Complex macromolecular architecture design via cyclodextrin host/guest complexes

Schmidt, B. V. K. J., Hetzer, M., Ritter, H., & Barner-Kowollik, C. (2014) Complex macromolecular architecture design via cyclodextrin host/guest complexes. Progress in Polymer Science, 39(1).

View at publisher


The design of complex macromolecular architectures has driven macromolecular engineering over the past decades. The introduction of supramolecular chemistry into polymer chemistry provides novel opportunities for the generation of macromolecular architecture with specific functions. Cyclodextrins are attractive design elements as they form supramolecular inclusion complexes with hydrophobic guest molecules in aqueous solution affording the possibility to combine a large variety of building blocks to form novel macromolecular architectures. In the present critical review, the design of a broad range of macromolecular architectures driven by cyclodextrin host/guest chemistry is discussed, including supramolecular block copolymers, polymer brushes, star and branched polymers. © 2013 Elsevier Ltd. All rights reserved.

Impact and interest:

55 citations in Scopus
Search Google Scholar™
52 citations in Web of Science®

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

ID Code: 99408
Item Type: Journal Article
Refereed: Yes
Additional Information: Cited By :54
Export Date: 5 September 2016
Correspondence Address: Barner-Kowollik, C.; Preparative Macromolecular Chemistry, Institut für Technische Chemie und Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstr. 18, 76128 Karlsruhe, Germany; email:
References: Hadjichristidis, N., Harada, A., Tezuka, Y., Du Prez, F., (2011) Complex Macromolecular Architectures: Synthesis, Characterization, and Self-assembly, p. 856. , John Wiley & Sons (Asia) Pte., Ltd. Singapore; Hawker, C.J., Wooley, K.L., The convergence of synthetic organic and polymer chemistries (2005) Science, 309 (5738), pp. 1200-1205. , DOI 10.1126/science.1109778; Gregory, A., Stenzel, M.H., Complex polymer architectures via RAFT polymerization: From fundamental process to extending the scope using click chemistry and nature's building blocks (2012) Prog Polym Sci, 37, pp. 38-105; Hedrick, J.L., Magbitang, T., Connor, E.F., Glauser, T., Volksen, W., Hawker, C.J., Lee, V.Y., Miller, R.D., Application of complex macromolecular architectures for advanced microelectronic materials (2002) Chem Eur J, 8, pp. 3308-3319; Grayson, S.M., Godbey, W.T., The role of macromolecular architecture in passively targeted polymeric carriers for drug and gene delivery (2008) Journal of Drug Targeting, 16 (5), pp. 329-356. , DOI 10.1080/10611860801969616, PII 793696267; Tian, H., Tang, Z., Zhuang, X., Chen, X., Jing, X., Biodegradable synthetic polymers: Preparation, functionalization and biomedical application (2012) Prog Polym Sci, 37, pp. 237-280; Neugebauer, D., Zhang, Y., Pakula, T., Sheiko, S.S., Matyjaszewski, K., Densely-grafted and double-grafted PEO brushes via ATRP. A route to soft elastomers (2003) Macromolecules, 36, pp. 6746-6755; Soler-Illia, G.J.A.A., Azzaroni, O., Multifunctional hybrids by combining ordered mesoporous materials and macromolecular building blocks (2011) Chem Soc Rev, 40, pp. 1107-1150; Hawker, C.J., Bosman, A.W., Harth, E., New polymer synthesis by nitroxide mediated living radical polymerizations (2001) Chemical Reviews, 101 (12), pp. 3661-3688. , DOI 10.1021/cr990119u; Nicolas, J., Guillaneuf, Y., Lefay, C., Bertin, D., Gigmes, D., Charleux, B., Nitroxide-mediated polymerization (2013) Prog Polym Sci, 38, pp. 63-235; Ouchi, M., Terashima, T., Sawamoto, M., Transition metal-catalyzed living radical polymerization: Toward perfection in catalysis and precision polymer synthesis (2009) Chem Rev, 109, pp. 4963-5050; Matyjaszewski, K., Atom transfer radical polymerization (ATRP): Current status and future perspectives (2012) Macromolecules, 45, pp. 4015-4039; Barner-Kowollik, C., (2008) Handbook of RAFT Polymerization, p. 556. , Wiley-VCH Weinheim; Moad, G., Rizzardo, E., Thang, S.H., Living radical polymerization by the RAFT process - A third update (2012) Aust J Chem, 65, pp. 985-1076; Barner-Kowollik, C., Perrier, S., The future of reversible addition fragmentation chain transfer polymerization (2008) J Polym Sci Part A Polym Chem, 46, pp. 5715-5723; Kolb, H.C., Finn, M.G., Sharpless, K.B., Click chemistry: Diverse chemical function from a few good reactions (2001) Angew Chem Int Ed, 40, pp. 2004-2021; Barner-Kowollik, C., Du Prez, F.E., Espeel, P., Hawker, C.J., Junkers, T., Schlaad, H., Van Camp, W., "Clicking" polymers or just efficient linking: What is the difference? (2011) Angew Chem Int Ed, 50, pp. 60-62; Kempe, K., Krieg, A., Becer, C.R., Schubert, U.S., "clicking" on/with polymers: A rapidly expanding field for the straightforward preparation of novel macromolecular architectures (2012) Chem Soc Rev, 41, pp. 176-191; Binder, W.H., Sachsenhofer, R., 'Click' chemistry in polymer and materials science (2007) Macromolecular Rapid Communications, 28 (1), pp. 15-54. , DOI 10.1002/marc.200600625; Lutz, J.F., 1,3-dipolar cycloadditions of azides and alkynes: A universal ligation tool in polymer and materials science (2007) Angew Chem Int Ed, 46, pp. 1018-1025; Hoyle, C.E., Bowman, C.N., Thiol-ene click chemistry (2010) Angew Chem Int Ed, 49, pp. 1540-1573; Lowe, A.B., Thiol-ene "click" reactions and recent applications in polymer and materials synthesis (2010) Polym Chem, 1, pp. 17-36; Tasdelen, M.A., Diels-Alder "click" reactions: Recent applications in polymer and material science (2011) Polym Chem, 2, pp. 2133-2145; Wilson, A.J., Non-covalent polymer assembly using arrays of hydrogen-bonds (2007) Soft Matter, 3 (4), pp. 409-425. , DOI 10.1039/b612566b; Bertrand, A., Lortie, F., Bernard, J., Routes to hydrogen bonding chain-end functionalized polymers (2012) Macromol Rapid Commun, 33, pp. 2062-2091; Kurth, D.G., Higuchi, M., Transition metal ions: Weak links for strong polymers (2006) Soft Matter, 2 (11), pp. 915-927. , DOI 10.1039/b607485e; Zayed, J.M., Nouvel, N., Rauwald, U., Scherman, O.A., Chemical complexity-supramolecular self-assembly of synthetic and biological building blocks in water (2010) Chem Soc Rev, 39, pp. 2806-2816; Chen, G., Jiang, M., Cyclodextrin-based inclusion complexation bridging supramolecular chemistry and macromolecular self-assembly (2011) Chem Soc Rev, 40, pp. 2254-2266; Zheng, B., Wang, F., Dong, S., Huang, F., Supramolecular polymers constructed by crown ether-based molecular recognition (2012) Chem Soc Rev, 41, pp. 1621-1636; Zhou, J., Ritter, H., Cyclodextrin functionalized polymers as drug delivery systems (2010) Polym Chem, 1, pp. 1552-1559; Harada, A., Takashima, Y., Yamaguchi, H., Cyclodextrin-based supramolecular polymers (2009) Chem Soc Rev, 38, pp. 875-882; Nakahata, M., Takashima, Y., Yamaguchi, H., Harada, A., Redox-responsive self-healing materials formed from host-guest polymers (2011) Nat Commun, 2. , 511/1-6; Zhang, X., Wang, C., Supramolecular amphiphiles (2011) Chem Soc Rev, 40, pp. 94-101; Chen, Y., Liu, Y., Cyclodextrin-based bioactive supramolecular assemblies (2010) Chem Soc Rev, 39, pp. 495-505; Hetzer, M., Schmidt, B.V.K.J., Barner-Kowollik, C., Ritter, H., Limitations of cyclodextrin-mediated RAFT homopolymerization and block copolymer formation (2013) J Polym Sci Part A Polym Chem, 51, pp. 2504-2517; Schmidt, B.V.K.J., Hetzer, M., Ritter, H., Barner-Kowollik, C., Cyclodextrin-complexed RAFT Agents for the ambient temperature aqueous living/controlled radical polymerization of acrylamido monomers (2011) Macromolecules, 44, pp. 7220-7232; Boger, J., Corcoran, R.J., Lehn, J.M., Cyclodextrin chemistry. Selective modification of all primary hydroxyl groups of α- and β-cyclodextrins (1978) Helv Chim Acta, 61, pp. 2190-2218; Khan, A.R., Forgo, P., Stine, K.J., D'Souza, V.T., Methods for selective modifications of cyclodextrins (1998) Chemical Reviews, 98 (5), pp. 1977-1996; Tang, W., Ng, S.-C., Facile synthesis of mono-6-amino-6-deoxy-α-, β-, γ-cyclodextrin hydrochlorides for molecular recognition, chiral separation and drug delivery (2008) Nature Protocols, 3 (4), pp. 691-697. , DOI 10.1038/nprot.2008.37, PII NPROT.2008.37; Hamasaki, K., Ikeda, H., Nakamura, A., Ueno, A., Toda, F., Suzuki, I., Osa, T., Fluorescent sensors of molecular recognition. Modified cyclodextrins capable of exhibiting guest-responsive twisted intramolecular charge transfer fluorescence (1993) J Am Chem Soc, 115, pp. 5035-5040; Melton, L.D., Slessor, K.N., Synthesis of monosubstituted cyclohexaamyloses (1971) Carbohydr Res, 18, pp. 29-37; Amajjahe, S., Choi, S., Munteanu, M., Ritter, H., Pseudopolyanions based on poly(NIPAAM-co-β-cyclodextrin methacrylate) and ionic liquids (2008) Angew Chem Int Ed, 47, pp. 3435-3437; Quan, C.Y., Chen, J.X., Wang, H.Y., Li, C., Chang, C., Zhang, X.Z., Zhuo, R.X., Core-shell nanosized assemblies mediated by the α-β Cyclodextrin dimer with a tumor-triggered targeting property (2010) ACS Nano, 4, pp. 4211-4219; Kuzuya, A., Ohnishi, T., Wasano, T., Nagaoka, S., Sumaoka, J., Ihara, T., Jyo, A., Komiyama, M., Efficient guest inclusion by β-cyclodextrin attached to the ends of DNA oligomers upon hybridization to various DNA conjugates (2009) Bioconjugate Chem, 20, pp. 1643-1649; Bonomo, R., Cucinotta, V., Allessandro, F., Impellizzeri, G., MacCarrone, G., Rizzarelli, E., Vecchio, G., Coordination properties of 6-deoxy-6-[1-(2-amino) ethylamino]-β- cyclodextrin and the ability of its copper(II) complex to recognize and separate amino acid enantiomeric pairs (1993) J Incl Phenom Macrocycl Chem, 15, pp. 167-180; Fujita, K., Ueda, T., Imoto, T., Tabushi, I., Toh, N., Koga, T., Guest-induced conformational change of β-cyclodextrin capped with an environmentally sensitive chromophore (1982) Bioorg Chem, 11, pp. 72-84; Huan, X., Wang, D., Dong, R., Tu, C., Zhu, B., Yan, D., Zhu, X., Supramolecular ABC miktoarm star terpolymer based on host-guest inclusion complexation (2012) Macromolecules, 45, pp. 5941-5947; Yhaya, F., Binauld, S., Callari, M., Stenzel, M.H., One-pot endgroup-modification of hydrophobic RAFT polymers with cyclodextrin by thiol-ene chemistry and the subsequent formation of dynamic core-shell nanoparticles using supramolecular host-guest chemistry (2012) Aust J Chem, 65, pp. 1095-1103; Giacomelli, C., Schmidt, V., Putaux, J.L., Narumi, A., Kakuchi, T., Borsali, R., Aqueous self-assembly of polystyrene chains end-functionalized with β-cyclodextrin (2009) Biomacromolecules, 10, pp. 449-453; Liu, H., Zhang, Y., Hu, J., Li, C., Liu, S., Multi-responsive supramolecular double hydrophilic diblock copolymer driven by host-guest inclusion complexation between β-cyclodextrin and adamantyl moieties (2009) Macromol Chem Phys, 210, pp. 2125-2137; Cai, T., Yang, W.J., Zhang, Z., Zhu, X., Neoh, K.G., Kang, E.T., Preparation of stimuli-responsive hydrogel networks with threaded [small beta]-cyclodextrin end-capped chains via combination of controlled radical polymerization and click chemistry (2012) Soft Matter, 8, pp. 5612-5620; Bertrand, A., Stenzel, M., Fleury, E., Bernard, J., Host-guest driven supramolecular assembly of reversible comb-shaped polymers in aqueous solution (2012) Polym Chem, 3, pp. 377-383; Martina, K., Trotta, F., Robaldo, B., Belliardi, N., Jicsinszky, L., Cravotto, G., Efficient regioselective functionalizations of cyclodextrins carried out under microwaves or power ultrasound (2007) Tetrahedron Letters, 48 (52), pp. 9185-9189. , DOI 10.1016/j.tetlet.2007.10.104, PII S0040403907021119; Casati, C., Franchi, P., Pievo, R., Mezzina, E., Lucarini, M., Unraveling unidirectional threading of α-cyclodextrin in a [2]rotaxane through Spin labeling approach (2012) J Am Chem Soc, 134, pp. 19108-19117; Zeng, J., Shi, K., Zhang, Y., Sun, X., Zhang, B., Construction and micellization of a noncovalent double hydrophilic block copolymer (2008) Chem Commun, , 3753-5; Stadermann, J., Komber, H., Erber, M., Däbritz, F., Ritter, H., Voit, B., Diblock copolymer formation via self-assembly of cyclodextrin and adamantyl end-functionalized polymers (2011) Macromolecules, 44, pp. 3250-3259; Yan, Q., Yuan, J., Cai, Z., Xin, Y., Kang, Y., Yin, Y., Voltage-responsive vesicles based on orthogonal assembly of two homopolymers (2010) J Am Chem Soc, 132, pp. 9268-9270; Yan, Q., Xin, Y., Zhou, R., Yin, Y., Yuan, J., Light-controlled smart nanotubes based on the orthogonal assembly of two homopolymers (2011) Chem Commun, 47, pp. 9594-9596; Zhang, Z., Ding, J., Chen, X., Xiao, C., He, C., Zhuang, X., Chen, L., Chen, X., Intracellular pH-sensitive supramolecular amphiphiles based on host-guest recognition between benzimidazole and [small beta]-cyclodextrin as potential drug delivery vehicle (2013) Polym Chem, 4, pp. 3265-3271; Guo, M., Jiang, M., Non-covalently connected micelles (NCCMs): The origins and development of a new concept (2009) Soft Matter, 5, pp. 495-500; Schmidt, B.V.K.J., Hetzer, M., Ritter, H., Barner-Kowollik, C., UV light and temperature responsive supramolecular ABA triblock copolymers via reversible cyclodextrin complexation (2013) Macromolecules, 46, pp. 1054-1065; Ren, S., Chen, D., Jiang, M., Noncovalently connected micelles based on a β-cyclodextrin- containing polymer and adamantane end-capped poly(É-caprolactone) via host-guest interactions (2009) J Polym Sci Part A Polym Chem, 47, pp. 4267-4278; Yan, J., Zhang, X., Li, W., Zhang, X., Liu, K., Wu, P., Zhang, A., Thermoresponsive supramolecular dendronized copolymers with tunable phase transition temperatures (2012) Soft Matter, 8, pp. 6371-6377; Hetzer, M., Fleischmann, C., Schmidt, B.V.K.J., Barner-Kowollik, C., Ritter, H., Visual recognition of supramolecular graft polymer formation via phenolphthalein-cyclodextrin association (2013) Polymer, 54, pp. 5141-5147; Zhao, Q., Wang, S., Cheng, X., Yam, R.C.M., Kong, D., Li, R.K.Y., Surface modification of cellulose fiber via supramolecular assembly of biodegradable polyesters by the aid of host-guest inclusion complexation (2010) Biomacromolecules, 11, pp. 1364-1369; Huskens, J., Deij, M.A., Reinhoudt, D.N., Attachment of molecules at a molecular printboard by multiple host-guest interactions (2002) Angewandte Chemie - International Edition, 41 (23), pp. 4467-4471. , DOI 10.1002/1521-3773(20021202)41:23<4467::AID-ANIE4467>3.0.CO;2-C; Auletta, T., Dordi, B., Mulder, A., Sartori, A., Onclin, S., Bruinink, C.M., Peter, M., Reinhoudt, D.N., Writing Patterns of Molecules on Molecular Printboards (2004) Angewandte Chemie - International Edition, 43 (3), pp. 369-373. , DOI 10.1002/anie.200352767; Hsu, S.H., Yilmaz, M.D., Blum, C., Subramaniam, V., Reinhoudt, D.N., Velders, A.H., Huskens, J., Expression of sensitized Eu3+ luminescence at a multivalent interface (2009) J Am Chem Soc, 131, pp. 12567-12569; González-Campo, A., Hsu, S.H., Puig, L., Huskens, J., Reinhoudt, D.N., Velders, A.H., Orthogonal covalent and noncovalent functionalization of cyclodextrin-alkyne patterned surfaces (2010) J Am Chem Soc, 132, pp. 11434-11436; Ludden, M.J.W., Mulder, A., Tampe, R., Reinhoudt, D.N., Huskens, J., Molecular printboards as a general platform for protein immobilization: A supramolecular solution to nonspecific adsorption (2007) Angewandte Chemie - International Edition, 46 (22), pp. 4104-4107. , DOI 10.1002/anie.200605104; Uhlenheuer, D.A., Wasserberg, D., Haase, C., Nguyen, H.D., Schenkel, J.H., Huskens, J., Ravoo, B.J., Brunsveld, L., Directed supramolecular surface assembly of SNAP-tag fusion proteins (2012) Chem Eur J, 18, pp. 6788-6794; Gong, Y.H., Li, C., Yang, J., Wang, H.Y., Zhuo, R.X., Zhang, X.Z., Photoresponsive "smart Template" via host-guest interaction for reversible cell adhesion (2011) Macromolecules, 44, pp. 7499-7502; Ohno, K., Wong, B., Haddleton, D.M., Synthesis of well-defined cyclodextrin-core star polymers (2001) Journal of Polymer Science, Part A: Polymer Chemistry, 39 (13), pp. 2206-2214. , DOI 10.1002/pola.1197; Stenzel-Rosenbaum, M.H., Davis, T.P., Chen, V., Fane, A.G., Synthesis of poly(styrene) star polymers grown from sucrose, glucose, and cyclodextrin cores via living radical polymerization mediated by a half-metallocene iron carbonyl complex (2001) Macromolecules, 34 (16), pp. 5433-5438. , DOI 10.1021/ma0021803; Stenzel-Rosenbaum, M., Davis, T.P., Chen, V., Fane, A.G., Star-polymer synthesis via radical reversible addition-fragmentation chain-transfer polymerization (2001) Journal of Polymer Science, Part A: Polymer Chemistry, 39 (16), pp. 2777-2783. , DOI 10.1002/pola.1256; Stenzel, M.H., Davis, T.P., Star polymer synthesis using trithiocarbonate functional β-cyclodextrin cores (reversible addition-fragmentation chain-transfer polymerization) (2002) Journal of Polymer Science, Part A: Polymer Chemistry, 40 (24), pp. 4498-4512. , DOI 10.1002/pola.10532; Karaky, K., Reynaud, S., Billon, L., Francois, J., Chreim, Y., Organosoluble star polymers from a cyclodextrin core (2005) Journal of Polymer Science, Part A: Polymer Chemistry, 43 (21), pp. 5186-5194. , DOI 10.1002/pola.21012; Yang, C., Li, H., Goh, S.H., Li, J., Cationic star polymers consisting of α-cyclodextrin core and oligoethylenimine arms as nonviral gene delivery vectors (2007) Biomaterials, 28 (21), pp. 3245-3254. , DOI 10.1016/j.biomaterials.2007.03.033, PII S0142961207002633; He, T., Hu, T., Zhang, X., Zhong, G., Zhang, H., Synthesis and characterization of a novel liquid crystalline star-shaped polymer based on α-CD core via ATRP (2009) J Appl Polym Sci, 112, pp. 2120-2126; Fijten, M.W.M., Haensch, C., Van Lankvelt, B.M., Hoogenboom, R., Schubert, U.S., Clickable poly(2-oxazoline)s as versatile building blocks (2008) Macromol Chem Phys, 209, pp. 1887-1895; Zhang, L., Stenzel, M.H., Spherical glycopolymer architectures using RAFT: From stars with a β-cyclodextrin core to thermoresponsive core-shell particles (2009) Aust J Chem, 62, pp. 813-822; Xu, J., Liu, S., Synthesis of well-defined 7-arm and 21-arm poly(N-isopropylacrylamide) star polymers with β-cyclodextrin cores via click chemistry and their thermal phase transition behavior in aqueous solution (2009) J Polym Sci Part A Polym Chem, 47, pp. 404-419; Zhang, H., Yan, Q., Kang, Y., Zhou, L., Zhou, H., Yuan, J., Wu, S., Fabrication of thermo-responsive hydrogels from star-shaped copolymer with a biocompatible β-cyclodextrin core (2012) Polymer, 53, pp. 3719-3725; Liang, B., Deng, J.J., Yuan, F., Yang, N., Li, W., Yin, J.R., Pu, S.X., Zhang, L.M., Efficient gene transfection in the neurotypic cells by star-shaped polymer consisting of β-cyclodextrin core and poly(amidoamine) dendron arms (2013) Carbohydr Polym, 94, pp. 185-192; Huin, C., Eskandani, Z., Badi, N., Farcas, A., Bennevault-Celton, V., Guégan, P., Anionic ring-opening polymerization of ethylene oxide in DMF with cyclodextrin derivatives as new initiators (2013) Carbohydr Polym, 94, pp. 323-331; Miura, Y., Narumi, A., Matsuya, S., Satoh, T., Duan, Q., Kaga, H., Kakuchi, T., Synthesis of well-defined AB20-type star polymers with cyclodextrin-core by combination of NMP and ATRP (2005) Journal of Polymer Science, Part A: Polymer Chemistry, 43 (18), pp. 4271-4279. , DOI 10.1002/pola.20837; Gou, P.F., Zhu, W.P., Shen, Z.Q., Synthesis, self-assembly, and drug-loading capacity of well-defined cyclodextrin-centered drug-conjugated amphiphilic A14B7 miktoarm star copolymers based on poly(É-caprolactone) and poly(ethylene glycol) (2010) Biomacromolecules, 11, pp. 934-943; Zhang, Q., Li, G.Z., Becer, C.R., Haddleton, D.M., Cyclodextrin-centred star polymers synthesized via a combination of thiol-ene click and ring opening polymerization (2012) Chem Commun, 48, pp. 8063-8065; Zhao, F., Yin, H., Zhang, Z., Li, J., Folic acid modified cationic γ-cyclodextrin-oligoethylenimine star polymer with bioreducible disulfide linker for efficient targeted gene delivery (2013) Biomacromolecules, 14, pp. 476-484; Durmaz, Y.Y., Lin, Y.L., Elsayed, M.E.H., Development of degradable, pH-sensitive star vectors for enhancing the cytoplasmic delivery of nucleic acids (2013) Adv Funct Mater, 23, pp. 3885-3895; Teuchert, C., Michel, C., Hausen, F., Park, D.Y., Beckham, H.W., Wenz, G., Cylindrical polymer brushes by atom transfer radical polymerization from cyclodextrin-peg polyrotaxanes: Synthesis and mechanical stability (2012) Macromolecules, 46, pp. 2-7; Nagahama, K., Aoki, R., Saito, T., Ouchi, T., Ohya, Y., Yui, N., Enhanced stereocomplex formation of enantiomeric polylactides grafted on a polyrotaxane platform (2013) Polym Chem, 4, pp. 1769-1773; Wu, J., Gao, C., Sliding supramolecular polymer brushes with tunable amphiphilicity: One-step parallel click synthesis and self-assembly (2010) Macromolecules, 43, pp. 7139-7146; Araki, J., Ohkawa, K., Uchida, Y., Murakami, Y., Synthesis of a "molecular rope curtain": Preparation and characterization of a sliding graft copolymer with grafted poly(ethylene glycol) side chains by the "grafting onto" strategy (2012) J Polym Sci Part A Polym Chem, 50, pp. 488-494; Zhang, Z.X., Liu, K.L., Li, J., Self-assembly and micellization of a dual thermoresponsive supramolecular pseudo-block copolymer (2011) Macromolecules, 44, pp. 1182-1193; Zhang, Z.X., Liu, X., Xu, F.J., Loh, X.J., Kang, E.T., Neoh, K.G., Li, J., Pseudo-block copolymer based on star-shaped poly(N-isopropylacrylamide) with a β-cyclodextrin core and guest-bearing PEG: Controlling thermoresponsivity through supramolecular self-assembly (2008) Macromolecules, 41, pp. 5967-5970; Schmidt, B.V.K.J., Rudolph, T., Hetzer, M., Ritter, H., Schacher, F.H., Barner-Kowollik, C., Supramolecular three-armed star polymers via cyclodextrin host/guest self-assembly (2012) Polym Chem, 3, pp. 3139-3145; Schmidt, B.V.K.J., Hetzer, M., Ritter, H., Barner-Kowollik, C., Miktoarm star polymers via cyclodextrin-driven supramolecular self-assembly (2012) Polym Chem, 3, pp. 3064-3067; Yan, J., Zhang, X., Zhang, X., Liu, K., Li, W., Wu, P., Zhang, A., Thermoresponsive supramolecular dendrimers via host-guest interactions (2012) Macromol Chem Phys, 213, pp. 2003-2010; Wei, K., Li, J., Chen, G., Jiang, M., Dual molecular recognition leading to a protein-polymer conjugate and further self-assembly (2013) ACS Macro Lett, 2, pp. 278-283; Yong, D., Luo, Y., Du, F., Huang, J., Lu, W., Dai, Z., Yu, J., Liu, S., CDDP supramolecular micelles fabricated from adamantine terminated mPEG and β-cyclodextrin based seven-armed poly (l-glutamic acid)/CDDP complexes (2013) Colloids Surf B, 105, pp. 31-36; Guo, M., Jiang, M., Pispas, S., Yu, W., Zhou, C., Supramolecular hydrogels made of end-functionalized low-molecular-weight PEG and α-cyclodextrin and their hybridization with SiO2 nanoparticles through host-guest interaction (2008) Macromolecules, 41, pp. 9744-9749; Liu, J., Chen, G., Guo, M., Jiang, M., Dual stimuli-responsive supramolecular hydrogel based on hybrid inclusion complex (HIC) (2010) Macromolecules, 43, pp. 8086-8093; Du, P., Liu, J., Chen, G., Jiang, M., Dual responsive supramolecular hydrogel with electrochemical activity (2011) Langmuir, 27, pp. 9602-9608; Wei, K., Li, J., Liu, J., Chen, G., Jiang, M., Reversible vesicles of supramolecular hybrid nanoparticles (2012) Soft Matter, 8, pp. 3300-3303; Luo, C., Zuo, F., Zheng, Z., Cheng, X., Ding, X., Peng, Y., Tunable smart surface of gold nanoparticles achieved by light-controlled molecular recognition effection (2008) Macromolecular Rapid Communications, 29 (2), pp. 149-154. , DOI 10.1002/marc.200700555; Maatz, G., MacIollek, A., Ritter, H., Cyclodextrin-induced host-guest effects of classically prepared poly(NIPAM) bearing azo-dye end groups (2012) Beilstein J Org Chem, 8, pp. 1929-1935; Li, J., Cyclodextrin inclusion polymers forming hydrogels (2009) Inclusion Polymers, pp. 175-203. , G. Wenz, Springer Berlin/Heidelberg; Li, J., Loh, X.J., Cyclodextrin-based supramolecular architectures: Syntheses, structures, and applications for drug and gene delivery (2008) Adv Drug Delivery Rev, 60, pp. 1000-1017; Van De Manakker, F., Vermonden, T., Van Nostrum, C.F., Hennink, W.E., Cyclodextrin-based polymeric materials: Synthesis, properties, and pharmaceutical/biomedical applications (2009) Biomacromolecules, 10, pp. 3157-3175; Li, J., Self-assembled supramolecular hydrogels based on polymer-cyclodextrin inclusion complexes for drug delivery (2010) NPG Asia Mater, 2, pp. 112-118; He, L., Huang, J., Chen, Y., Xu, X., Liu, L., Inclusion interaction of highly densely PEO grafted polymer brush and α-cyclodextrin (2005) Macromolecules, 38 (9), pp. 3845-3851. , DOI 10.1021/ma0475333; Ren, L., He, L., Sun, T., Dong, X., Chen, Y., Huang, J., Wang, C., Dual-responsive supramolecular hydrogels from water-soluble PEG-grafted copolymers and cyclodextrin (2009) Macromol Biosci, 9, pp. 902-910; Sui, K., Shan, X., Gao, S., Xia, Y., Zheng, Q., Xie, D., Dual-responsive supramolecular inclusion complexes of block copolymer poly(ethylene glycol)-block-poly[(2-dimethylamino)ethyl methacrylate] with α-cyclodextrin (2010) J Polym Sci Part A Polym Chem, 48, pp. 2143-2153; Li, Z., Yin, H., Zhang, Z., Liu, K.L., Li, J., Supramolecular Anchoring of DNA Polyplexes in cyclodextrin-based polypseudorotaxane hydrogels for sustained gene delivery (2012) Biomacromolecules, 13, pp. 3162-3172; Wu, Y., Ni, P., Zhang, M., Zhu, X., Fabrication of microgels via supramolecular assembly of cyclodextrin-containing star polycations and oppositely charged linear polyanions (2010) Soft Matter, 6, pp. 3751-3758; Chuo, T.W., Wei, T.C., Liu, Y.L., Electrically driven self-healing polymers based on reversible guest-host complexation of β-cyclodextrin and ferrocene (2013) J Polym Sci Part A Polym Chem, 51, pp. 3395-3403; Gyanwali, G., Hodge, M., White, J.L., Cyclodextrin functionalization: Simple routes to tailored solubilities and nanoscopic polymer networks (2012) J Polym Sci Part A Polym Chem, 50, pp. 3269-3276; Zou, J., Guan, B., Liao, X., Jiang, M., Tao, F., Dual reversible self-assembly of PNIPAM-based amphiphiles formed by inclusion complexation (2009) Macromolecules, 42, pp. 7465-7473; Guo, M., Jiang, M., Zhang, G., Surface modification of polymeric vesicles via host-guest inclusion complexation (2008) Langmuir, 24, pp. 10583-10586; Inoue, Y., Kuad, P., Okumura, Y., Takashima, Y., Yamaguchi, H., Harada, A., Thermal and photochemical switching of conformation of poly(ethylene glycol)-substituted cyclodextrin with an azobenzene group at the chain end (2007) Journal of the American Chemical Society, 129 (20), pp. 6396-6397. , DOI 10.1021/ja071717q; Felici, M., Marzá-Pérez, M., Hatzakis, N.S., Nolte, R.J.M., Feiters, M.C., β-cyclodextrin-appended giant amphiphile: Aggregation to vesicle polymersomes and immobilisation of enzymes (2008) Chem Eur J, 14, pp. 9914-9920
Keywords: Cyclodextrin, Macromolecular architecture, Reversible-deactivation radical polymerization, Supramolecular chemistry, Branched Polymer, Building blockes, Host/guest complex, Hydrophobic guests, Macromolecular engineering, Polymer Chemistry, Supramolecular inclusion complexes, Cyclodextrins, Design, Polymers, Macromolecules
DOI: 10.1016/j.progpolymsci.2013.09.006
ISSN: 00796700
Divisions: Current > Schools > School of Chemistry, Physics & Mechanical Engineering
Current > Institutes > Institute for Future Environments
Current > QUT Faculties and Divisions > Science & Engineering Faculty
Deposited On: 22 Sep 2016 04:50
Last Modified: 28 Sep 2016 03:53

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page