Modelling of reversible single chain polymer self-assembly: From the polymer towards the protein limit

Danilov, D., Barner-Kowollik, C., & Wenzel, W. (2015) Modelling of reversible single chain polymer self-assembly: From the polymer towards the protein limit. Chemical Communications, 51(27).

View at publisher

Abstract

The thermodynamic properties of reversible single chain polymer self-assembly are characterized by all-atom simulations. The ensemble of closed chains collapses from multiple conformations for long chains to nearly unique conformations for shorter chains, suggesting that the engineered polymers can fold into stable unique conformations at moderate temperatures. © The Royal Society of Chemistry 2015.

Impact and interest:

4 citations in Scopus
Search Google Scholar™
5 citations in Web of Science®

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

ID Code: 99423
Item Type: Journal Article
Refereed: Yes
Additional Information: Cited By :4
Export Date: 5 September 2016
CODEN: CHCOF
Correspondence Address: Wenzel, W.; Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Germany
Chemicals/CAS: Polystyrenes
References: Lyon, C.K., Prasher, A., Hanlon, A.M., Tuten, B.T., Tooley, C.A., Frank, P.G., Berda, E.B., (2015) Polym. Chem., 6, pp. 181-197; Matyjaszewski, K., Xia, J., (2001) Chem. Rev., 101, pp. 2921-2990; Ouchi, M., Terashima, T., Sawamoto, M., (2009) Chem. Rev., 109, pp. 4963-5050; Barner-Kowollik, C., Inglis, A.J., (2009) Macromol. Chem. Phys., 210, pp. 987-992; Hawker, C.J., Wooley, K.L., (2005) Science, 309, pp. 1200-1205; Altintas, O., Barner-Kowollik, C., (2012) Macromol. Rapid Commun., 33, pp. 958-971; Altintas, O., Lejeune, E., Gerstel, P., Barner-Kowollik, C., (2012) Polym. Chem., 3, pp. 640-651; Altintas, O., Rudolph, T., Barner-Kowollik, C., (2011) J. Polym. Sci., Part A: Polym. Chem., 49, pp. 2566-2576; Altintas, O., Gerstel, P., Dingenouts, N., Barner-Kowollik, C., (2010) Chem. Commun., 46, pp. 6291-6293; Altintas, O., Krolla-Sidenstein, P., Gliemann, H., Barner-Kowollik, C., (2014) Macromolecules, 47, pp. 5877-5888; Terashima, T., Mes, T., De Greef, T.F.A., Gillissen, M.A.J., Besenius, P., Palmans, A.R.A., Meijer, E.W., (2011) J. Am. Chem. Soc., 133, pp. 4742-4745; Schmidt, B.V.K.J., Fechler, N., Falkenhagen, J., Lutz, J.-F., (2011) Nat. Chem., 3, pp. 234-238; Gillissen, M.A.J., Terashima, T., Meijer, E.W., Palmans, A.R.A., Voets, I.K., (2013) Macromolecules, 46, pp. 4120-4125; Hosono, N., Gillissen, M.A.J., Li, Y., Sheiko, S.S., Palmans, A.R.A., Meijer, E.W., (2013) J. Am. Chem. Soc., 135, pp. 501-510; Roy, R.K., Lutz, J.-F., (2014) J. Am. Chem. Soc., 136, pp. 12888-12891; Shishkan, O., Zamfir, M., Gauthier, M.A., Börner, H.G., Lutz, J.-F., (2014) Chem. Commun., 50, pp. 1570-1572; Sanchez-Sanchez, A., Fulton, D.A., Pomposo, J.A., (2014) Chem. Commun., 50, pp. 1871-1874; Onuchic, J.N., Luthey-Schulten, Z., Wolynes, P.G., (1997) Annu. Rev. Phys. Chem., 48, pp. 545-600; Lindorff-Larsen, K., Piana, S., Dror, R.O., Shaw, D.E., (2011) Science, 334, pp. 517-520; Strunk, T., Wolf, M., Brieg, M., Klenin, K., Biewer, A., Tristram, F., Ernst, M., Wenzel, W., (2012) J. Comput. Chem., 33, pp. 2602-2613; Theodorou, D.N., Suter, U.W., (1985) Macromolecules, 18, pp. 1206-1214; Hsiao, P.-Y., (2006) Macromolecules, 39, pp. 7125-7137; Das, A.K., Hsiao, P.-Y., (2014) J. Phys. Chem. B, 118, pp. 6265-6276; De La Torre, J.G., Bloomfield, V.A., (1981) Q. Rev. Biophys., 14, pp. 81-139
Keywords: polymer, polystyrene derivative, Article, concentration (parameters), conformational transition, entropy, environmental temperature, high temperature, hydrodynamics, hydrogen bond, molecular dynamics, Monte Carlo method, polymer self assembly, protein folding, synthesis, thermodynamics, transition temperature, chemistry, conformation, surface property, temperature, Molecular Conformation, Molecular Dynamics Simulation, Polystyrenes, Surface Properties
DOI: 10.1039/c4cc10243f
ISSN: 13597345
Divisions: Current > Schools > School of Chemistry, Physics & Mechanical Engineering
Current > Institutes > Institute for Future Environments
Current > QUT Faculties and Divisions > Science & Engineering Faculty
Deposited On: 22 Sep 2016 04:50
Last Modified: 26 Sep 2016 02:10

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page