Conducting polymer/SWCNTs modular hybrid materials via Diels-Alder ligation

Yameen, B., Zydziak, N., Weidner, S. M., Bruns, M., & Barner-Kowollik, C. (2013) Conducting polymer/SWCNTs modular hybrid materials via Diels-Alder ligation. Macromolecules, 46(7).

View at publisher

Abstract

The development of a facile covalent strategy for the fabrication of organic conducting polymers (OCPs)/carbon nanotubes (CNTs) based molecular hybrid materials remains a challenge and is expected to address the detrimental intrinsic bundling issue of CNTs. In view of the pristine CNTs' ability to undergo Diels-Alder reactions with dienes, we report the synthesis of a novel poly(3-hexylthiophene) (P3HT) based organic conducting polymer (OCP) with terminal cyclopentadienyl (Cp) groups. The synthetic strategy employed is based on a combination of in situ end group functionalization via Grignard metathesis (GRIM) polymerization and a subsequent end group switching via reaction with nickelocene. Characterization data from Matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF MS) fully support the successful synthesis of monofunctional Cp-capped P3HT, which was found to be highly reactive toward dienophile end-capped polystyrene (PS). The Cp-capped P3HT was subsequently ligated to the surface of pristine single walled CNTs (SWCNTs). The resulting P3HT/SWCNTs molecular hybrid material was characterized using thermogravimetric analysis (TGA), elemental analysis (EA), X-ray photoelectron spectroscopy (XPS), and high resolution transmission electron microscopy (HRTEM). The data from TGA, EA, and XPS were used to quantitatively deduce the grafting density. P3HT/SWCNTs prepared with Cp capped P3HT was found to contain 2 times more P3HT than the reference sample, featuring a grafting density of 0.0510 chains·nm-2 and a periodicity of 1 P3HT chain per 748 carbon atoms of the SWCNTs. HRTEM revealed individual SWCNTs wrapped with P3HT whereas in the reference sample P3HT was adsorbed on the bundles of the SWCNTs. The results presented here provide a new avenue for designing novel materials based on CNTs and OCPs. © 2013 American Chemical Society.

Impact and interest:

13 citations in Scopus
Search Google Scholar™
13 citations in Web of Science®

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

ID Code: 99370
Item Type: Journal Article
Refereed: Yes
Additional Information: Cited By :13
Export Date: 5 September 2016
CODEN: MAMOB
Correspondence Address: Barner-Kowollik, C.; Preparative Macromolecular Chemistry, Institut für Technische Chemie und Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstrasse 18, 76128 Karlsruhe, Germany; email: christopher.barner-kowollik@kit.edu
Keywords: Diels-Alder reaction, Grafting densities, Grignard metathesis, Matrix-assisted laser desorption-ionization time-of-flight mass, Molecular hybrid materials, Organic conducting polymers, Poly-3-hexylthiophene, Synthetic strategies, Conducting polymers, Grafting (chemical), High resolution transmission electron microscopy, Mass spectrometry, Photoelectrons, Polyacrylates, Polystyrenes, Thermogravimetric analysis, X ray photoelectron spectroscopy, Hybrid materials
DOI: 10.1021/ma4004055
ISSN: 00249297
Divisions: Current > Schools > School of Chemistry, Physics & Mechanical Engineering
Current > Institutes > Institute for Future Environments
Current > QUT Faculties and Divisions > Science & Engineering Faculty
Deposited On: 22 Sep 2016 04:50
Last Modified: 29 Sep 2016 04:24

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page