Global trends for k p? the influence of ester side chain topography in alkyl (Meth)Acrylates - Completing the data base

Haehnel, A. P., Schneider-Baumann, M., Arens, L., Misske, A. M., Fleischhaker, F., & Barner-Kowollik, C. (2014) Global trends for k p? the influence of ester side chain topography in alkyl (Meth)Acrylates - Completing the data base. Macromolecules, 47(10).

View at publisher


The Arrhenius parameters of the propagation rate coefficient, k p, are determined via the IUPAC recommended pulsed laser polymerization-size exclusion chromatography (PLP-SEC) method for two linear alkyl acrylates (stearyl and behenyl acrylate), four branched alkyl acrylates (isononyl (INA-A), tridecyl (TDN-A and TDA-A), and henicosyl acrylate (C21A)), and two branched alkyl methacrylates (tridecyl methacrylates (TDN-MA and TDA-MA)) in bulk. Furthermore, the above stated acrylates and heptadecyl acrylate (C17A) were studied in 1 M solution in butyl acetate (BuAc). On the basis of such a wide data basis in combination with the already literature known data of relatives of the herein investigated monomers, we are able to identify and extend global trends and family type behavior for the propagation rate coefficients of a wide array of alkyl (meth)acrylates. In order to ensure a valid SEC evaluation, the polymer specific Mark-Houwnik-Kuhn-Sakurada (MHKS) parameters are determined for each of the polymers, via multidetector SEC analysis (multi angle laser light scattering (MALLS) in combination with differential viscosimetry (Visco) and refractive index (RI)) of narrowly distributed polymer samples obtained via fraction with a preparative SEC column. By employing further physicochemical polymer specific data (e.g., glass transition temperatures (Tg)), we provide a hypothesis for the reported trends and family type behaviors: (i) the steady increase of k p with increasing ester side chain length for linear alkyl (meth)acrylates may be explained by a decreasing concentration of the polar ester moieties, resulting in a decreasing stabilization of the attacking radical in the transition state of the propagation reaction, and (ii) the family type behavior of the branched alkyl methacrylates can be understood by considering steric and entropic influences. For the branched alkyl acrylates, no clear trend is detectable, and a family type behavior is clearly not observed in contrast to the corresponding methacrylates. © 2014 American Chemical Society.

Impact and interest:

11 citations in Scopus
Search Google Scholar™
11 citations in Web of Science®

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

ID Code: 99384
Item Type: Journal Article
Refereed: Yes
Additional Information: Cited By :10
Export Date: 5 September 2016
Correspondence Address: Barner-Kowollik, C.; Preparative Macromolecular Chemistry, Institut für Technische Chemie und Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstrasse 18, 76128 Karlsruhe, Germany; email:
References: Aleksandrov, A.P., Vladimir, N.G., Kitai, M.S., Smirnova, I.M., Sokolov, V.V., (1977) Sov. J. Quantum Electron., 7, p. 547; Buback, M., Gilbert, R.G., Hutchinson, R.A., Klumperman, B., Kuchta, F.-D., Manders, B.G., Odriscoll, K.F., Schweer, J., (1995) Macromol. Chem. Phys., 196, pp. 3267-3280; Beuermann, S., Buback, M., Davis, T.P., Gilbert, R.G., Hutchinson, R.A., Olaj, O.F., Russell, G.T., Van Herk, A.M., (1997) Macromol. Chem. Phys., 198, pp. 1545-1560; Beuermann, S., Buback, M., Davis, T.P., Gilbert, R.G., Hutchinson, R.A., Kajiwara, A., Klumperman, B., Russell, G.T., (2000) Macromol. Chem. Phys., 201, pp. 1355-1364; Beuermann, S., (2003) Pure Appl. Chem., 75, pp. 1091-1096; Beuermann, S., Buback, M., Davis, T.P., García, N., Gilbert, R.G., Hutchinson, R.A., Kajiwara, A., Russell, G.T., (2003) Macromol. Chem. Phys., 204, pp. 1338-1350; Asua, J.M., Beuermann, S., Buback, M., Castignolles, P., Charleux, B., Gilbert, R.G., Hutchinson, R.A., Van Herk, A.M., (2004) Macromol. Chem. Phys., 205, pp. 2151-2160; Beuermann, S., Buback, M., Hesse, P., Kuchta, F.-D., Lacík, I., Herk, A.M.V., (2007) Pure Appl. Chem., 79, pp. 1463-1469; Barner-Kowollik, C., Beuermann, S., Buback, M., Castignolles, P., Charleux, B., Coote, M.L., Hutchinson, R.A., Van Herk, A., (2014) Polym. Chem., 5, pp. 204-212; Barner-Kowollik, C., Günzler, F., Junkers, T., (2008) Macromolecules, 41, pp. 8971-8973; Haehnel, A.P., Schneider-Baumann, M., Hiltebrandt, K.U., Misske, A.M., Barner-Kowollik, C., (2013) Macromolecules, 46, pp. 15-28; Beuermann, S., Buback, M., (2002) Prog. Polym. Sci., 27, pp. 191-254; Rudolph, J., Ulonska, A., Papp, R., Paciello, R., Breitscheidel, B., Faller, K., (2009) C17 Alcohol Mixture; Obenaus, F., Droste, W., Neumeister, J., Butenes (2000) Ullmanns Encyclopedia of Industrial Chemistry, 6, pp. 445-454. , Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany; Wagner, H.L., (1985) J. Phys. Chem. Ref. Data, 14, p. 1101; Fleischhaker, F.Y., Haehnel, A.P., Misske, A.M., Blanchot, M., Haremza, S., Barner-Kowollik, C., (2014) Macromol. Chem. Phys., , 10.1002/macp.201400062; Van Herk, A.M., Dröge, T., (1997) Macromol. Theory Simul., 6, pp. 1263-1276; Van Herk, A.M., Van Den Brand, H., Berg, I., (2012) Contour V2.0.2; Junkers, T., Barner-Kowollik, C., (2008) J. Polym. Sci., Part A: Polym. Chem., 46, pp. 7585-7605; Nikitin, A.N., Hutchinson, R.A., Buback, M., Hesse, P., (2007) Macromolecules, 40, pp. 8631-8641; Liang, K., Hutchinson, R.A., (2011) Macromol. Rapid Commun., 32, pp. 1090-1095; Junkers, T., Schneider-Baumann, M., Koo, S.S.P., Castignolles, P., Barner-Kowollik, C., (2010) Macromolecules, 43, pp. 10427-10434; Willemse, R.X.E., Van Herk, A.M., (2010) Macromol. Chem. Phys., 211, pp. 539-545; Buback, M., Kurz, C.H., Schmaltz, C., (1998) Macromol. Chem. Phys., 199, pp. 1721-1727; Dervaux, B., Junkers, T., Schneider-Baumann, M., Du Prez, F.E., Barner-Kowollik, C., (2009) J. Polym. Sci., Part A: Polym. Chem., 47, pp. 6641-6654; Hutchinson, R.A., Beuermann, S., Paquet, D.A., McMinn, J.H., (1997) Macromolecules, 30, pp. 3490-3493; Roberts, G.E., Davis, T.P., Heuts, J.P.A., Ball, G.E., (2002) Macromolecules, 35, pp. 9954-9963; Heuts, J.P.A., Gilbert, R.G., Radom, L., (1995) Macromolecules, 28, pp. 8771-8781; Zammit, M.D., Coote, M.L., Davis, T.P., Willett, G.D., (1998) Macromolecules, 31, pp. 955-963; Buback, M., (2009) Macromol. Symp., 275-276, pp. 90-101
Keywords: Acrylics, Chain length, Esterification, Esters, Refractive index, Salts, Alkyl acrylates, Arrhenius parameters, Exclusion chromatography, Multiangle laser light scattering, Propagation rate coefficient, Propagation reaction, Side chain lengths, Transition state, Polymers
DOI: 10.1021/ma500304f
ISSN: 00249297
Divisions: Current > Schools > School of Chemistry, Physics & Mechanical Engineering
Current > Institutes > Institute for Future Environments
Current > QUT Faculties and Divisions > Science & Engineering Faculty
Deposited On: 22 Sep 2016 04:50
Last Modified: 27 Sep 2016 02:33

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page