Green chain-shattering polymers based on a self-immolative azobenzene motif

Mutlu, H. & Barner-Kowollik, C. (2016) Green chain-shattering polymers based on a self-immolative azobenzene motif. Polymer Chemistry, 7(12).

View at publisher


A chain-shattering polymer system consisting of nontoxic, renewable resource-based monomers via acyclic diene metathesis (ADMET) chemistry is introduced. Amphiphilic triblock copolymers with apparent molecular weights in the range from 10 to 23 kDa are synthesized using a monofunctional polyethylene glycol monoacrylate, which acts as a selective chain-transfer agent during the polymerization process. Most importantly, the functional polymers possess repetitive midchain azobenzene moieties imparting them with self-immolative properties. By virtue of the enzyme degradable azobenzene chain elements, the amphiphilic macromolecules can be efficiently degraded via a self-immolative reaction into small fragments. The construction of the macromolecules along with their degradation is evidenced by nuclear magnetic resonance spectroscopy, electrospray ionization mass spectrometry and size exclusion chromatography. In addition, the triggered degradation leads to a strong reduction in the UV absorptivity of the polymeric material. © 2016 The Royal Society of Chemistry.

Impact and interest:

5 citations in Scopus
5 citations in Web of Science®
Search Google Scholar™

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

ID Code: 99472
Item Type: Journal Article
Refereed: Yes
Additional Information: Cited By :1
Export Date: 5 September 2016
Correspondence Address: Barner-Kowollik, C.; Preparative Macromolecular Chemistry, Institut für Technische Chemie und Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstr. 18, Germany; email:
References: Yao, K., Tang, C., (2013) Macromolecules, 46, p. 1689; Mutlu, H., Meier, M.A.R., (2010) Eur. J. Lipid Sci. Technol., 112, p. 10; Uhrich, K.E., Cannizaro, S.M., Langer, R.S., Shakesheff, K.M., (1999) Chem. Rev., 99, p. 3181; Mitrus, M., Wojtowicz, A., Moscicki, L., (2010) Thermoplastic Starch, pp. 1-33. , Wiley-VCH Verlag GmbH & Co. KGaA; Karlsson, R.R., Albertsson, A.-C., (1998) Polym. Eng. Sci., 38, p. 1251; Shang, T., Smith, K.A., Hatton, T.A., (2003) Langmuir, 19, p. 10764; Ding, L., Xu, M., Wang, J., Liao, Y., Qiu, J., (2014) Polymer, 55, p. 1681. , For detailed mechanistic information on such enzymatic degradation; Chacko, J., Subramaniam, K., (2011) Int. J. Environ. Sci., 1, p. 1250; Golka, K., Kopps, S., Myslak, Z.W., (2004) Toxicol. Lett., 151, p. 203; Brown, J.P., McGarraugh, G.V., Parkinson, T.M., Wingard, R.E., Onderdonk, A.B., (1983) J. Med. Chem., 26, p. 1300; Saffran, M., Kumar, G.S., Savariar, C., Burnham, J.C., Williams, F., Neckers, D.C., (1986) Science, 233, p. 1081; Kopeček, J., Kopečková, P., Brondsted, H., Rathi, R., Rihova, B., Yeh, P.-Y., Ikesue, K., (1992) J. Controlled Release, 19, p. 121; Van Den Mooter, G., Samyn, C., Kinget, R., (1992) Int. J. Pharm., 87, p. 37; Gao, S.-Q., Lu, Z.-R., Petri, B., Kopečková, P., Kopeček, J., (2006) J. Controlled Release, 110, p. 323; Rao, J., Khan, A., (2013) J. Am. Chem. Soc., 135, p. 14056; Rao, J., Hottinger, C., Khan, A., (2014) J. Am. Chem. Soc., 136, p. 5872; Wong, A.D., Güngör, T.M., Gillies, E.R., (2014) ACS Macro Lett., 3, p. 1191; Rao, J., Khan, A., (2015) Polym. Chem., 6, p. 686; Stolz, A., (2001) Appl. Microbiol. Biotechnol., 56, p. 69; Stingley, R.L., Zou, W., Heinze, T.M., Chen, H., Cerniglia, C.E., (2010) J. Med. Microbiol., 59, p. 108; Martin, C.N., Kennelly, J.C., (1981) Carcinogenesis, 2, p. 307; Deller, S., Macheroux, P., Sollner, S., (2008) Cell. Mol. Life Sci., 65, p. 141. , The resulting amines are then generally excreted from the body; the less soluble amines, which may be absorbed through the intestinal lining, are processed in the liver before reaching the large intestine; Houba, P.H., Bouven, E., Erkelens, C.A., Leenders, R.G., Scheeren, J.W., Pinedo, H.M., Haisma, H.J., (1998) Br. J. Cancer, 78, p. 1600; Lee, S.H., Moroz, E., Castagner, B., Leroux, J.-C., (2014) J. Am. Chem. Soc., 136, p. 12868; Kalala, W., Kinget, R., Van Den Mooter, G., Samyn, C., (1996) Int. J. Pharm., 139, p. 187; Kimura, Y., Makita, Y., Kumagai, T., Yamane, H., Kitao, T., Sasatani, H., Kim, S.-I., (1992) Polymer, 33, p. 5294; Yamaoka, T., Makita, Y., Sasatani, H., Kim, S.-I., Kimura, Y., (2000) J. Controlled Release, 66, p. 187; Schacht, E., Gevaert, A., Kenawy, E.R., Molly, K., Verstraete, W., Adriaensens, P., Carleer, R., Gelan, J., (1996) J. Controlled Release, 39, p. 327; Sagi, A., Weinstain, R., Karton, N., Shabat, D., (2008) J. Am. Chem. Soc., 130, p. 5434; Wang, W., Alexander, C., (2008) Angew. Chem., Int. Ed., 120, p. 7921; Blencowe, C.A., Russell, A.T., Greco, F., Hayes, W., Thornthwaite, D.W., (2011) Polym. Chem., 2, p. 773; Phillips, S.T., DiLauro, A.M., (2014) ACS Macro Lett., 3, p. 298. , references therein; Peterson, G.I., Larsen, M.B., Boydston, A.J., (2012) Macromolecules, 45, p. 7317; Gnaim, S., Shabat, D., (2014) Acc. Chem. Res., 47, p. 2970; Kaitz, J.A., Lee, O.P., Moore, J.S., (2015) MRS Commun., 5, p. 191; Alouane, A., Labruère, R., Le Saux, T., Schmidt, F., Jullien, L., (2015) Angew. Chem., Int. Ed., 127, p. 7600; Roth, M.E., Green, O., Gnaim, S., Shabat, D., (2016) Chem. Rev., 116, p. 1309; Fomina, N., McFearin, C., Sermsakdi, M., Edigin, O., Almutairi, A., (2010) J. Am. Chem. Soc., 132, p. 9540; De Gracia Lux, C., Joshi-Barr, S., Nguyen, T., Mahmoud, E., Schopf, E., Fomina, N., Almutairi, A., (2012) J. Am. Chem. Soc., 134, p. 15758; De Gracia Lux, C., McFearin, C.L., Joshi-Barr, S., Sankaranarayanan, J., Fomina, N., Almutairi, A., (2012) ACS Macro Lett., 1, p. 922; Zhang, Y., Yin, Q., Yin, L., Ma, L., Tang, L., Cheng, J., (2013) Angew. Chem., Int. Ed., 125, p. 6563; Zhang, Y., Ma, L., Deng, X., Cheng, J., (2013) Polym. Chem., 4, p. 224; De Gracia Lux, C., Olejniczak, J., Fomina, N., Viger, M.L., Almutairi, A., (2013) J. Polym. Sci., Part A: Polym. Chem., 51, p. 3783; Fan, B., Trant, J.F., Wong, A.D., Gillies, E.R., (2014) J. Am. Chem. Soc., 136, p. 10116; De Gracia Lux, C., Almutairi, A., (2013) ACS Macro Lett., 2, p. 432; Olejniczak, J., Chan, M., Almutairi, A., (2015) Macromolecules, 48, p. 3166; Qiu, F.-Y., Song, C.-C., Zhang, M., Du, F.-S., Li, Z.-C., (2015) ACS Macro Lett., 4, p. 1220; Lv, A., Li, Z.-L., Du, F.-S., Li, Z.-C., (2014) Macromolecules, 47, p. 7707; Mutlu, H., De Espinosa, L.M., Meier, M.A.R., (2011) Chem. Soc. Rev., 40, p. 1404; Lehman, S.E., Jr., Wagener, K.B., (2003) Handbook of Metathesis, pp. 283-353. , Wiley-VCH, Weinheim, Germany, and references therein; Baughman, T.W., Wagener, K.B., (2005) Advances in Polymer Science, pp. 1-42. , Springer, Heidelberg, Germany; Berda, E.B., Wagener, K.B., (2012) Polymer Science: A Comprehensive Reference, pp. 195-216. , Elsevier BV, Amsterdam, Netherlands; Berda, E.B., Wagener, K.B., (2012) Synthesis of Polymers; New Structures and Methods, pp. 587-600. , Wiley-VCH, Weinhein, Germany; Atallah, P., Wagener, K.B., Schulz, M.D., (2013) Macromolecules, 46, p. 4735; Simocko, C., Atallah, P., Wagener, K.B., (2013) Curr. Org. Chem., 17, p. 2749; Sauty, N.F., Da Silva, L.C., Schulz, M.D., Few, C.S., Wagener, K.B., (2014) Appl. Petrochem. Res., 4, p. 225; Türünc, O., Meier, M.A.R., (2011) Green Chem., 13, p. 314; Fokou, P.A., Meier, M.A.R., (2009) J. Am. Chem. Soc., 131, p. 1664; Sokolsky-Papkov, M., Shikanov, A., Kumar, N., Vaisman, B., Domb, A.J., (2008) Bull. Isr. Chem. Soc., 23, p. 12; Mukherjee, P.S., Das, N., Kryschenko, Y.K., Arif, A.M., Stang, P.J., (2004) J. Am. Chem. Soc., 126, p. 2464; Rannard, S.P., Davis, N.J., (1999) Org. Lett., 1, p. 933; Lebarbé, T., More, A.S., Sane, P.S., Grau, E., Alfos, C., Cramail, H., (2014) Macromol. Rapid Commun., 35, p. 479; Terada, K., Berda, E.B., Wagener, K.B., Sanda, F., Masuda, T., (2008) Macromolecules, 41, p. 6041; Führer, F.N., Schlaad, H., (2014) Macromol. Chem. Phys., 215, p. 2268; Tüzün, A., Lligadas, G., Ronda, J.C., Galia, M., Cadiz, V., (2015) Eur. Polym. J., 67, p. 503; Schmidt, B., (2004) Eur. J. Org. Chem., p. 1865; Hong, S.H., Sanders, D.P., Lee, C.W., Grubbs, R.H., (2005) J. Am. Chem. Soc., 127, p. 17160; Fontan, J.M., (1948), Ph.D. thesis, University of MadridLi, X., Li, J., Gao, Y., Kuang, Y., Shi, J., Xu, B., (2010) J. Am. Chem. Soc., 132, p. 17707; Leriche, G., Budin, G., Brino, L., Wagner, A., (2010) Eur. J. Org. Chem., 2010, p. 4360; Yang, Y.Y., Grammel, M., Raghavan, A.S., Charron, G., Hang, H.C., (2010) Chem. Biol., 17, p. 1212; Denny, J.B., Blobel, G., (1984) Proc. Natl. Acad. Sci. U. S. A., 81, p. 5286; Bergen, J.M., Kwon, E.J., Shen, T.W., Pun, S.H., (2008) Bioconjugate Chem., 19, p. 377; Kucherak, O.A., Oncul, S., Darwich, Z., Yushchenko, D.A., Arntz, Y., Didier, P., Mely, Y., Klymchenko, A.S., (2010) J. Am. Chem. Soc., 132, p. 4907; Jones, M.W., Mantovani, G., Blindauer, C.A., Ryan, S.M., Wang, X., Brayden, D.J., Haddleton, D.M., (2012) J. Am. Chem. Soc., 134, p. 7406; Sydnes, L.K., Elmi, S., Heggen, P., Holmelid, B., Malthe-Sørensen, D., (2007) Synlett, p. 1695; Leriche, G., Budin, G., Darwich, Z., Weltin, D., Mely, Y., Klymchenko, A.S., Wagner, A., (2012) Chem. Commun., 48, p. 3224; Rafii, F., Franklin, W., Cerniglia, C.E., (1990) Appl. Environ. Microbiol., 56, p. 2146; Boulègue, C., Löweneck, M., Renner, C., Moroder, L., (2007) ChemBioChem, 8, p. 591; Chadwich, V.S., Phillips, S.F., Hoffman, A.F., (1977) Gastroenterology, 73, p. 241; Fruijtier-Polloth, C., (2005) Toxicology, 214, p. 1; Gullapalli, R.P., Mazzitelli, C.L., (2015) Int. J. Pharm., 496, p. 219; Rybak, A., Meier, M.A.R., (2008) ChemSusChem, 1, p. 542; Johansson, H.E., Johansson, M.K., Wong, A.C., Armstrong, E.S., Peterson, E.J., Grant, R.E., Roy, M.A., Cook, R.M., (2011) Appl. Environ. Microbiol., 77, p. 4223; Wu, L., He, Y., Tang, X., (2015) Bioconjugate Chem., 26, p. 1070; Chen, R., Li, L., (2001) J. Am. Soc. Mass Spectrom., 12, p. 832; Jonas, S.K., Benedetto, C., Flatman, A., Micheletti, L., Riley, C., Riley, P.A., Spargo, D., Slater, T.F., (1992) Br. J. Cancer, 66, p. 185; Willenbacher, J., Wuest, K.N.R., Mueller, J.O., Kaupp, M., Wagenknecht, H.-A., Barner-Kowollik, C., (2014) ACS Macro Lett., 3, p. 574
Keywords: Azobenzene, Chromatography, Electrospray ionization, Macromolecules, Magnetic resonance spectroscopy, Mass spectrometry, Nuclear magnetic resonance spectroscopy, Size exclusion chromatography, Acyclic diene metathesis, Amphiphilic macromolecules, Amphiphilic triblock copolymers, Azobenzene moiety, Chain transfer agents, Electrospray ionization mass spectrometry, Polymerization process, Renewable resource, Chains
DOI: 10.1039/c5py01937k
ISSN: 17599954
Divisions: Current > Institutes > Institute for Future Environments
Current > QUT Faculties and Divisions > Science & Engineering Faculty
Deposited On: 22 Sep 2016 04:50
Last Modified: 28 Jun 2017 17:02

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page