Mild and efficient modular synthesis of poly(acrylonitrile-co-butadiene) block and miktoarm star copolymer architectures

Dürr, C. J., Hlalele, L., Kaiser, A., Brandau, S., & Barner-Kowollik, C. (2013) Mild and efficient modular synthesis of poly(acrylonitrile-co-butadiene) block and miktoarm star copolymer architectures. Macromolecules, 46(1).

View at publisher

Abstract

An efficient approach for the synthesis of block copolymers of poly(acrylonitrile-co-butadiene) (NBR) and poly(styrene-co-acrylonitrile) (SAN) is described. Conjugation of preformed polymer building blocks is achieved via a hetero-Diels-Alder (HDA) mechanism employing cyclopentadiene-capped NBRs with dienophile SAN copolymers, both synthesized via reversible addition- fragmentation chain transfer (RAFT) polymerization. The protocol is further extended toward the synthesis of 4-miktoarm star polymers, consisting of two NBR and two SAN arms. Molar masses of the obtained complex macromolecular architectures range from below 10 000 g·mol-1 up to 110 000 g·mol-1 with dispersities below 1.5. Molecular verification of the coupling moieties is provided via NMR spectroscopy as well as ESI mass spectrometry. Size exclusion chromatography (SEC) traces of the obtained block copolymers and miktoarm star polymers were analyzed via deconvolution techniques, revealing the presence of 9.9-12.6 wt % (block copolymers) and 20 wt % (stars) of polymer chains not participating in the HDA conjugation, respectively. The residual polymers were analyzed toward their origin from either the loss of functionality during RAFT polymerization or incomplete conversion during the conjugation process. The comprehensive analysis of the macromolecular material was underpinned by kinetic simulations to estimate the fractions of nonfunctional polymer chains generated during the NBR and SAN polymerizations. The simulations evidenced that NBR-b-SAN samples cannot contain more than 94.4 wt % (Mn 13 000 g·mol-1), 93.6 wt % (Mn 57 000 g·mol-1), or 93.9 wt % (Mn 110 000 g·mol-1) of polymer chains actually possessing the targeted block copolymer structures when assuming an ideal RAFT process. These results unambiguously reveal that nonfunctionalized polymer chains formed during RAFT polymerization cause the incomplete conjugation of polymer building blocks, evidencing the limitations of end-group control in controlled/living radical polymerizations. © 2012 American Chemical Society.

Impact and interest:

16 citations in Scopus
Search Google Scholar™
15 citations in Web of Science®

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

ID Code: 99344
Item Type: Journal Article
Refereed: Yes
Additional Information: Cited By :16
Export Date: 5 September 2016
CODEN: MAMOB
Correspondence Address: Barner-Kowollik, C.; Preparative Macromolecular Chemistry, Institut für Technische Chemie und Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstr. 18, 76128 Karlsruhe, Germany; email: christopher.barner-kowollik@kit.edu
References: Kaiser, A., Brandau, S., Klimpel, M., Barner-Kowollik, C., (2010) Macromol. Rapid Commun., 31 (18), pp. 1616-1621; Dürr, C.J., Emmerling, S.G.J., Kaiser, A., Brandau, S., Habicht, A.K.T., Klimpel, M., Barner-Kowollik, C., (2012) J. Polym. Sci., Part A: Polym. Chem., 50 (1), pp. 174-180; Dürr, C.J., Emmerling, S.G.J., Lederhose, P., Kaiser, A., Brandau, S., Klimpel, M., Barner-Kowollik, C., (2012) Polym. Chem., 3 (4), pp. 1048-1060; Golas, P.L., Tsarevsky, N.V., Matyjaszewski, K., (2008) Macromol. Rapid Commun., 29 (1213), pp. 1167-1171; Agard, N.J., Prescher, J.A., Bertozzi, C.R., (2004) J. Am. Chem. Soc., 126 (46), pp. 15046-15047; Codelli, J.A., Baskin, J.M., Agard, N.J., Bertozzi, C.R., (2008) J. Am. Chem. Soc., 130 (34), pp. 11486-11493; Tasdelen, M.A., (2011) Polym. Chem., 2, pp. 2133-2145; Sinnwell, S., Synatschke, C.V., Junkers, T., Stenzel, M.H., Barner-Kowollik, C., (2008) Macromolecules, 41 (21), pp. 7904-7912; Sinnwell, S., Inglis, A.J., Davis, T.P., Stenzel, M.H., Barner-Kowollik, C., (2008) Chem. Commun., 17, pp. 2052-2054; Inglis, A.J., Sinnwell, S., Davis, T.P., Barner-Kowollik, C., Stenzel, M.H., (2008) Macromolecules, 41 (12), pp. 4120-4126; Bousquet, A., Barner-Kowollik, C., Stenzel, M.H., (2010) J. Polym. Sci., Part A: Polym. Chem., 48 (8), pp. 1773-1781; Nebhani, L., Sinnwell, S., Inglis, A.J., Stenzel, M.H., Barner-Kowollik, C., Barner, L., (2008) Macromol. Rapid Commun., 29 (17), pp. 1431-1437; Blinco, J.P., Trouillet, V., Bruns, M., Gerstel, P., Gliemann, H., Barner-Kowollik, C., (2011) Adv. Mater., 23 (38), pp. 4435-4439; Goldmann, A.S., Tischer, T., Barner, L., Bruns, M., Barner-Kowollik, C., (2011) Biomacromolecules, 12 (4), pp. 1137-1145; Inglis, A.J., Barner-Kowollik, C., (2011) Polym. Chem., 2 (1), pp. 126-136; George, S., Joseph, R., Thomas, S., Varughese, K.T., (1995) Polymer, 36 (23), pp. 4405-4416; Laus, M., Papa, R., Sparnacci, K., Alberti, A., Benaglia, M., MacCiantelli, D., (2001) Macromolecules, 34 (21), pp. 7269-7275; Alberti, A., Benaglia, M., Guerra, M., Gulea, M., Hapiot, P., Laus, M., MacCiantelli, D., Sparnacci, K., (2005) Macromolecules, 38 (18), pp. 7610-7618; Inglis, A.J., Sinnwell, S., Stenzel, M.H., Barner-Kowollik, C., (2009) Angew. Chem., Int. Ed., 48 (13), pp. 2411-2414; Barner-Kowollik, C., Du Prez, F.E., Espeel, P., Hawker, C.J., Junkers, T., Schlaad, H., Van Camp, W., (2011) Angew. Chem., Int. Ed., 50 (1), pp. 60-62; Wang, J.-S., Matyjaszewski, K., (1995) J. Am. Chem. Soc., 117 (20), pp. 5614-5615; Solomon, D.H., Rizzardo, E., Cacioli, P., (1986) Polymerization Process and Polymers Produced Thereby, , 4 581 429, April 8; Junkers, T., Lovestead, T.M., Barner-Kowollik, C., The RAFT Process as a Kinetic Tool: Accessing Fundamental Parameters of Free Radical Polymerization (2008) Handbook of RAFT Polymerization, p. 105. , In, 1 st ed. Barner-Kowollik, C. Wiley-VCH: Weinheim, p ff; Li, Y., Padias, A.B., Hall, H.K., (1993) J. Org. Chem., 58 (25), pp. 7049-7058; Fossey, J.S., Richards, C.J., (2004) Organometallics, 23 (3), pp. 367-373; Am Ende, D.J., Whritenour, D.C., Coe, J.W., (2007) Org. Process Res. Dev., 11 (6), pp. 1141-1146; Inglis, A.J., Paulöhrl, T., Barner-Kowollik, C., (2010) Macromolecules, 43 (1), pp. 33-36; Barner-Kowollik, C., Quinn, J.F., Nguyen, T.L.U., Heuts, J.P.A., Davis, T.P., (2001) Macromolecules, 34 (22), pp. 7849-7857; Bastin, R., Albadri, H., Gaumont, A.-C., Gulea, M., (2006) Org. Lett., 8 (6), pp. 1033-1036; Chiefari, J., Chong, Y.K., Ercole, F., Krstina, J., Jeffery, J., Le, T.P.T., Mayadunne, R.T.A., Thang, S.H., (1998) Macromolecules, 31 (16), pp. 5559-5562; Cherubin, T., (1999) Über Die Bestimmung von Copolymerisationsparametern in der Radikalischen Copolymerisation von Acrylnitril Mit Butadien, , University of Essen; Barner-Kowollik, C., (2009) Macromol. Rapid Commun., 30 (19), pp. 1625-1631; Binder, W.H., Sachsenhofer, R., (2007) Macromol. Rapid Commun., 28 (1), pp. 15-54; Binder, W.H., Sachsenhofer, R., (2008) Macromol. Rapid Commun., 29 (1213), pp. 952-981; Altintas, O., Vogt, A.P., Barner-Kowollik, C., Tunca, U., (2012) Polym. Chem., 3, p. 1; Hadjichristidis, N., Pitsikalis, M., Pispas, S., Iatrou, H., (2001) Chem. Rev., 101 (12), pp. 3747-3792; Cameron, D.J.A., Shaver, M.P., (2011) Chem. Soc. Rev., 40 (3), pp. 1761-1776; Khanna, K., Varshney, S., Kakkar, A., (2010) Polym. Chem., 1, p. 8; Moughton, A.O., Hillmyer, M.A., Lodge, T.P., (2011) Macromolecules, 45 (1), pp. 2-19; Frieberg, B., Glynos, E., Sakellariou, G., Green, P.F., (2012) ACS Macro Lett., 1 (5), pp. 636-640; Mansfeld, U., Pietsch, C., Hoogenboom, R., Becer, C.R., Schubert, U.S., (2010) Polym. Chem., 1 (10), pp. 1560-1598; Zhang, S., Zhao, Y., (2010) J. Am. Chem. Soc., 132 (31), pp. 10642-10644; Moad, G., Rizzardo, E., Thang, S.H., (2005) Aust. J. Chem., 58 (6), pp. 379-410; Kim, W.N., Burns, C.M., (1988) Polym. Eng. Sci., 28 (17), pp. 1115-1125; Preuss, C.M., Barner-Kowollik, C., (2011) Macromol. Theory Simul., 20 (8), pp. 700-708; Gao, H., Matyjaszewski, K., (2006) Macromolecules, 39 (15), pp. 4960-4965
Keywords: Comprehensive analysis, Conjugation process, Controlled/living radical polymerization, Copolymer structure, Deconvolution techniques, Dienophiles, End groups, ESI mass spectrometry, Hetero-diels-Alder, Kinetic simulation, Macromolecular architecture, Miktoarm star copolymers, Miktoarm star polymers, Modular synthesis, Nonfunctional polymers, Poly(styrene-co-acrylonitrile), Polymer building blocks, Polymer chains, RAft polymerization, RAFT process, Residual polymers, Reversible addition-fragmentation chain transfer, Star polymers, Block copolymers, Butadiene, Directive antennas, Free radical polymerization, Living polymerization, Macromolecules, Mass spectrometry, Nuclear magnetic resonance spectroscopy, Olefins, Organic polymers, Styrene, ABS resins
DOI: 10.1021/ma302017c
ISSN: 00249297
Divisions: Current > Schools > School of Chemistry, Physics & Mechanical Engineering
Current > Institutes > Institute for Future Environments
Current > QUT Faculties and Divisions > Science & Engineering Faculty
Deposited On: 22 Sep 2016 04:50
Last Modified: 29 Sep 2016 04:11

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page