Design of broadband SERS substrates by the laser-induced aggregation of gold nanoparticles

Naumenko, D., Stolzer, L., Quick, A. S., Abt, D., Wegener, M., Barner-Kowollik, C., Zilio, S. D., Marmiroli, B., Amenitsch, H., Fruk, L., & Lazzarino, M. (2016) Design of broadband SERS substrates by the laser-induced aggregation of gold nanoparticles. Journal of Materials Chemistry C, 4(25).

View at publisher

Abstract

Surface-enhanced Raman scattering (SERS) has already demonstrated its significant potential in analytical science. Thus, current efforts are focused on the development of affordable and reproducible SERS substrates, which exhibit high enhancement factors and uniform responses. A large number of strategies were adopted to produce effective SERS substrates; however, most of them are tuned for the use of single excitation wavelength and consequently can only be applied for a limited number of analytes. Hence, SERS substrates that demonstrate broadband plasmonic properties represent a more flexible analytical tool for multi-wavelength or tunable light sources, especially for biological applications. In the current study, we demonstrate that direct laser writing (DLW), which activates a photoreactive moiety and immobilizes functionalized gold nanoparticles on chemically modified glass substrates, can be used to produce SERS substrates of various sizes and geometries. We show that by tuning the DLW parameters a broad plasmonic response is obtained, enabling the use of these substrates for multi-wavelength SERS analysis. Two Raman reporters, a small synthetic benzotriazole azo organic dye and a larger biological molecule, hemin, are tested at three fixed excitation wavelengths in the visible range (473 nm, 532 nm and 660 nm). SERS enhancement factors show a weak dependence on the wavelength used and the molecules investigated; moreover, the possibility of creating arbitrary shaped and uniform structures is demonstrated. The reported results show that DLW is an excellent technique to engineer microstructured and broadband SERS substrates. © 2016 The Royal Society of Chemistry.

Impact and interest:

0 citations in Scopus
Search Google Scholar™

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

ID Code: 99473
Item Type: Journal Article
Refereed: Yes
Additional Information: Export Date: 5 September 2016
CODEN: JMCCC
Correspondence Address: Naumenko, D.; IOM-CNR Laboratorio TASC, AREA Science ParkItaly; email: naumenko@iom.cnr.it
References: Stiles, P.L., Dieringer, J.A., Shah, N.C., Van Duyne, R.P., (2008) Annu. Rev. Anal. Chem., 1, pp. 601-626; Le Ru, E.C., Etchegoin, P.G., (2009) Principles of Surface-enhanced Raman Spectroscopy and Related Plasmonic Effects, , Elsevier, Amsterdam; Li, M., Cushing, S.K., Wu, N., (2015) Analyst, 140, pp. 386-406; Nie, S., Emory, S.R., (1997) Science, 275, pp. 1102-1106; Wang, X., Li, M., Meng, L., Lin, K., Feng, J., Huang, T., Yang, Z., Ren, B., (2014) ACS Nano, 8, pp. 528-536; Shiohara, A., Wang, Y., Liz-Marzán, L.M., (2014) J. Photochem. Photobiol., C, 21, pp. 2-25; Kneipp, K., Wang, Y., Kneipp, H., Perelman, L.T., Itzkan, I., Dasari, R.R., Feld, M.S., (1997) Phys. Rev. Lett., 78, pp. 1667-1670; Fan, M., Andrade, G.F.S., Brolo, A.G., (2011) Anal. Chim. Acta, 693, pp. 7-25; Cialla, D., März, A., Böhme, R., Theil, F., Weber, K., Schmitt, M., Popp, J., (2012) Anal. Bioanal. Chem., 403, pp. 27-54; Schlücker, S., (2014) Angew. Chem., Int. Ed., 53, pp. 4756-4795; Guerrini, L., Graham, D., (2012) Chem. Soc. Rev., 41, pp. 7085-7107; Wu, D.-Y., Li, J.-F., Ren, B., Tian, Z.-Q., (2008) Chem. Soc. Rev., 37, pp. 1025-1041; Aroca, R.F., Alvarez-Puebla, R.A., Pieczonka, N., Sanchez-Cortez, S., Garcia-Ramos, J.V., (2005) Adv. Colloid Interface Sci., 116, pp. 45-61; Kattumenu, R., Lee, C.H., Tian, L., McConney, M.E., Singamaneni, S., (2011) J. Mater. Chem., 21, pp. 15218-15223; Naumenko, D., Zannier, V., Grillo, V., Cassese, D., Priante, G., Dal Zilio, S., Rubini, S., Lazzarino, M., (2014) Nanoscale, 6, pp. 13651-13659; Marquestaut, N., Martin, A., Talaga, D., Servant, L., Ravaine, S., Reculusa, S., Bassani, D.M., Lagugné-Labarthet, F., (2008) Langmuir, 24, pp. 11313-11321; Huebner, U., Boucher, R., Schneidewind, H., Cialla, D., Popp, J., (2008) Microelectron. Eng., 85, pp. 1792-1794; Willets, K.A., Van Duyne, R.P., (2007) Annu. Rev. Phys. Chem., 58, pp. 267-297; Mahajan, S., Abdelsalam, M., Suguwara, Y., Cintra, S., Russell, A., Baumberg, J., Bartlett, P., (2007) Phys. Chem. Chem. Phys., 9, pp. 104-109; Jeon, T.Y., Park, S.-G., Lee, S.Y., Jeon, H.C., Yang, S.-M., (2013) ACS Appl. Mater. Interfaces, 5, pp. 243-248; Yang, D.-P., Chen, S., Huang, P., Wang, X., Jiang, W., Pandoli, O., Cui, D., (2010) Green Chem., 12, pp. 2038-2042; Sanles-Sobrido, M., Exner, W., Rodrífguez-Lorenzo, L., Rodríguez-González, B., Correa-Duarte, M.A., Álvarez-Puebla, R.A., Liz-Marzan, L.M., (2009) J. Am. Chem. Soc., 131, pp. 2699-2705; Xu, B.-B., Ma, Z.-C., Wang, L., Zhang, R., Niu, L.-G., Yang, Z., Zhang, Y.-L., Sun, H.-B., (2011) Lab Chip, 11, pp. 3347-3351; Tseng, M.L., Huang, Y.-W., Hsiao, M.-K., Huang, H.W., Chen, H.M., Chen, Y.L., Chu, C.H., Tsai, D.P., (2012) ACS Nano, 6, pp. 5190-5197; Izquierdo-Lorenzo, I., Jradi, S., Adam, P.-M., (2014) RSC Adv., 4, pp. 4128-4133; Wang, Y., Yan, B., Chen, L., (2013) Chem. Rev., 113, pp. 1391-1428; Stolzer, L., Quick, A.S., Abt, D., Welle, A., Naumenko, D., Lazzarino, M., Wegener, M., Fruk, L., (2015) Chem. Commun., 51, pp. 3363-3366; Quick, A.S., Rothfuss, H., Welle, A., Richter, B., Fischer, J., Wegener, M., Barner-Kowollik, C., (2014) Adv. Funct. Mater., 24, pp. 3571-3580; Graham, D., Brown, R., Smith, W.E., (2001) Chem. Commun., pp. 1002-1003; McAnally, G., McLaughlin, C., Brown, R., Robson, D.C., Faulds, K., Tackley, D.R., Smith, W.E., Graham, D., (2002) Analyst, 127, pp. 838-841; Amenitsch, H., Bernstorff, S., Kriechbaum, M., Lombardo, D., Mio, H., Rappolt, M., Laggner, P., (1997) J. Appl. Crystallogr., 30, pp. 872-876; Amenitsch, H., Rappolt, M., Kriechbaum, M., Mio, H., Laggner, P., Bernstorff, S., (1998) J. Synchrotron Radiat., 5, pp. 506-508; Ghosh, S.K., Pal, T., (2007) Chem. Rev., 107, pp. 4797-4862; Halas, N.J., Lal, S., Chang, W.-S., Link, S., Nordlander, P., (2011) Chem. Rev., 111, pp. 3913-3961; Raula, J., Shan, J., Nuopponen, M., Niskanen, A., Jiang, H., Kauppinen, E.I., Tenhu, H., (2003) Langmuir, 19, pp. 3499-3504; Piantanida, L., Naumenko, D., Lazzarino, M., (2014) RSC Adv., 4, pp. 15281-15287; Link, S., Mohamed, M.B., El-Sayed, M.A., (1999) J. Phys. Chem. B, 103, pp. 3073-3077; Blanchet, C.E., Svergun, D.I., (2013) Annu. Rev. Phys. Chem., 64, pp. 37-54; Hammouda, B., (2010) J. Appl. Crystallogr., 43, pp. 716-719; Enright, A., Fruk, L., Grondin, A., McHugh, C.J., Smith, W.E., Graham, D., (2004) Analyst, 129, pp. 975-978; Smith, E., Dent, G., (2005) Modern Raman Spectroscopy-A Practical Approach, , Wiley, 1st edn; Zhao, J., Dieringer, J.A., Zhang, X., Schatz, G.C., Van Duyne, R.P., (2008) J. Phys. Chem. C, 112, pp. 19302-19310; McHugh, C.J., Docherty, F.T., Graham, D., Smith, W.E., (2004) Analyst, 129, pp. 69-72; Cao, J., Sun, T., Grattan, K.T.V., (2014) Sens. Actuators, B, 195, pp. 332-351; Boffi, A., Das, T.K., Della Longa, S., Spagnuolo, C., Rousseau, D.L., (1999) Biophys. J., 77, pp. 1143-1149; McMahon, J.J., Baer, S., Melendres, C.A., (1986) J. Phys. Chem., 90, pp. 1572-1577; Rodriguez-Lorenzo, L., Fabris, L., Alvarez-Puebla, R.A., (2012) Anal. Chim. Acta, 745, pp. 10-23; McFarland, A.D., Young, M.A., Dieringer, J.A., Van Duyne, R.P., (2005) J. Phys. Chem. B, 109, pp. 11279-11285
Keywords: Fiber optic sensors, Gold, Light sources, Metal nanoparticles, Molecules, Nanoparticles, Plasmons, Raman scattering, Surface scattering, Biological applications, Chemically modified, Direct laser writing, Excitation wavelength, Functionalized gold nanoparticles, Plasmonic properties, Sers enhancement factors, Surface enhanced Raman Scattering (SERS), Substrates
DOI: 10.1039/c5tc04286k
ISSN: 20507534
Divisions: Current > Schools > School of Chemistry, Physics & Mechanical Engineering
Current > Institutes > Institute for Future Environments
Current > QUT Faculties and Divisions > Science & Engineering Faculty
Deposited On: 22 Sep 2016 04:50
Last Modified: 23 Sep 2016 05:03

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page