Lithium-air battery cathode modification via an unconventional thermal method employing borax

Fiedler, A., Vogt, A. P., Pfaffmann, L., Trouillet, V., Breukelgen, J. T., Köppe, R., Barner-Kowollik, C., Ehrenberg, H., & Scheiba, F. (2016) Lithium-air battery cathode modification via an unconventional thermal method employing borax. RSC Advances, 6(70).

View at publisher

Abstract

A novel, unconventional thermal treatment employing borax for preparing porous carbon materials is presented. The new method was used to prepare carbon felt electrodes for use in lithium-air batteries. The etching of the carbon fiber surface was found to be highly controllable by the amount of borax. The resulting felts were characterized by cyclic voltammetry (CV), secondary electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), and X-ray photoelectron spectroscopy (XPS). The borax treatment resulted in a change of the size, shape and orientation of the Li2O2 crystals formed during discharge. © 2016 The Royal Society of Chemistry.

Impact and interest:

0 citations in Scopus
Search Google Scholar™

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

ID Code: 99460
Item Type: Journal Article
Refereed: Yes
Additional Information: Export Date: 5 September 2016
CODEN: RSCAC
Correspondence Address: Scheiba, F.; Institute for Applied Materials (IAM-ESS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Germany; email: frieder.scheiba@kit.edu
Funding Details: SCHE 1714/1-1, DFG, Kumoh National Institute of Technology
Funding Details: KIT, Kumoh National Institute of Technology
References: Lu, J., Li, L., Park, J.-B., Sun, Y.-K., Wu, F., Amine, K., (2014) Chem. Rev., 114, p. 5611; Zhang, Z., Su, L., Yang, M., Hu, M., Bao, J., Wei, J., Zhou, Z., (2014) Chem. Commun., 50, p. 776; Jian, Z., Liu, P., Li, F., He, P., Guo, X., Chen, M., Zhou, H., (2014) Angew. Chem., Int. Ed., 53, p. 442; Zhai, D., Wang, H.-H., Yang, J., Lau, K.C., Li, K., Amine, K., Curtiss, L.A., (2013) J. Am. Chem. Soc., 135, p. 15364; Li, Q., Xu, P., Gao, W., Ma, S., Zhang, G., Cao, R., Cho, J., Wu, G., (2014) Adv. Mater., 26, p. 1378; Li, F., Tang, D.-M., Jian, Z., Liu, D., Golberg, D., Yamada, A., Zhou, H., (2014) Adv. Mater., 26, p. 4659; Wu, D., Guo, Z., Yin, X., Pang, Q., Tu, B., Zhang, L., Wang, Y.-G., Li, Q., (2014) Adv. Mater., 26, p. 3258; Li, Q., Xu, P., Zhang, B., Tsai, H., Wang, J., Wang, H.-L., Wu, G., (2013) Chem. Commun., 49, p. 10838; Han, X., Hu, Y., Yang, J., Cheng, F., Chen, J., (2014) Chem. Commun., 50, p. 1497; Shui, J., Du, F., Xue, C., Li, Q., Dai, L., (2014) ACS Nano, 8, p. 3015; Sun, D., Shen, Y., Zhang, W., Yu, L., Yi, Z., Yin, W., Wang, D., Goodenough, J.B., (2014) J. Am. Chem. Soc., 136, p. 8941; Lim, H.-D., Song, H., Kim, J., Gwon, H., Bae, Y., Park, K.-Y., Hong, J., Kang, K., (2014) Angew. Chem., Int. Ed., 126, p. 4007; Wang, Z.-L., Xu, D., Xu, J.-J., Zhang, X.-B., (2014) Chem. Soc. Rev., 43, p. 7746; Narasimhan, T.S.L., Viswanathan, R., Nalini, S., (2011) J. Phys. Chem. B, 115, p. 13261; Zhang, Z.T., Sridhar, S., Cho, J.W., (2011) ISIJ Int., 51, p. 80; Binnewies, M., Glaum, R., Schmidt, M., Schmidt, P., (2011) Chemische Transportreaktionen, , de Gruyter; Opila, E.J., Jacobson, N.S., Myers, D.L., Copland, E.H., (2006) JOM, 58, p. 22; Jacobson, N., Farmer, S., Moore, A., Sayir, H., (1999) J. Am. Ceram. Soc., 82, p. 393; Waclawska, I., (1995) J. Therm. Anal., 43, p. 261; Binnewies, M., Milke, E., (2002) Thermochemical Data of Elements and Compounds, , Wiley, Weinheim; Meschi, D.J., Chupka, W.A., Berkowitz, J., (1960) J. Chem. Phys., 33, p. 530; Binnewies, M., (1996) Chemische Gleichgewichte, , Verlag Chemie, Weinheim; Köppe, R., Henke, P., Schnöckel, H., (2008) Angew. Chem., Int. Ed., 47, p. 8740; Lu, Y.C., Shao-Horn, Y., (2013) J. Phys. Chem. Lett., 4, p. 93; Mitchell, R.R., Gallant, B.M., Shao-Horn, Y., Thompson, C.V., (2013) J. Phys. Chem. Lett., 4, p. 1060
Keywords: Borate minerals, Carbon fibers, Crystal orientation, Cyclic voltammetry, Electric batteries, Electrochemical electrodes, Electrodes, Energy dispersive spectroscopy, Felt, Lithium, Lithium batteries, Porous materials, Sodium borate, X ray spectroscopy, Carbon felt electrodes, Cathode modification, Energy dispersive X ray spectroscopy, Fiber surface, Lithium-air battery, Porous carbon materials, Secondary electron microscopy, Thermal methods, X ray photoelectron spectroscopy
DOI: 10.1039/c6ra05685g
ISSN: 20462069
Divisions: Current > Schools > School of Chemistry, Physics & Mechanical Engineering
Current > Institutes > Institute for Future Environments
Current > QUT Faculties and Divisions > Science & Engineering Faculty
Deposited On: 22 Sep 2016 04:50
Last Modified: 23 Sep 2016 01:44

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page