology: Principles, Measurements, and Applications, , Wiley-VCH: Weinheim, Germany; Wiggins, K.M., Syrett, J.A., Haddleton, D.M., Bielawski, C.W., (2011) J. Am. Chem. Soc., 133, pp. 7180-7189
Keywords: Controlled/living radical polymerization, Degradation mechanism, Low-polydispersity polymers, Macromolecular architecture, Polymer molecular weight, Reversible addition fragmentation chain transfer (RAFT), Theoretical calculations, Thermal degradation properties, Chain length, Chains, Degradation, Entropy, Free radical polymerization, Living polymerization, Molecular weight distribution, Polyacrylates, Polystyrenes, Stresses, Thermodynamic stability, Atmospheric temperature
DOI: 10.1021/ma401749h
ISSN: 00249297
Divisions: Current > Schools > School of Chemistry, Physics & Mechanical Engineering
Current > Institutes > Institute for Future Environments
Current > QUT Faculties and Divisions > Science & Engineering Faculty
Deposited On: 22 Sep 2016 04:50
Last Modified: 29 Sep 2016 03:57

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page