Redox-switchable supramolecular graft polymer formation via ferrocene-cyclodextrin assembly

Szillat, F., Schmidt, B. V. K. J., Hubert, A., Barner-Kowollik, C., & Ritter, H. (2014) Redox-switchable supramolecular graft polymer formation via ferrocene-cyclodextrin assembly. Macromolecular Rapid Communications, 35(14).

View at publisher


The redox switchable formation of very well-defined supramolecular graft polymers in aqueous solution driven by host-guest interactions between ferrocene (Fc) and cyclodextrin (CD) is presented. The Fc-containing acrylic backbone copolymer (PDMA-stat-Fc) is prepared via reversible addition-fragmentation chain transfer (RAFT) copolymerization of N,N-dimethylacrylamide (DMA) and the novel monomer N-(ferrocenoylmethyl)acrylamide (NFMA). Via the RAFT process, copolymers containing variable Fc ratios (5-10 mol%) are prepared, affording polymers of molecular masses of close to 11 000 g mol-1 and molar mass dispersities (D strok sign) of 1.2. The β-cyclodextrin (β-CD) containing building block is synthesized via RAFT-polymerization, too, in order to afford a polymer with well-defined molecular mass and low dispersity (M̄n = 10 300 g mol-1, D strok sign = 1.1), employing a propargyl-functionalized chain transfer agent for the polymerization of N,N-diethylacrylamide (DEA). The polymerization product is subsequently terminated with β-CD via the regiospecific copper (I)-catalyzed 1,3-cycloaddition (PDEA-βCD). Host-guest interactions between Fc and CD lead to the formation of supramolecular graft-polymers, verified via nuclear Overhauser enhancement spectroscopy (NOESY). Importantly, their redox-responsive character is clearly confirmed via cyclic voltammetry (CV). The self-assembly of the statistical Fc-containing lateral polymer chain in aqueous solution leads to mono- and multi-core micelle-aggregates evidenced via TEM. Only diffused cloud-like, non-spherical nanostructures are observed after addition of PDEA-βCD (TEM). The combination of a CD-terminated host-polymer and a ferrocene (Fc)-containing lateral guest copolymer in aqueous solution leads to the formation of supramolecular brush polymers with distinct redox-switchable behavior. The amphiphilic Fc-containing copolymers feature the possibility to form micelle-like aggregates whereas cloud-like nanostructures are formed upon the addition of CD-functionalized guest polymer. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Impact and interest:

20 citations in Scopus
Search Google Scholar™
18 citations in Web of Science®

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

ID Code: 99410
Item Type: Journal Article
Refereed: Yes
Additional Information: Cited By :13
Export Date: 5 September 2016
Correspondence Address: Barner-Kowollik, C.; Preparative Macromolecular Chemistry, Institut für Technische Chemie und Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstraße 18, 76128 Karlsruhe, Germany; email:
Chemicals/CAS: acrylamide, 79-06-1; cyclodextrin, 12619-70-4; ferrocene, 102-54-5; ferrous ion, 15438-31-0; Acrylamide; Cyclodextrins; ferrocene; Ferrous Compounds; Free Radicals; Polymers
References: Chiefari, J., Chong, Y., Ercole, F., Krstina, J., Jeffery, J., Le, T.P., Mayadunne, R.T., Moad, G., (1998) Macromolecules, 31, p. 5559; Moad, G., Rizzardo, E., Thang, S.H., (2012) Aust. J. Chem., 65, p. 985; Moad, G., Chiefari, J., Chong, Y.K., Krstina, J., Mayadunne, R.T.A., Postma, A., Rizzardo, E., Thang, S.H., (2000) Polym. Int., 49, p. 993; Hetzer, M., Fleischmann, C., Schmidt, B.V.K.J., Barner-Kowollik, C., Ritter, H., (2013) Polymer, 54, p. 5141; Gregory, A., Stenzel, M.H., (2012) Prog. Polym. Sci., 37, p. 38; Hawker, C.J., Bosman, A.W., Harth, E., (2001) Chem. Rev., 101, p. 3661; Schroot, R., Friebe, C., Altuntas, E., Crotty, S., Jäger, M., Schubert, U.S., (2013) Macromolecules, 46, p. 2039; Braunecker, W.A., Matyjaszewski, K., (2007) Prog. Polym. Sci., 32, p. 93; Wang, J.-S., Matyjaszewski, K., (1995) J. Am. Chem. Soc., 117, p. 5614; Gao, H., Ohno, S., Matyjaszewski, K., (2006) J. Am. Chem. Soc., 128, p. 15111; Grayson, S.M., Godbey, W.T., (2008) J. Drug Targeting, 16, p. 329; Soler-Illia, G.J.A.A., Azzaroni, O., (2011) Chem. Soc. Rev., 40, p. 1107; Tian, H., Tang, Z., Zhuang, X., Chen, X., Jing, X., (2012) Prog. Polym. Sci., 37, p. 237; Neugebauer, D., Zhang, Y., Pakula, T., Sheiko, S.S., Matyjaszewski, K., (2003) Macromolecules, 36, p. 6746; Hedrick, J.L., Magbitang, T., Connor, E.F., Glauser, T., Volksen, W., Hawker, C.J., Lee, V.Y., Miller, R.D., (2002) Chem. Eur. J., 8, p. 3308; Wilson, A.J., (2007) Soft Matter, 3, p. 409; Bertrand, A., Lortie, F., Bernard, J., (2012) Macromol. Rapid Commun., 33, p. 2062; Kurth, D.G., Higuchi, M., (2006) Soft Matter, 2, p. 915; Wenz, G., (1994) Angew. Chem. Int. Ed., 33, p. 803; Harada, A., Takashima, Y., Yamaguchi, H., (2009) Chem. Soc. Rev., 38, p. 875; Schmidt, B.V.K.J., Hetzer, M., Ritter, H., Barner-Kowollik, C., (2014) Prog. Polym. Sci., 39, p. 235; Moers, C., Nuhn, L., Wissel, M., Stangenberg, R., Mondeshki, M., Berger-Nicoletti, E., Thomas, A., Frey, H., (2013) Macromolecules, 46, p. 9544; Böhm, I., Isenbügel, K., Ritter, H., Branscheid, R., Kolb, U., (2011) Angew. Chem., 123, p. 8042; Bertrand, A., Stenzel, M., Fleury, E., Bernard, J., (2012) Polym. Chem., 3, p. 377; Harada, A., Takahashi, S., (1984) J. Inclusion Phenomena, 2, p. 791; Siegel, B., Breslow, R., (1975) J. Am. Chem. Soc., 97, p. 6869; Matsue, T., Evans, D.H., Osa, T., Kobayashi, N., (1985) J. Am. Chem. Soc., 107, p. 3411; Yan, Y., Zhang, J., Qiao, Y., Ganewatta, M., Tang, C., (2013) Macromolecules, 46, p. 8816; Isnin, R., Salam, C., Kaifer, A.E., (1991) J. Org. Chem., 56, p. 35; Casas-Solvas, J.M., Ortiz-Salmerõn, E., Fernández, I., García-Fuentes, L., Santoyo-González, F., Vargas-Berenguel, A., (2009) Chem. Eur. J., 15, p. 8146; Harada, A., (2001) Acc. Chem. Res., 34, p. 456; Shang, K., Wang, X., Sun, B., Cheng, Z., Ai, S., (2013) Biosens. Bioelectron., 45, p. 40; Luong, J.H., Brown, R.S., Schmidt, P.M., (1995) J. Mol. Recognit., 8, p. 132; Xue, C., Chen, Z., Luo, F.-T., Palaniappan, K., Chesney, D.J., Liu, J., Chen, J., Liu, H., (2005) Biomacromolecules, 6, p. 1810; Nakahata, M., Takashima, Y., Yamaguchi, H., Harada, A., (2011) Nat. Commun., 2, p. 511; Elbert, J., Gallei, M., Rüttiger, C., Brunsen, A., Didzoleit, H., Stühn, B., Rehahn, M., (2013) Organometallics, 32, p. 5873; Reitinger, A.A., Hutter, N.A., Donner, A., Steenackers, M., Williams, O.A., Stutzmann, M., Jordan, R., Garrido, J.A., (2013) Adv. Funct. Mater., 23, p. 2979; Mazurowski, M., Gallei, M., Li, J., Didzoleit, H., Stühn, B., Rehahn, M., (2012) Macromolecules, 45, p. 8970; Xu, L.Q., Wan, D., Gong, H.F., Neoh, K.G., Kang, E.T., Fu, G.D., (2010) Langmuir, 26, p. 15376; Feng, A., Yan, Q., Zhang, H., Peng, L., Yuan, J., (2014) Chem. Commun., , DOI: 10.1039/C4CC00463A; Schmidt, B.V.K.J., Hetzer, M., Ritter, H., Barner-Kowollik, C., (2012) Polym. Chem., 3, p. 3064; Osa, T., Matsue, T., Fujihara, M., (1977) Heterocycles, 6, p. 1833; Nicholson, R.S., Shain, I., (1964) Anal. Chem., 36, p. 706; Carrazana, J., Jover, A., Meijide, F., Soto, V.H., (2005) J. Phys. Chem. B, 109, p. 9719; Discher, D.E., Eisenberg, A., (2002) Science, 297, p. 967; Antonietti, M., Förster, S., (2003) Adv. Mater., 15, p. 1323; Rupar, P.A., Chabanne, L., Winnik, M.A., Manners, I., (2012) Science, 337, p. 559; Schmidt, B.V.K.J., Elbert, J., Barner-Kowollik, C., Gallei, M., (2014) Macromol. Rapid Commun., 35, pp. 708-714; Feng, C., Lu, G., Li, Y., Huang, X., (2013) Langmuir, 29, p. 10922; Kawata, T., Hashidzume, A., Sato, T., (2007) Macromolecules, 40, p. 1174; Hashidzume, A., Kawaguchi, A., Tagawa, A., Hyoda, K., Sato, T., (2006) Macromolecules, 39, p. 1135; Xiao, Z.-P., Cai, Z.-H., Liang, H., Lu, J., (2010) J. Mater. Chem., 20, p. 8375
Keywords: cyclodextrin, ferrocene, RAFT polymerization, redox polymers, supramolecular structures, Acrylic monomers, Aggregates, Cyclic voltammetry, Cycloaddition, Cyclodextrins, Graft copolymers, Living polymerization, Micelles, Molecular mass, Nanostructures, Organometallics, Solutions, Supramolecular chemistry, Ferrocenes, Host guest interactions, Nuclear overhauser enhancement, Polymerization products, Reversible addition fragmentation chain transfer (RAFT), Supramolecular structure, Polymers, acrylamide, ferrous ion, free radical, nanomaterial, polymer, chemistry, electrochemical analysis, oxidation reduction reaction, polymerization, synthesis, Electrochemical Techniques, Ferrous Compounds, Free Radicals, Oxidation-Reduction
DOI: 10.1002/marc.201400122
ISSN: 10221336
Divisions: Current > Schools > School of Chemistry, Physics & Mechanical Engineering
Current > Institutes > Institute for Future Environments
Current > QUT Faculties and Divisions > Science & Engineering Faculty
Deposited On: 22 Sep 2016 04:50
Last Modified: 28 Sep 2016 03:20

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page