A Photolithographic Approach to Spatially Resolved Cross-Linked Nanolayers

Fuchise, K., Lindemann, P., Heißler, S., Gliemann, H., Trouillet, V., Welle, A., Berson, J., Walheim, S., Schimmel, T., Meier, M. A. R., & Barner-Kowollik, C. (2015) A Photolithographic Approach to Spatially Resolved Cross-Linked Nanolayers. Langmuir, 31(10).

View at publisher

Abstract

(Figure Presented). The preparation of cross-linked nanosheets with 1-2 nm thickness and predefined shape was achieved by lithographic immobilization of trimethacryloyl thioalkanoates onto the surface of Si wafers, which were functionalized with 2-(phenacylthio)acetamido groups via a photoinduced reaction. Subsequent cross-linking via free radical polymerization as well as a phototriggered Diels-Alder reaction under mild conditions on the surface led to the desired nanosheets. Electrospray ionization mass spectrometry (ESI-MS), X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS), as well as infrared reflection-absorption spectroscopy (IRRAS) confirmed the success of individual surface-modification and cross-linking reactions. The thickness and lateral size of the cross-linked structures were determined by atomic force microscopy (AFM) for samples prepared on Si wafers functionalized with a self-assembled monolayer of 1H,1H,2H,2H-perfluorodecyl groups bearing circular pores obtained via a polymer blend lithographic approach, which led to the cross-linking reactions occurring in circular nanoareas (diameter of 50-640 nm) yielding an average thickness of 1.2 nm (radical cross-linking), 1.8 nm (radical cross-linking in the presence of 2,2,2-trifluoroethyl methacrylate as a comonomer), and 1.1 nm (photochemical cross-linking) of the nanosheets. © 2015 American Chemical Society.

Impact and interest:

3 citations in Scopus
Search Google Scholar™
3 citations in Web of Science®

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

ID Code: 99429
Item Type: Journal Article
Refereed: Yes
Additional Information: Cited By :3
Export Date: 5 September 2016
CODEN: LANGD
Correspondence Address: Schimmel, T.; Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Germany
Chemicals/CAS: acetamide, 60-35-5; silicon, 7440-21-3; acetamide; Acetamides; Carboxylic Acids; Silicon
References: Okamura, Y., Kabata, K., Kinoshita, M., Saitoh, D., Takeoka, S., Free-Standing Biodegradable Poly(lactic acid) Nanosheet for Sealing Operations in Surgery (2009) Adv. Mater., 21, pp. 4388-4392; Tang, Z., Kotov, N.A., Magnov, S., Ozturk, B., Nanostructured artificial nacre (2003) Nat. Mater., 2, pp. 413-418; Mallwitz, F., Laschewsky, A., Direct Access to Stable, Freestanding Polymer Membranes by Layer-by-Layer Assembly of Polyelectrolytes (2005) Adv. Mater., 17, pp. 1296-1299; Mamedov, A., Kotov, N.A., Free-Standing Layer-by-Layer Assembled Films of Magnetite Nanoparticles (2000) Langmuir, 16, pp. 5530-5533; Nardin, C., Winterhalter, M., Meier, W., Giant Free-Standing ABA Triblock Copolymer Membranes (2000) Langmuir, 16, pp. 7708-7712; Zheng, Y., Zhou, H., Liu, D., Floudas, G., Wagner, M., Koynov, K., Mezger, M., Ikeda, T., Supramolecular Thiophene Nanosheets (2013) Angew. Chem., Int. Ed., 52, pp. 4845-4848; Nam, K.T., Shelby, S.A., Choi, P.H., Marciel, A.B., Chen, R., Tan, L., Chu, T.K., Zuckermann, R.N., Free-floating ultrathin two-dimensional crystals from sequence-specific peptoid polymers (2010) Nat. Mater., 9, pp. 454-460; Matsui, J., Mitsuishi, M., Aoki, A., Miyashita, T., Molecular Optical Gating Devices Based on Polymer Nanosheets Assemblies (2004) J. Am. Chem. Soc., 126, pp. 3708-3709; Eck, W., Küller, A., Grunze, M., Völlkel, B., Gölzhäuser, A., Freestanding Nanosheets from Crosslinked Biphenyl Self-Assembled Monolayers (2005) Adv. Mater., 17, pp. 2583-2587; Beyer, A., Godt, A., Amin, I., Nottbohm, C.T., Schmidt, C., Zhao, J., Gölzhäuser, A., Fully cross-linked and chemically patterned self-assembled monolayers (2008) Phys. Chem. Chem. Phys., 10, pp. 7233-7238; Nottbohm, C.T., Wiegmann, S., Beyer, A., Gölzhäuser, A., Holey nanosheets by patterning with UV/ozone (2010) Phys. Chem. Chem. Phys., 17, pp. 4324-4328; Amin, I., Steenackers, M., Zhang, N., Schubel, R., Beyer, A., Gölzhäuser, A., Jordan, R., Patterned Polymer Carpets (2011) Small, 7, pp. 683-687; Turchanin, A., Weber, D., Büenfeld, M., Kisielowski, C., Fistul, M., Efetov, K.B., Weimann, T., Gölzhäuser, A., Conversion of Self-Assembled Monolayers into Nanocrystalline Graphene: Structure and Electric Transport (2011) ACS Nano, 5, pp. 3896-3904; Vendamme, R., Onoue, S.Y., Nakao, A., Kunitake, T., Robust free-standing nanomembranes of organic/inorganic interpenetrating networks (2006) Nat. Mater., 5, pp. 494-501; Guo, S., Dong, S., Graphene nanosheet: Synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications (2011) Chem. Soc. Rev., 40, pp. 2644-2672; Geim, A.K., Graphene: Status and Prospects (2009) Science, 324, pp. 1530-1534; Coleman, J.N., Lotya, M., O'Neill, A., Bergin, S.D., King, P.J., Khan, U., Young, K., Nicolosi, V., Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials (2011) Science, 331, pp. 568-571; Osada, M., Sasaki, T., Two-Dimensional Dielectric Nanosheets: Novel Nanoelectronics from Nanocrystal Building Blocks (2012) Adv. Mater., 24, pp. 210-228; Wang, X., Zhi, L.J., Müllen, K., Transparent, Conductive Graphene Electrodes for Dye-Sensitized Solar Cells (2008) Nano Lett., 8, pp. 323-327; Schnietz, M., Turchanin, A., Nottbohm, C.T., Beyer, A., Solak, H.H., Hinze, P., Weimann, T., Gölzhäuser, A., Chemically Functionalized Carbon Nanosieves with 1-nm Thickness (2009) Small, 5, pp. 2651-2655; Garaj, S., Hubbard, W., Reina, A., Kong, J., Branton, D., Golovchenko, J.A., Graphene as a subnanometre trans-electrode membrane (2010) Nature, 467, pp. 190-193; Robinson, J.T., Zalalutdinov, M., Baldwin, J.W., Snow, E.S., Wei, Z.Q., Sheehan, P., Houston, B.H., Wafer-scale Reduced Graphene Oxide Films for Nanomechanical Devices (2008) Nano Lett., 8, pp. 3441-3445; Nottbohm, C.T., Beyer, A., Sologubenko, A.S., Ennen, I., Hütten, A., Rösner, H., Eck, W., Gölzhäuser, A., Novel carbon nanosheets as support for ultrahigh-resolution structural analysis of nanoparticles (2008) Ultramicroscopy, 108, pp. 885-892; Meyer, J.C., Girit, C.O., Crommie, M.F., Zettl, A., Imaging and dynamics of light atoms and molecules on graphene (2008) Nature, 454, pp. 319-322; Stankovich, S., Dikin, D.A., Dommett, G.H.B., Kohlhaas, K.M., Zimney, E.J., Stach, E.A., Piner, R.D., Ruoff, R.S., Graphene-based composite materials (2006) Nature, 442, pp. 282-286; Eda, G., Chhowalla, M., Graphene-based Composite Thin Films for Electronics (2009) Nano Lett., 9, pp. 814-818; Sakamoto, J., Van Heijst, J., Lukin, O., Schlüter, A.D., Two-Dimensional Polymers: Just a Dream of Synthetic Chemists? (2009) Angew. Chem., Int. Ed., 48, pp. 1030-1069; Colson, J.W., Dichtel, W.R., Rationally synthesized two-dimensional polymers (2013) Nat. Chem., 5, pp. 453-465; Chen, Y., Li, M., Payamyar, P., Zheng, Z., Sakamoto, J., Schlüter, A.D., Room Temperature Synthesis of a Covalent Monolayer Sheet at Air/Water Interface Using a Shape-Persistent Photoreactive Amphiphilic Monomer (2014) ACS Macro Lett., 3, pp. 153-158; Kissel, P., Erni, R., Schweizer, W.B., Rossell, M.D., King, B.T., Bauer, T., Götzinger, S., Sakamoto, J., A two-dimensional polymer prepared by organic synthesis (2012) Nat. Chem., 4, pp. 287-291; Bhola, R., Payamyar, P., Murray, D.J., Kumar, B., Teator, A.J., Schmidt, M.U., Hammer, S.M., King, B.T., A Two-Dimensional Polymer from the Anthracene Dimer and Triptycene Motifs (2013) J. Am. Chem. Soc., 135, pp. 14134-14141; Bieri, M., Treier, M., Cai, J., Aït-Mansour, K., Ruffieux, P., Gröning, O., Gröning, P., Fasel, R., Porous graphenes: Two-dimensional polymer synthesis with atomic precision (2009) Chem. Commun., pp. 6919-6921; Bieri, M., Nguyen, M.-T., Gröning, O., Cai, J., Treier, M., Aït-Mansour, K., Ruffieux, P., Fasel, R., Two-Dimensional Polymer Formation on Surfaces: Insight into the Roles of Precursor Mobility and Reactivity (2010) J. Am. Chem. Soc., 132, pp. 16669-16676; Bieri, M., Blankenburg, S., Kivala, M., Pignedoli, C.A., Ruffieux, P., Müllen, K., Fasel, R., Surface-supported 2D heterotriangulene polymers (2011) Chem. Commun., 47, pp. 10239-10241; Orski, S.V., Poloukhtine, A.A., Arumugam, S., Mao, L., Popik, V.V., Locklin, J., High Density Orthogonal Surface Immobilization via Photoactivated Copper-Free Click Chemistry (2010) J. Am. Chem. Soc., 132, pp. 11024-11026; McNitt, C.D., Popik, V.V., Photochemical generation of oxa-dibenzocyclooctyne (ODIBO) for metal-free click ligations (2012) Org. Biomol. Chem., 10, pp. 8200-8202; Song, W., Wang, Y., Qu, J., Madden, M.M., Lin, Q., A Photoinducible 1,3-Dipolar Cycloaddition Reaction for Rapid, Selective Modification of Tetrazole-Containing Proteins (2008) Angew. Chem., Int. Ed., 47, pp. 2832-2835; Wang, Y., Song, W., Hu, W.J., Lin, Q., Fast alkene functionalization in vivo by Photoclick chemistry: HOMO lifting of nitrile imine dipoles (2009) Angew. Chem., Int. Ed., 48, pp. 5330-5333; Pauloehrl, T., Delaittre, G., Bruns, M., Meißler, M., Börner, H.G., Bastmeyer, M., Barner-Kowollik, C., Bio)Molecular Surface Patterning by Phototriggered Oxime Ligation (2012) Angew. Chem., Int. Ed., 51, pp. 9181-9184; Arumugam, S., Orski, S.V., Popik, V.V., Photoreactive Polymer Brushes for High-Density Patterned Surface Derivatization Using a Diels-Alder Photoclick Reaction (2012) J. Am. Chem. Soc., 134, pp. 179-182; Arumugam, S., Popik, V.V., Attach, remove, or replace: Reversible surface functionalization using thiol-quinone methide photoclick chemistry (2012) J. Am. Chem. Soc., 134, pp. 8408-8411; Pauloehrl, T., Delaittre, G., Winkler, V., Welle, A., Bruns, M., Börner, H.G., Greiner, A.M., Barner-Kowollik, C., Adding Spatial Control to Click Chemistry: Phototriggered Diels-Alder Surface (Bio)functionalization at Ambient Temperature (2012) Angew. Chem., Int. Ed., 51, pp. 1071-1074; Glassner, M., Oehlenschlaeger, K.K., Welle, A., Bruns, M., Barner-Kowollik, C., Polymer surface patterning via Diels-Alder trapping of photo-generated thioaldehydes (2013) Chem. Commun., 49, pp. 633-635; Pauloehrl, T., Welle, A., Oehlenschlaeger, K.K., Barner-Kowollik, C., Spatially controlled surface immobilization of nucleophiles via trapping of photo-generated thioaldehydes (2013) Chem. Sci., 4, pp. 3503-3507; Wathier, M., Polidori, A., Ruiz, K., Fabiano, A.-S., Pucci, B., Stabilization of polymerized vesicular systems: An application of the dynamic molecular shape concept (2002) Chem. Phys. Lipids, 115, pp. 17-37; Liu, D., Chen, W., Sun, K., Deng, K., Zhang, W., Wang, Z., Jiang, X., Resettable, Multi-Readout Logic Gates Based on Controllably Reversible Aggregation of Gold Nanoparticles (2011) Angew. Chem., Int. Ed., 50, pp. 4103-4107; Vedejs, E., Eberlein, T.H., Wilde, R.G., Internal thioaldehyde trapping by enes and dienes (1988) J. Org. Chem., 53, pp. 2220-2226; Kunishima, M., Kawachi, C., Iwasaki, F., Terao, K., Tani, S., Synthesis and characterization of 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (1999) Tetrahedron Lett., 40, pp. 5327-5330; Quick, A.S., Rothfuss, H., Welle, A., Richter, B., Fischer, J., Wegener, M., Barner-Kowollik, C., Fabrication and Spatially Resolved Functionalization of 3D Microstructures via Multiphoton-Induced Diels-Alder Chemistry (2014) Adv. Funct. Mater., 24, pp. 3571-3580; Huang, C., Moosmann, M., Jin, J., Heiler, T., Walheim, S., Schimmel, T., Polymer blend lithography: A versatile method to fabricate nanopatterned self-assembled monolayers (2012) Beilstein J. Nanotechnol., 3, pp. 620-628; Parry, K.L., Shard, A.G., Short, R.D., White, R.G., Whittle, J.D., Wright, A., ARXPS characterisation of plasma polymerised surface chemical gradients (2006) Surf. Interface Anal., 38, pp. 1497-1504; Scofield, J.H., Hartree-Slater subshell photoionization cross-sections at 1254 and 1487 eV (1976) J. Electron Spectrosc. Relat. Phenom., 8, pp. 129-137; Tanuma, S., Powell, C.J., Penn, D.R., Calculations of electron inelastic mean free paths. V. Data for 14 organic compounds over the 50-2000 eV range (1994) Surf. Interface Anal., 21, pp. 165-176; Sherman, R., Hirt, D., Vane, R., Surface cleaning with the carbon dioxide snow jet (1994) J. Vac. Sci. Technol., A, 12, pp. 1876-1881; Wagner, P.J., Lindstrom, M.J., Intramolecular charge-transfer interactions in triplet keto sulfides (1987) J. Am. Chem. Soc., 109, pp. 3062-3067; Duchenet, V., Vallée, Y., The reaction of thiols with electron-deficient thioaldehydes. A new synthesis of unsymmetrical disulfides (1993) J. Chem. Soc., Chem. Commun., pp. 806-807; Preuss, C.M., Zieger, M., Rodriguez-Emmenegger, C., Zydziak, N., Trouillet, V., Goldmann, A.S., Barner-Kowollik, C., Fusing Catechol-Driven Surface Anchoring with Rapid Hetero Diels-Alder Ligation (2014) ACS Macro Lett., 3, pp. 1169-1173; Cossement, D., Gouttebaron, R., Cornet, V., Viville, P., Hecq, M., Lazzaroni, R., PLA-PMMA blends: A study by XPS and ToF-SIMS (2006) Appl. Surf. Chem., 252, pp. 6636-6639; Kattner, J., Hoffmann, H., (2002) Handbook of Vibrational Spectroscopy, p. 20. , Chalmers, J. M. Griffiths, P. R. John Wiley & Sons Ltd: Chichester, U.K
Keywords: Absorption spectroscopy, Atomic force microscopy, Crystal atomic structure, Electrodeposition, Electrospray ionization, Free radical polymerization, Free radicals, Mass spectrometry, Nanosheets, Organic polymers, Photochemical reactions, Photoionization, Secondary ion mass spectrometry, Self assembled monolayers, Silicon, Silicon wafers, Spectrometry, Surface treatment, X ray photoelectron spectroscopy, Crosslinked structures, Crosslinking reaction, Diels-Alder reaction, Electrospray ionization mass spectrometry, Infrared reflection absorption spectroscopy, Photochemical cross-linking, Photoinduced reaction, Time of flight secondary ion mass spectrometry, Crosslinking, acetamide, acetamide derivative, carboxylic acid, nanomaterial, chemistry, nanotechnology, photochemistry, procedures, surface property, Acetamides, Carboxylic Acids, Nanostructures, Photochemical Processes, Surface Properties
DOI: 10.1021/la505011j
ISSN: 07437463
Divisions: Current > Schools > School of Chemistry, Physics & Mechanical Engineering
Current > Institutes > Institute for Future Environments
Current > QUT Faculties and Divisions > Science & Engineering Faculty
Deposited On: 22 Sep 2016 04:50
Last Modified: 26 Sep 2016 23:36

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page