Single-chain folding of diblock copolymers driven by orthogonal h-donor and acceptor units

Altintas, O., Krolla-Sidenstein, P., Gliemann, H., & Barner-Kowollik, C. (2014) Single-chain folding of diblock copolymers driven by orthogonal h-donor and acceptor units. Macromolecules, 47(17).

View at publisher

Abstract

We report the precision single-chain folding of narrow dispersity diblock copolymers via pairwise orthogonal multiple hydrogen bonding motifs and single chain selected point folding. Well-defined linear polystyrene (PS) and poly(n-butyl acrylate) (PnBA) carrying complementary recognition units have been synthesized via activators regenerated by electron transfer/atom transfer radical polymerization (ARGET ATRP) utilizing functional initiators yielding molecular weights of Mn,SEC = 10900 Da, ł = 1.09 and Mn,SEC = 3900 Da, ł = 1.10, respectively. The orthogonal hydrogen bonding recognition motifs were incorporated into the polymer chain ends of the respective building blocks (to yield an eight shaped single chain folded polymers). Diblock copolymer formation was achieved via the Cu(I) catalyzed azide-alkyne cycloaddition (CuAAC) reaction, while the single-chain folding of the prepared linear diblock copolymer-at low concentrations-was driven by orthogonal multiple hydrogen bonds via three-point thymine-diaminopyridine and six-point cyanuric acid-Hamilton wedge self-association. The self-folding process was followed by proton nuclear magnetic resonance (1H NMR) spectroscopy focused on the respective recognition pairs at low temperature. In addition, the single-chain folding of the diblock copolymer was analyzed by dynamic light scattering (DLS) and concentration dependent diffusion ordered NMR spectroscopy (DOSY) as well as atomic force microscopy (AFM), providing a limiting concentration for self-folding (in dichloromethane at ambient temperature) of close to 10 mg mL-1. © 2014 American Chemical Society.

Impact and interest:

21 citations in Scopus
Search Google Scholar™
22 citations in Web of Science®

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

ID Code: 99375
Item Type: Journal Article
Refereed: Yes
Additional Information: Cited By :17
Export Date: 5 September 2016
CODEN: MAMOB
Correspondence Address: Barner-Kowollik, C.; Preparative Macromolecular Chemistry, Institut für Technische Chemie und Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstrasse 18, Germany
References: Altintas, O., Barner-Kowollik, C., (2012) Macromol. Rapid Commun., 33, pp. 958-971; Jackson, A.W., Fulton, D.A., (2013) Polym. Chem., 4, pp. 31-45; Lutz, J.-F., Ouchi, M., Liu, D.R., Sawamoto, M., (2013) Science, 341, pp. 628-636; Ouchi, M., Badi, N., Lutz, J.-F., Sawamoto, M., (2011) Nature Chem., 3, pp. 917-924; Sanchez-Sanchez, A., Pomposo, J.A., (2014) Part. Part. Syst. Charact., 31, pp. 11-23; Anfinsen, C.B., (1973) Science, 181, pp. 223-230; Dobson, C.M., (2003) Nature, 426, pp. 884-890; Branden, C., Tooze, J., (1998) Introduction to Protein Structure, , Garland Publishing: New York; Hill, D.J., Mio, R.J., Prince, R.B., Hughes, T.S., Moore, J.S., (2001) Chem. Rev., 101, pp. 3893-4011; Sanchez-Sanchez, A., Pomposo, J.A., (2014) Part. Part. Syst. Charact., 31, pp. 11-23; Frank, P.G., Tuten, B.T., Prasher, A., Chao, D., Berda, E.B., (2014) Macromol. Rapid Commun., 35, pp. 249-253; Altintas, O., Willenbacher, J., Wuest, K.N.R., Oehlenschlaeger, K.K., Krolla- Sidenstein, P., Gliemann, H., Barner-Kowollik, C., (2013) Macromolecules, 46, pp. 8092-8101; Wen, J., Yuan, L., Yang, Y., Liu, L., Zhao, H., (2013) ACS Macro Lett., 2, pp. 100-106; Whitaker, D.E., Mahon, C.S., Fulton, D.A., (2013) Angew. Chem., Int. Ed., 52, pp. 956-959; Wong, E.H.H., Lam, S.J., Nam, E., Qiao, G.G., (2014) ACS Macro Lett., 3, pp. 524-528; Shishkan, O., Zamfir, M., Gauthier, M.A., Borner, H.G., Lutz, J.F., (2014) Chem. Commun., 50, pp. 1570-1572; Sanchez-Sanchez, A., Fulton, D.A., Pomposo, J.A., (2014) Chem. Commun., 50, pp. 1871-1874; Willenbacher, J., Altintas, O., Roesky, P.W., Barner- Kowollik, C., (2013) Macromol. Rapid Commun., 35, pp. 45-51; Gillissen, M.A.J., Terashima, T., Meijer, E.W., Palmans, A.R.A., Voets, I.K., (2013) Macromolecules, 46, pp. 4120-4125; Hosono, N., Gillissen, M.A.J., Li, Y., Sheiko, S.S., Palmans, A.R.A., Meijer, E.W., (2013) J. Am. Chem. Soc., 135, pp. 501-510; Terashima, T., Mes, T., De Greef, T.F.A., Gillissen, M.A.J., Besenius, P., Palmans, A.R.A., Meijer, E.W., (2011) J. Am. Chem. Soc., 133, pp. 4742-4745; Altintas, O., Rudolph, T., Barner-Kowollik, C., (2011) J. Polym. Sci., Part A: Polym. Chem., 49, pp. 2566-2576; Altintas, O., Gerstel, P., Dingenouts, N., Barner-Kowollik, C., (2010) Chem. Commun., 46, pp. 6291-6293; Stals, P.J.M., Gillissen, M.A.J., Paffen, T.F.E., De Greef, T.F.A., Lindner, P., Meijer, E.W., Palmans, A.R.A., Voets, I.K., (2014) Macromolecules, 47, pp. 2947-2954; Lu, J., Ten Brummelhuis, N., Weck, M., (2014) Chem. Commun., 50, pp. 6225-6227; Braunecker, W.A., Matyjaszewski, K., (2007) Prog. Polym. Sci., 32, pp. 93-146; Matyjaszewski, K., (2012) Macromolecules, 45, pp. 4015-4039; Altintas, O., Vogt, A.P., Barner-Kowollik, C., Tunca, U., (2012) Polym. Chem., 3, pp. 34-45; Iha, R.K., Wooley, K.L., Nystrom, A.M., Burke, D.J., Kade, M.J., Hawker, C.J., (2009) Chem. Rev., 109, pp. 5620-5686; Fournier, D., Hoogenboom, R., Schubert, U.S., (2007) Chem. Soc. Rev., 36, pp. 1369-1380; Kolb, H.C., Finn, M.G., Sharpless, K.B., (2001) Angew. Chem., Int. Ed., 40, pp. 2004-2021; Bertin, P.A., Gibbs, J.M., Shen, C.K.-F., Thaxton, C.S., Russin, W.A., Mirkin, C.A., Nguyen, S.T., (2006) J. Am. Chem. Soc., 128, pp. 4168-4169; Hosono, N., Stals, P.J.M., Palmans, A.R.A., Meijer, E.W., (2014) Chem. - Asian J., 9, pp. 1099-1107; Altintas, O., Lejeune, E., Gerstel, P., Barner-Kowollik, C., (2012) Polym. Chem., 3, pp. 640-651; Gillissen, M.A.J., Voets, I.K., Meijer, E.W., Palmans, A.R.A., (2012) Polym. Chem., 3, pp. 3166-3174; Romulus, J., Weck, M., (2013) Macromol. Rapid Commun., 34, pp. 1518-1523; Li, Z., Hillmyer, M.A., Lodge, T.P., (2006) Macromolecules, 39, pp. 765-771; Hagerman, P.J., (1988) Annu. Rev. Biophys. Biophys. Chem., 17, pp. 265-286; Tsarevsky, N.V., Matyjaszewski, K., (2007) Chem. Rev., 107, pp. 2270-2299; Strazielle, C.B., Vogl, H.O., (1978) Eur. Polym. J., 14, pp. 331-334; Beuermann, S., Paquet, D.A., McMinn, J.H., Hutchinson, R.A., (1996) Macromolecules, 29, pp. 4206-4215; Altintas, O., Hizal, G., Tunca, U., (2008) J. Polym. Sci., Part A: Polym. Chem., 46, pp. 1218-1228; Altintas, O., Muller, T., Lejeune, E., Plietzsch, O., Bräse, S., Barner-Kowollik, C., (2012) Macromol. Rapid Commun., 33, pp. 977-983; Altintas, O., Yankul, B., Hizal, G., Tunca, U., (2006) J. Polym. Sci., Part A: Polym. Chem., 44, pp. 6458-6465; Liu, Y., Wang, Z., Zhang, X., (2012) Chem. Soc. Rev., 41, pp. 5922-5932; Wessendorf, F., Hirsch, A., (2008) Tetrahedron, 64, pp. 11480-11489; Tanner, J.E., (1970) J. Chem. Phys., 52, pp. 2523-2526; Ohkawa, H., Ligthart, G.B.W.L., Sijbesma, R.P., Meijer, E.W., (2007) Macromolecules, 40, pp. 1453-1459; Altintas, O., Schulze-Suenninghausen, D., Luy, B., Barner-Kowollik, C., (2013) ACS Macro Lett., 2, pp. 211-216; Moers, C., Nuhn, L., Wissel, M., Stangenberg, R., Mondeshki, M., Berger-Nicoletti, E., Thomas, A., Frey, H., (2013) Macromolecules, 46, pp. 9544-9553; Altintas, O., Schulze-Suenninghausen, D., Luy, B., Barner-Kowollik, C., (2014) Eur. Polym. J.; Brandrup, I., Immergut, E., (2003) Polymer Handbook, , 4 th ed. Wiley & Sons: New York; Rosen, B.M., Wilson, C.J., Wilson, D.A., Peterca, M., Imam, M.R., Percec, V., (2009) Chem. Rev., 109, pp. 6275-6540; Kaitz, J.A., Possanza, C.M., Song, Y., Diesendruck, C.E., Spiering, A.J.H., Meijer, E.W., Moore, J.S., (2014) Polym. Chem., 5, pp. 3788-3794; Fuchs, M., Abidin, Z., Kuebel, C., Weidler, P.G., Matsue, N., Henmi, T., Koester, R., Gliemann, H., (2012) Clays Clay Miner., 60, pp. 456-463; Berda, E.B., Foster, E.J., Meijer, E.W., (2010) Macromolecules, 43, pp. 1430-1437
Keywords: Association reactions, Atomic force microscopy, Block copolymers, Chains, Dichloromethane, Dynamic light scattering, Free radical reactions, Nuclear magnetic resonance spectroscopy, Polymers, Temperature, Activators regenerated by electron transfers, Azide-alkyne cycloaddition, Concentration-dependent diffusion, Low concentrations, Multiple hydrogen bonding, Poly(n-butyl acrylate), Proton nuclear magnetic resonance, Transfer radical polymerization, Hydrogen bonds
DOI: 10.1021/ma501186k
ISSN: 00249297
Divisions: Current > Schools > School of Chemistry, Physics & Mechanical Engineering
Current > Institutes > Institute for Future Environments
Current > QUT Faculties and Divisions > Science & Engineering Faculty
Deposited On: 22 Sep 2016 04:50
Last Modified: 27 Sep 2016 01:32

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page