Systematic Assessment of the Photochemical Stability of Photoinitiator-Derived Macromolecular Chain Termini

Lauer, A., Fast, D. E., Kelterer, A. M., Frick, E., Neshchadin, D., Voll, D., Gescheidt, G., & Barner-Kowollik, C. (2015) Systematic Assessment of the Photochemical Stability of Photoinitiator-Derived Macromolecular Chain Termini. Macromolecules, 48(23).

View at publisher


The photostability of polymeric materials is crucial for their applicability, especially under potentially harsh environmental conditions. In the current study, the influence of methyl-substitution on the photochemical stability of photoinitiator-derived benzoyl end groups is systematically investigated by a combination of pulsed-laser polymerization and subsequent size exclusion chromatography coupled with electrospray ionization mass spectrometry (PLP-SEC-ESI-MS), chemically induced dynamic nuclear polarization-nuclear magnetic resonance spectroscopy (CIDNP-NMR), and density functional theory (DFT) calculations. Poly(methyl methacrylate)s (pMMA) were synthesized employing benzoin-type photoinitiators with systematically substituted benzoyl moieties (i.e., 2-methylbenzoin, 3-methylbenzoin, 4-methylbenzoin, 2,4-dimethylbenzoin, 2,6-dimethylbenzoin, 2,4,6-trimethylbenzoin, 2,3,5,6-tetramethylbenzoin, and 2,3,4,5,6-pentamethylbenzoin). Photoinduced cleavage of the photoinitiator-based end group (irradiation at 351 and 355 nm) occurs solely for polymeric species with benzoyl end groups carrying no or only one ortho-methyl substituent/s, whereas all of the other substitution patterns lead to stable chain termini. The theoretical calculations suggest that the different reactivity can be traced back to shifts of the n-π∗ transitions by approximately +0.25 eV. The current investigation unambiguously evidences that methylation in both ortho-positions of the benzoin-type photoinitiator critically enhances the photostability of the resulting polymer chain termini providing a clear instruction for photoinitiator design leading to polymers with stable chain termini. © 2015 American Chemical Society.

Impact and interest:

3 citations in Scopus
3 citations in Web of Science®
Search Google Scholar™

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

ID Code: 99440
Item Type: Journal Article
Refereed: Yes
Additional Information: Cited By :1
Export Date: 5 September 2016
Correspondence Address: Gescheidt, G.; Institute of Physical and Theoretical Chemistry, NAWI Graz, Graz University of Technology, Stremayrgasse 9, Austria
Funding Details: DFG, Austrian Science Fund
Funding Details: I 1614, FWF, Austrian Science Fund
References: Allen, N.S., (1996) J. Photochem. Photobiol., A, 100, p. 101; Ahn, D., Sathe, S.S., Clarkson, B.H., Scott, T.F., (2015) Dent. Mater., 31, p. 1075; Anseth, K.S., Newman, S.M., Bowman, C.N., (1995) Biopolymers II, 122, p. 177. , Peppas, N. A. Langer, R. S., Eds.; Springer: Berlin and Heidelberg, Germany; Sun, H.B., Kawata, S., (2004) Adv. Polym. Sci., 170, p. 169; Allen, N.S., (1996) Photochemistry, 27, p. 303; Voll, D., Hufendiek, A., Junkers, T., Barner-Kowollik, C., (2012) Macromol. Rapid Commun., 33, p. 47; Voll, D., Junkers, T., Barner-Kowollik, C., (2011) Macromolecules, 44, p. 2542; Frick, E., Ernst, H.A., Voll, D., Wolf, T.J.A., Unterreiner, A.-N., Barner-Kowollik, C., (2014) Polym. Chem., 5, p. 5053; Jockusch, S., Turro, N.J., (1998) J. Am. Chem. Soc., 120, p. 11773; Sabol, D., Gleeson, M.R., Liu, S., Sheridan, J.T., (2010) J. Appl. Phys., 107, p. 053113; Wolf, T.J.A., Voll, D., Barner-Kowollik, C., Unterreiner, A.-N., (2012) Macromolecules, 45, p. 2257; Jockusch, S., Landis, M.S., Freiermuth, B., Turro, N.J., (2001) Macromolecules, 34, p. 1619; Griesser, M., Neshchadin, D., Dietliker, K., Moszner, N., Liska, R., Gescheidt, G., (2009) Angew. Chem. Int. Ed., 48, p. 9359; Weber, M., Turro, N.J., Beckert, D., (2002) Phys. Chem. Chem. Phys., 4, p. 168; Colley, C.S., Grills, D.C., Besley, N.A., Jockusch, S., Matousek, P., Parker, A.W., Towrie, M., George, M.W., (2002) J. Am. Chem. Soc., 124, p. 14952; Hristova, D., Gatlik, I., Rist, G., Dietliker, K., Wolf, J.-P., Birbaum, J.-L., Savitsky, A., Gescheidt, G., (2005) Macromolecules, 38, p. 7714; Voll, D., Neshchadin, D., Hiltebrandt, K., Gescheidt, G., Barner-Kowollik, C., (2012) Macromolecules, 45, p. 5850; Aaserud, D.J., Prokai, L., Simonsick, W.J., (1999) Anal. Chem., 71, p. 4793; Gruendling, T., Guilhaus, M., Barner-Kowollik, C., (2009) Macromolecules, 42, p. 6366; Nielen, M.W.F., (1996) Rapid Commun. Mass Spectrom., 10, p. 1652; Voll, D., Junkers, T., Barner-Kowollik, C., (2012) J. Polym. Sci., Part A: Polym. Chem., 50, p. 2739; Barner-Kowollik, C., Bennet, F., Schneider-Baumann, M., Voll, D., Rölle, T., Fäcke, T., Weiser, M.-S., Junkers, T., (2010) Polym. Chem., 1, p. 470; Kockler, K.B., Haehnel, A.P., Fleischhaker, F., Schneider-Baumann, M., Misske, A.M., Barner-Kowollik, C., (2015) Macromol. Chem. Phys., 216, p. 1573; Haehnel, A.P., Schneider-Baumann, M., Arens, L., Misske, A.M., Fleischhaker, F., Barner-Kowollik, C., (2014) Macromolecules, 47, p. 3483; Goez, M., (2009) Annu. Rep. NMR Spectrosc., 66, p. 77; Yurkovskaya, A., Morozova, O., Gescheidt, G., Structures and Reactivity of Radicals Followed by Magnetic Resonance (2012) Encyclopedia of Radicals in Chemistry, Biology and Materials, , Chatgilialoglu, C. Studer, A., Eds.; John Wiley & Sons, Ltd: Chichester, U.K; Gray, A.R., Fuson, R.C., (1934) J. Am. Chem. Soc., 56, p. 739; Weinstock, H.H., Fuson, R.C., (1936) J. Am. Chem. Soc., 58, p. 1986; Fuson, R.C., Weinstock, H.H., Ullyot, G.E., (1935) J. Am. Chem. Soc., 57, p. 1803; Becke, A.D., (1993) J. Chem. Phys., 98, p. 5648; Lee, C., Yang, W., Parr, R.G., (1988) Phys. Rev. B: Condens. Matter Mater. Phys., 37, p. 785; Stephens, P.J., Devlin, F.J., Chabalowski, C.F., Frisch, M.J., (1994) J. Phys. Chem., 98, p. 11623; Vosko, S.H., Wilk, L., Nusair, M., (1980) Can. J. Phys., 58, p. 1200; Grimme, S., Antony, J., Ehrlich, S., Krieg, H., (2010) J. Chem. Phys., 132, p. 154104; Schäfer, A., Horn, H., Ahlrichs, R., (1992) J. Chem. Phys., 97, p. 2571; Schäfer, A., Huber, C., Ahlrichs, R., (1994) J. Chem. Phys., 100, p. 5829; Yanai, T., Tew, D.P., Handy, N.C., (2004) Chem. Phys. Lett., 393, p. 51; Neese, F., (2012) Wiley Interdisciplinary Reviews: Computational Molecular Science, 2, p. 73; Allouche, A.-R., (2011) J. Comput. Chem., 32, p. 174; Buback, M., Günzler, F., Russell, G.T., Vana, P., (2009) Macromolecules, 42, p. 652; Günzler, F., (2008), Ph.D. Thesis, University of GöttingenKelterer, A.-M., Uray, G., Fabian, W.M.F., (2014) J. Mol. Model., 20, p. 2217; El-Sayed, M.A., (1963) J. Chem. Phys., 38, p. 2834
Keywords: Acrylic monomers, Alkylation, Chains, Chromatography, Design for testability, Electrodeposition, Electrospray ionization, Esters, Laser theory, Magnetic resonance spectroscopy, Mass spectrometry, Nuclear magnetic resonance spectroscopy, Organic polymers, Size exclusion chromatography, Chemically induced dynamic nuclear polarization, Electrospray ionization mass spectrometry, Environmental conditions, Photochemical stability, Pulsed laser polymerization, Substitution patterns, Systematic assessment, Theoretical calculations, Density functional theory
DOI: 10.1021/acs.macromol.5b02127
ISSN: 00249297
Divisions: Current > Institutes > Institute for Future Environments
Current > QUT Faculties and Divisions > Science & Engineering Faculty
Deposited On: 22 Sep 2016 04:50
Last Modified: 28 Jun 2017 17:01

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page