Diels-Alder reactions for carbon material synthesis and surface functionalization

Zydziak, N., Yameen, B., & Barner-Kowollik, C. (2013) Diels-Alder reactions for carbon material synthesis and surface functionalization. Polymer Chemistry, 4(15).

View at publisher

Abstract

To meet the ever growing demand for carbon nanomaterials with tailored properties, Diels-Alder reactions are emerging as an efficient alternative to other synthetic methods. From an application perspective, the development of convenient surface functionalization strategies for carbon nanostructures is of paramount importance. Pristine carbon nanostructures display a natural tendency to undergo Diels-Alder reactions with a range of functional dienes and dienophiles without the need of a catalyst. This has sparked significant scientific interest in exploiting the Diels-Alder reaction as a powerful strategy for their synthesis as well as for their subsequent surface functionalization. The present review highlights the remarkable role of Diels-Alder reactions for the synthesis of fullerenes, carbon nanotubes and graphene, and its promise as a facile carbon nanostructure functionalization strategy with small molecules and polymer chains. A critical overview of the recent developments evidencing the potential of Diels-Alder reactions as an efficient route to carbon based functional materials is presented. © 2013 The Royal Society of Chemistry.

Impact and interest:

25 citations in Scopus
Search Google Scholar™
27 citations in Web of Science®

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

ID Code: 99373
Item Type: Journal Article
Refereed: Yes
Additional Information: Cited By :23
Export Date: 5 September 2016
Correspondence Address: Yameen, B.; Preparative Macromolecular Chemistry, Institut für Technische Chemie und Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstr. 18, 76128 Karlsruhe, Germany; email: basit.yameen@partner.kit.edu
References: Isaacs, J.A., Tanwani, A., Healy, M.L., Dahlben, L.J., (2010) J. Nanopart. Res., 12, p. 551; Huang, J.Q., Zhang, Q., Zhao, M.Q., Wei, F., (2012) Chin. Sci. Bull., 57, p. 157; Ge, C., Lao, F., Li, W., Li, Y., Chen, C., Qiu, Y., Mao, X., Zhao, Y., (2008) Anal. Chem., 80, p. 9426; Ma, J., Wang, J.N., (2008) Chem. Mater., 20, p. 2895; Huang, W., Wang, Y., Luo, G., Wie, F., (2003) Carbon, 41, p. 2585; Moshammer, K., Hennrich, F., Kappes, M.M., (2009) Nano Res., 2, p. 599; Blum, C., Stürzl, N., Hennrich, F., Lebedkin, S., Heeg, S., Dumlich, H., Reich, S., Kappes, M.M., (2011) ACS Nano, 5, p. 2847; Guldi, D.M., Martín, N., (2010) Carbon Nanotubes and Related Structures, p. 3. , Wiley-VCH Verlag GmbH & Co. KGAa, Weinheim; Prasek, J., Drbohlavova, J., Chomoucka, J., Hubalek, J., Jasek, O., Adamand, V., Kizek, R., (2011) J. Mater. Chem., 21, p. 15872; Lebedkin, S., Schweiss, P., Renker, B., Malik, S., Hennrich, F., Neumaier, M., Stoermer, C., Kappes, M.M., (2002) Carbon, 40, p. 417; Kalbac, M., Hsieh, Y.-P., Farhat, H., Kavan, L., Hofmann, M., Kong, J., Dresselhaus, M.S., (2010) Nano Lett., 10, p. 4619; Marquis, R., Greco, C., Sadokierska, I., Lebedkin, S., Kappes, M.M., Michel, T., Alvarez, L., Mioskowski, C., (2008) Nano Lett., 8, p. 1830; Fagan, J.A., Bauer, B.J., Hobbie, E.K., Becker, M.L., Hight Walker, A.R., Simpson, J.R., Chun, J., Migler, K.B., (2011) Adv. Mater., 23, p. 338; Charlier, J.-C., (2002) Acc. Chem. Res., 35, p. 1063; Scott, L.T., Boorum, M.M., McMahon, B.J., Hagen, S., Mack, J., Blank, J., Wegner, H., De Meijere, A., (2002) Science, 295, p. 1500; Scott, L.T., (2004) Angew. Chem., Int. Ed., 43, p. 4994; Kroto, H.W., Heath, J.R., O'Brien, S.C., Curl, R.F., Smalley, R.E., (1985) Nature, 318, p. 162; Krätschmer, W., Lamb, L.D., Fostiropoulos, K., Huffman, D.R., (1990) Nature, 347, p. 354; Schrettl, S., Frauenrath, H., (2012) Angew. Chem., Int. Ed., 51, p. 6569; Tasdelen, M.A., (2011) Polym. Chem., 2, p. 2133; Fort, E.H., Donovan, P.M., Scott, L.T., (2009) J. Am. Chem. Soc., 131, p. 16006; Fort, E.H., Jeffreys, M.S., Scott, L.T., (2012) Chem. Commun., 48, p. 8102; Fort, E.H., Scott, L.T., (2011) J. Mater. Chem., 21, p. 1373; Li, H.-B., Page, A.J., Irle, S., Morokuma, K., (2012) ChemPhysChem, 13, p. 1479; Li, H.-B., Page, A.J., Irle, S., Morokuma, K., (2012) J. Am. Chem. Soc., 134, p. 15887; Edwards, R.S., Coleman, K.S., (2013) Nanoscale, 5, p. 38; Allen, M.J., Tung, V.C., Kaner, R.B., (2010) Chem. Rev., 110, p. 132; Sinitskii, A., Dimiev, A., Kosynkin, D.V., Tour, J.M., (2010) ACS Nano, 4, p. 5405; Zhi, L., Müllen, K., (2008) J. Mater. Chem., 18, p. 1472; Pearson, A.J., Zhou, Y., (2009) J. Org. Chem., 74, p. 4242; Rodrìguez-Lojo, D., Peña, D., Pérez, D., Guitián, E., (2010) Org. Biomol. Chem., 8, p. 3386; Criado, A., Peña, D., Cobas, A., Guitián, E., (2010) Chem.-Eur. J., 16, p. 9736; Logakis, E., Pandis, C., Pissis, P., Pionteck, J., Pötschke, P., (2011) Compos. Sci. Technol., 71, p. 854; Roy, N., Sengupta, R., Bhowmick, A.K., (2012) Prog. Polym. Sci., 37, p. 781; Simoes, R., Silva, J., Vaia, R., (2010) J. Nanosci. Nanotechnol., 10, p. 2451; Zeng, X., Xu, X., Shenai, P.M., Kovalev, E., Baudot, C., Mathews, N., Zhao, Y., (2011) J. Phys. Chem. C, 115, p. 21685; Meng, C., Liu, C., Fan, S., (2010) Adv. Mater., 22, p. 535; Gao, S.-L., Zhuang, R.-C., Zhang, J., Liu, J.-W., Mäder, E., (2010) Adv. Funct. Mater., 20, p. 1885; Lin, Z., Liu, Y., Yao, Y., Hildreth, O.J., Li, Z., Moon, K., Wong, C.-P., (2011) J. Phys. Chem. C, 115, p. 7120; Bui, K., Duong, H.M., Striolo, A., Papavassiliou, D.V., (2011) J. Phys. Chem. C, 115, p. 3872; Kim, H., Abdala, A.A., Macosko, C.W., (2010) Macromolecules, 43, p. 6515; Song, Q., Li, K.-Z., Li, H.-L., Li, H.-J., Ren, C., (2012) Carbon, 50, p. 3943; Zhang, H.-B., Zheng, W.-G., Yan, Q., Jiang, Z.-G., Yu, Z.-Z., (2012) Carbon, 50, p. 5117; Galpaya, D., Wang, M., Liu, M., Motta, N., Waclawik, E., Yan, C., (2012) Graphene, 1, p. 30; Bose, S., Khare, R.A., Moldenaers, P., (2010) Polymer, 51, p. 975; Rahmat, M., Hubert, P., (2011) Compos. Sci. Technol., 72, p. 72; Selvin, T.P., Salihu, A.G., Abdulhadi, A.A.-J., Khaled, M., De, S.K., Muataz, A.A., (2012) Polym. Eng. Sci., 52, p. 525; Mu, M., Winey, K.I., (2007) J. Phys. Chem. C, 111, p. 17923; Daugaard, A.E., Jankova, K., Roman Marín, J.M., Bøgelund, J., Hvilsted, S., (2012) Eur. Polym. J., 48, p. 743; Dubacheva, G.V., Liang, C.-K., Bassani, D.M., (2012) Coord. Chem. Rev., 256, p. 2628; Bounioux, C., Katz, E.A., Yerushalmi-Rozen, R., (2012) Polym. Adv. Technol., 23, p. 1129; Yu, G., Gao, J., Hummelen, J.C., Wudi, F., Heeger, A.J., (1995) Science, 270, p. 1789; Dennler, G., Scharber, M.C., Brabec, C.J., (2009) Adv. Mater., 21, p. 1323; Li, G., Zhu, R., Yang, Y., (2012) Nat. Photonics, 6, p. 153; Zhu, H., Wei, J., Wang, K., Wu, D., (2009) Sol. Energy Mater. Sol. Cells, 93, p. 1461; Lee, S.H., Lee, D.H., Lee, W.J., Kim, S.O., (2011) Adv. Funct. Mater., 21, p. 1338; Kymakis, E., Amaratunga, G.A.J., (2005) Rev. Adv. Mater. Sci., 10, p. 300; Stranks, S.D., Weisspfennig, C., Parkinson, P., Johnston, M.B., Herz, L.M., Nicholas, R.J., (2011) Nano Lett., 11, p. 66; Ham, M.-H., Paulus, G.L.C., Lee, C.Y., Song, C., Kalantar-Zadeh, K., Choi, W., Han, J.-H., Strano, M.S., (2010) ACS Nano, 4, p. 6251; Kymakis, E., Servati, P., Tzanetakis, P., Koudoumas, E., Kornilios, N., Rompogiannakis, I., Franghiadakis, Y., Amaratunga, G.A.J., (2007) Nanotechnology, 18, p. 435702; Jain, R.M., Howden, R., Tvrdy, K., Shimizu, S., Hilmer, A.J., McNicholas, T.P., Gleason, K.K., Strano, M.S., (2012) Adv. Mater., 24, p. 4436; Winzer, T., Knorr, A., Malic, E., (2010) Nano Lett., 10, p. 4839; Jariwala, D., Sangwan, V.K., Lauhon, L.J., Marks, T.J., Hersam, M.C., (2013) Chem. Soc. Rev., 42, p. 2824; Iwan, A., Chuchmała, A., (2012) Prog. Polym. Sci., 37, p. 1805; Jun, G.H., Jin, S.H., Park, S.H., Jeon, S., Hong, S.H., (2012) Carbon, 50, p. 40; Cataldo, S., Salice, P., Menna, E., Pignataro, B., (2012) Energy Environ. Sci., 5, p. 5919; Wei, L., Lei, Y., Fu, H., Yao, J., (2012) ACS Appl. Mater. Interfaces, 4, p. 1594; Morales-Narváez, E., Merkoçi, A., (2012) Adv. Mater., 24, p. 3298; Qian, J., Wang, D., Cai, F.-H., Xi, W., Peng, L., Zhu, Z.-F., He, H., He, S., (2012) Angew. Chem., Int. Ed., 51, p. 10570; Feng, L., Liu, Z., (2011) Nanomedicine, 6, p. 317; De La Zerda, A., Zavaleta, C., Keren, S., Vaithilingam, S., Bodapati, S., Liu, Z., Levi, J., Gambhir, S.S., (2008) Nat. Nanotechnol., 3, p. 557; Heller, D.A., Jin, H., Martinez, B.M., Patel, D., Miller, B.M., Yeung, T.-K., Jena, P.V., Strano, M.S., (2009) Nat. Nanotechnol., 4, p. 114; Kotchey, G.P., Hasan, S.A., Kapralov, A., Ha, S.H., Kim, K., Shvedova, A.A., Kagan, V.E., Star, A., (2012) Acc. Chem. Res., 10, p. 1770; Bianco, A., Kostarelos, K., Prato, M., (2011) Chem. Commun., 47, p. 10182; Bhattacharya, S., Roxbury, D., Gong, X., Mukhopadhyay, D., Jagota, A., (2012) Nano Lett., 12, p. 1826; Mu, Q., Su, G., Li, L., Gilbertson, B.O., Yu, L.H., Zhang, Q., Sun, Y.-P., Yan, B., (2012) ACS Appl. Mater. Interfaces, 4, p. 2259; Fabbro, C., Ali-Boucetta, H., Da Ros, T., Kostarelos, K., Bianco, A., Prato, M., (2012) Chem. Commun., 48, p. 3911; Yang, K., Li, Y., Tan, X., Peng, R., Liu, Z., Small, , 10.1002/smll.201201417, early view; Yang, X., Niu, G., Cao, X., Wen, Y., Xiang, R., Duana, H., Chen, Y., (2012) J. Mater. Chem., 22, p. 6649; Lu, X., Tian, F., Wang, N., Zhang, Q., (2002) Org. Lett., 24, p. 4313; Chang, C.-M., Liu, Y.-L., (2009) Carbon, 47, p. 3041; Mercuri, F., Sgamellotti, A., (2009) Phys. Chem. Chem. Phys., 11, p. 563; McPhail, M.R., Sells, J.A., He, Z., Chusuei, C.C., (2009) J. Phys. Chem. C, 113, p. 14102; Paiva, M.C., Xu, W., Proença, M.F., Novais, R.M., Lægsgaard, E., Besenbacher, F., (2010) Nano Lett., 10, p. 1764; Sola, M., Mestres, J., Marti, J., Duran, M., (1994) Chem. Phys. Lett., 231, p. 325; Chikama, A., Fueno, H., Fujimoto, H., (1995) J. Phys. Chem., 99, p. 8541; Briggs, J.B., Miller, G.P., (2006) C. R. Chim., 9, p. 916; Schleuter, J.A., Seaman, J.M., Taha, S., Cohen, H., Lykke, K.R., Wang, H.H., Williams, J.M., (1993) J. Chem. Soc., Chem. Commun., p. 972; Komatsu, K., Murata, Y., Sugita, N., Takeuchi, K., Wan, T.S.M., (1993) Tetrahedron Lett., 34, p. 8473; De La Cruz, P., De La Hoz, A., Langa, F., Illescas, B., Martín, N., (1997) Tetrahedron, 53, p. 2599; Tsuda, M., Ishida, T., Nogami, T., Kurono, S., Ohashi, M., (1993) J. Chem. Soc., Chem. Commun., p. 1296; Murata, Y., Kato, N., Fujiwara, K., Komatsu, K., (1999) J. Org. Chem., 64, p. 3483; Wang, G.-W., Chen, Z.-X., Murata, Y., Komatsu, K., (2005) Tetrahedron, 61, p. 4851; Mikami, K., Matsumoto, S., Tonoi, T., Okubo, Y., (1998) Tetrahedron Lett., 39, p. 3733; Kräutler, B., Müller, T., Maynollo, J., Gruber, K., Kratky, C., Ochsenbein, P., Schwarzenbach, D., Bürgi, H., (1996) Angew. Chem., Int. Ed. Engl., 35, p. 1204; Tago, T., Minowa, T., Okada, Y., Nishimura, J., (1993) Tetrahedron Lett., 34, p. 8461; Herrera, A., Alvarez, R.B., Martin, N., Chioua, M., Chioua, R., Molero, D., Sanchez-Vasquez, A., Almy, J., (2009) Tetrahedron, 65, p. 5817; Rubin, Y., Khan, S., Freedberg, D.I., Yeretzian, C., (1993) J. Am. Chem. Soc., 115, p. 344; Warrener, R.N., Russel, R.A., Pitt, I.G., (1984) J. Chem. Soc., Chem. Commun., p. 1675; Bidell, W., Douthwaite, R.E., Green, M.L.H., Stephens, A.H.H., Turner, J.F.C., (1994) J. Chem. Soc., Chem. Commun., p. 1641; Enes, R.F., Tome, A.C., Cavaleiro, J.A.S., (2005) Tetrahedron, 61, p. 1423; Illescas, B., Martin, N., Seoane, C., De La Cruz, P., Langa, F., Wudl, F., (1995) Tetrahedron Lett., 36, p. 8307; Ohno, M., Kojima, S., Shirakawa, Y., Eguchi, S., (1995) Tetrahedron Lett., 36, p. 6899; Yang, H.T., Wang, G.W., Xu, Y., Huang, J.C., (2006) Tetrahedron Lett., 47, p. 4129; Ishida, H., Asaji, H., Hida, T., Itoh, K., Ohno, M., (2000) Tetrahedron Lett., p. 2153; Ohno, M., Azuma, T., Kojima, S., Shirakawa, Y., Eguchi, S., (1996) Tetrahedron, 52, p. 4983; Kräutler, B., Puchberger, M., (1993) Helv. Chim. Acta, 76, p. 1626; Kräutler, B., Maynollo, J., (1996) Tetrahedron, 52, p. 5033; Ohno, M., Kojima, S., Eguchi, S., (1995) J. Chem. Soc., Chem. Commun., p. 565; Sauer, J., Sustmann, R., (1980) Angew. Chem., Int. Ed. Engl., 19, p. 779; Jursic, B.S., (1996) Can. J. Chem., 74, p. 114; Puplovskis, A., Kacens, J., Neilands, O., (1997) Tetrahedron Lett., 38, p. 285; Dinadayalane, T.C., Vijaya, R., Smitha, A., Sastry, G.N., (2002) J. Phys. Chem. A, 106, p. 1627; Nie, B., Rotello, V., (1997) J. Phys. Chem. Solids, 58, p. 1897; Tovar, A., Pena, U., Hernandez, G., Portillo, R., Gutierrez, R., (2007) Synthesis, 1, p. 22; Ray, D., Belin, C., Hui, F., Fabre, B., Hapiot, P., Bassani, D.M., (2011) Chem. Commun., 47, p. 2547; Fabre, B., Bassani, D.M., Liang, C.-K., Ray, D., Hui, F., Hapiot, P., (2011) J. Phys. Chem. C, 115, p. 14786; He, Y., Chen, C., Richard, E., Dou, L., Wu, Y., Li, G., Yang, Y., (2012) J. Mater. Chem., 22, p. 13391; Aihara, J.-I., (1994) J. Phys. Chem., 98, p. 9773; Li, J., Jia, G., Zhang, Y., (2007) Chem.-Eur. J., 13, p. 6430; Chen, Z., Thiel, W., Hirsch, A., (2003) ChemPhysChem, 1, p. 93; Chen, Z., Nagase, S., Hirsch, A., Haddon, R.C., Thiel, W., Von Ragu Schleyer, P., (2004) Angew. Chem., 116, p. 1578; Osuna, S., Houk, K.N., (2009) Chem.-Eur. J., 15, p. 13219; Mercuri, F., Sgamellotti, A., (2009) Phys. Chem. Chem. Phys., 11, p. 563; Lu, X., Tian, F., Wang, N., Zhang, Q., (2002) Org. Lett., 24, p. 4313; Zhang, L., Yang, J., Edwards, C.L., Alemany, L.B., Khabashesku, V.N., Barron, A.R., (2005) Chem. Commun., p. 3265; Delgado, J.L., De La Cruz, P., Langa, F., Urbina, A., Casado, J., López Navarrete, J.T., (2004) Chem. Commun., p. 1734; Sakellariou, G., Ji, H., Mays, J.W., Baskaran, D., (2008) Chem. Mater., 20, p. 6217; Ménard-Moyon, C., Dumas, F., Doris, E., Mioskowski, C., (2006) J. Am. Chem. Soc., 128, p. 14764; Gergely, A., Telegdi, J., Mészáros, E., Pászti, Z., Tárkányi, G., Kármán, F.H., Kálmán, E., (2007) J. Nanosci. Nanotechnol., 7, p. 2795; Chang, C.-M., Liu, Y.-L., (2009) Carbon, 47, p. 3041; Munirasu, S., Albuerne, J., Boschetti-De-Fierro, A., Abetz, V., (2010) Macromol. Rapid Commun., 31, p. 574; Nakamura, Y., Takano, N., Nishimura, T., Yashima, E., Sato, M., Kudo, T., Nishimura, J., (2001) Org. Lett., 3, p. 1193; Pellissier, H., Santelli, M., (2003) Tetrahedron, 59, p. 701; Criado, A., Gómez-Escalonilla, M.J., Fierro, J.L.G., Urbina, A., Peña, D., Guitián, E., Langa, F., (2010) Chem. Commun., 46, p. 7028; Sarkar, S., Bekyarova, E., Niyogi, S., Haddon, R., (2011) J. Am. Chem. Soc., 133, p. 3324; Sarkar, S., Bekyarova, E., Haddon, R.C., (2012) Acc. Chem. Res., 45, p. 673; Zhong, X., Jin, J., Li, S., Niu, Z., Hu, W., Li, R., Ma, J., (2010) Chem. Commun., 46, p. 7340; Sakellariou, G., Priftisa, D., Baskaran, D., (2013) Chem. Soc. Rev., 42, p. 677; Sun, J.-T., Zhao, L.-Y., Hong, C.-Y., Pan, C.-Y., (2011) Chem. Commun., 47, p. 10704; Sakellariou, G., Ji, H., Mays, J.W., Baskaran, D., (2008) Chem. Mater., 20, p. 6217; Priftis, D., Sakellariou, G., Baskaran, D., Mays, J.W., Hadjichristidis, N., (2009) Soft Matter, 5, p. 4272; Priftis, D., Petzetakis, N., Sakellariou, G., Pitsikalis, M., Baskaran, D., Mays, J.W., Hadjichristidis, N., (2009) Macromolecules, 42, p. 3340; Bernal, M.M., Liras, M., Verdejo, R., López-Manchado, M.A., Quijada-Garrido, I., París, R., (2011) Polymer, 52, p. 5739; Inglis, A.J., Sinnwell, S., Stenzel, M.H., Barner-Kowollik, C., (2009) Angew. Chem., Int. Ed., 48, p. 2411; Nebhani, L., Barner-Kowollik, C., (2010) Macromol. Rapid Commun., 31, p. 1298; Yuan, J., Chen, G., Weng, W., Xu, Y., (2012) J. Mater. Chem., 22, p. 7929; Zydziak, N., Hübner, C., Bruns, M., Barner-Kowollik, C., (2011) Macromolecules, 44, p. 3374; Zydziak, N., Hübner, C., Bruns, M., Vogt, A.P., Barner-Kowollik, C., (2013) Polym. Chem., 4, p. 1525; Zydziak, N., Preuss, C.M., Winkler, V., Bruns, M., Hübner, C., Barner-Kowollik, C., (2013) Macromol. Rapid Commun., , 10.1002/marc.201300025
Keywords: Carbon, Functional materials, Nanostructures, Surfaces, Carbon material, Carbon nano-materials, Carbon Nanostructures, Diels-Alder reaction, Functionalizations, Surface Functionalization, Synthetic methods, Tailored properties, Chemical reactions
DOI: 10.1039/c3py00232b
ISSN: 17599954
Divisions: Current > Schools > School of Chemistry, Physics & Mechanical Engineering
Current > Institutes > Institute for Future Environments
Current > QUT Faculties and Divisions > Science & Engineering Faculty
Deposited On: 22 Sep 2016 04:50
Last Modified: 29 Sep 2016 00:52

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page