Phase Inversion Membranes from Amphiphilic Diblock Terpolymers

Hörenz, C., Pietsch, C., Goldmann, A. S., Barner-Kowollik, C., & Schacher, F. H. (2015) Phase Inversion Membranes from Amphiphilic Diblock Terpolymers. Advanced Materials Interfaces, 2(8).

View at publisher


Polymeric materials as building blocks represent the most important membrane materials as they are relatively simple to synthesize and flexible regarding manufacturing conditions. In this contribution, the synthesis of amphiphilic diblock terpolymers and their use for the preparation of integral asymmetric membranes via nonsolvent induced phase separation (NIPS) processes is presented. The diblock terpolymers consist of a hydrophobic poly(styrene-co-isoprene) block and a hydrophilic segment of poly(N,N-dimethylaminoethyl methacrylate). The materials are synthesized either via nitroxide mediated polymerization or living anionic polymerization. The NIPS process is used for the fabrication of porous diblock terpolymer membranes where the membrane morphology can be influenced by several parameters such as the applied solvent mixture, open time, or relative humidity. The resulting anisotropic membranes are characterized by scanning electron microscopy and water flux measurements. Furthermore, the UV-induced crosslinking of the isoprene part of the membrane matrix is demonstrated. Stimuli responsive asymmetric membranes from amphiphilic diblock terpolymers are prepared via phase inversion processes. The diblock terpolymers are synthesized using sequential nitroxide mediated polymerization or anionic polymerization. Different membrane morphologies can be observed by varying the process parameters. pH dependent water flux performance and good stability are demonstrated for this type of ultrafiltration membranes. © 2015 Wiley-VCH Verlag GmbH & Co. KGaA.

Impact and interest:

4 citations in Scopus
Search Google Scholar™

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

ID Code: 99433
Item Type: Journal Article
Refereed: Yes
Additional Information: Cited By :2
Export Date: 5 September 2016
Correspondence Address: Barner-Kowollik, C.; Preparative Macromolecular Chemistry, Institut für Technische Chemie und Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstr. 18, Germany
References: Baker, R.W., (2004) Membrane Technology and Applications, 2nd Ed., , John Wiley & Sons Ltd, Chichester, UK; Ulbricht, M., (2006) Polymer, 47, p. 2217; Guillen, G.R., Pan, Y., Li, M., Hoek, E.M.V., (2011) Ind. Eng. Chem. Res., 50, p. 3798; Mueller, J., Davis, R.H., (1996) J. Membr. Sci., 116, p. 47; Elimelech, M., Phillip, W.A., (2011) Science, 333, p. 712; Galaev, I.Y., Mattiasson, B., (1999) Trends Biotechnol., 17, p. 335; Abetz, V., (2015) Macromol. Rapid Commun., 36, p. 10; Discher, B.M., Won, Y.-Y., Ege, D.S., Lee, J.C.-M., Bates, F.S., Discher, D.E., Hammer, D.A., (1999) Science, 284, p. 1143; Schacher, F.H., Rupar, P.A., Manners, I., (2012) Angew. Chem. Int. Ed., 51, p. 7898; Breiner, U., Krappe, U., Abetz, V., Stadler, R., (1997) Macromol. Chem. Phys., 198, p. 1051; Zhang, L., Eisenberg, A., (1995) Science, 268, p. 1728; Bates, F.S., Fredrickson, G.H., (1990) Annu. Rev. Phys. Chem., 41, p. 525; Peinemann, K.-V., Abetz, V., Simon, P.F.W., (2007) Nat. Mater., 6, p. 992; Schacher, F.H., Rudolph, T., Wieberger, F., Ulbricht, M., Müller, A.H.E., (2009) ACS Appl. Mater. Interfaces, 1, p. 1492; Schacher, F.H., Ulbricht, M., Müller, A.H.E., (2009) Adv. Funct. Mater., 19, p. 1040; Bates, F.S., Fredrickson, G.H., (1999) Phys. Today, 52, p. 32; Discher, D.E., Eisenberg, A., (2002) Science, 297, p. 967; Blanazs, A., Armes, S.P., Ryan, A.J., (2009) Macromol. Rapid Commun., 30, p. 267; Pietsch, C., Mansfeld, U., Guerrero-Sanchez, C., Hoeppener, S., Vollrath, A., Wagner, M., Hoogenboom, R., Schubert, U.S., (2012) Macromolecules, 45, p. 9292; Langer, M., Brandt, J., Lederer, A., Goldmann, A.S., Schacher, F.H., Barner-Kowollik, C., (2014) Polym. Chem., 5, p. 5330; Schacher, F.H., Sugimori, H., Hong, S., Jinnai, H., Müller, A.H.E., (2012) Macromolecules, 45, p. 7956; Szwarc, M., (1956) Nature, 178, p. 1168; Hawker, C.J., Bosman, A.W., Harth, E., (2001) Chem. Rev., 101, p. 3661; Schmaljohann, D., (2006) Adv. Drug Delivery Rev., 58, p. 1655; Roy, D., Cambre, J.N., Sumerlin, B.S., (2010) Prog. Polym. Sci., 35, p. 278; Pietsch, C., Schubert, U.S., Hoogenboom, R., (2011) Chem. Commun., 47, p. 8750; Plamper, F.A., Schmalz, A., Müller, A.H.E., (2007) J. Am. Chem. Soc., 129; Jung, A., Rangou, S., Abetz, C., Filiz, V., Abetz, V., (2012) Macromol. Mater. Eng., 297, p. 790; Hahn, J., Filiz, V., Rangou, S., Clodt, J., Jung, A., Buhr, K., Abetz, C., Abetz, V., (2013) J. Polym. Sci., Part B: Polym. Phys., 51, p. 281; Hahn, J., Filiz, V., Rangou, S., Lademann, B., Buhr, K., Clodt, J.I., Jung, A., Abetz, V., (2014) Macromol. Mater. Eng., 299, p. 764; Nunes, S.P., Sougrat, R., Hooghan, B., Anjum, D.H., Behzad, A.R., Zhao, L., Pradeep, N., Peinemann, K.-V., (2010) Macromolecules, 43, p. 8079; Nunes, S.P., Behzad, A.R., Hooghan, B., Sougrat, R., Karunakaran, M., Pradeep, N., Vainio, U., Peinemann, K.-V., (2011) ACS Nano, 5, p. 3516; Gallei, M., Rangou, S., Filiz, V., Buhr, K., Bolmer, S., Abetz, C., Abetz, V., (2013) Macromol. Chem. Phys., 214, p. 1037; Jung, A., Filiz, V., Rangou, S., Buhr, K., Merten, P., Hahn, J., Clodt, J., Abetz, V., (2013) Macromol. Rapid Commun., 34, p. 610; Phillip, W.A., Mika Dorin, R., Werner, J., Hoek, E.M.V., Wiesner, U., Elimelech, M., (2011) Nano Lett., 11, p. 2892; Gu, Y., Dorin, R.M., Wiesner, U., (2013) Nano Lett., 13, p. 5323; Marques, D.S., Vainio, U., Chaparro, N.M., Calo, V.M., Bezahd, A.R., Pitera, J.W., Peinemann, K.-V., Nunes, S.P., (2013) Soft Matter, 9, p. 5557; Radjabian, M., Abetz, V., (2015) Adv. Mater., 27, p. 352; Yu, H., Qiu, X., Nunes, S.P., Peinemann, K.-V., (2014) Angew. Chem. Int. Ed., 53; Miele, S., Nesvadba, P., Studer, A., (2009) Macromolecules, 42, p. 2419; Charleux, B., Nicolas, J., Guerret, O., (2005) Macromolecules, 38, p. 5485; Nicolas, J., Dire, C., Mueller, L., Belleney, J., Charleux, B., Marque, S.R.A., Bertin, D., Couvreur, L., (2006) Macromolecules, 39, p. 8274; Worsfold, D.J., Bywater, S., (1964) Can. J. Chem., 42, p. 2884; Normant, H., Angelo, B., (1960) Bull. Soc. Chim. Fr., 42, p. 354; Schacher, F.H., Müllner, M., Schmalz, H., Müller, A.H.E., (2009) Macromol. Chem. Phys., 210, p. 256; Hörenz, C., Pietsch, C., Langer, M., Goldmann, A.S., Barner-Kowollik, C., Schacher, F.H., VIVITA, 15th Aachener Membrane Kolloquium, Aaachen, Germany 2014, p. 387; Decker, C., Zahouily, K., Decker, D., Nguyen, T., Viet, T., (2001) Polymer, 42, p. 7551; Plamper, F.A., Ruppel, M., Schmalz, A., Borisov, O., Ballauff, M., Müller, A.H.E., (2007) Macromolecules, 40, p. 8361
Keywords: anionic polymerization, block copolymers, membranes, nitroxide mediated polymerization, nonsolvent induced phase separation process
DOI: 10.1002/admi.201500042
ISSN: 21967350
Divisions: Current > Schools > School of Chemistry, Physics & Mechanical Engineering
Current > Institutes > Institute for Future Environments
Current > QUT Faculties and Divisions > Science & Engineering Faculty
Deposited On: 22 Sep 2016 04:50
Last Modified: 27 Sep 2016 00:04

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page