Thermoresponsive Agarose Based Microparticles for Antibody Separation

Ooi, H. W., Ketterer, B., Trouillet, V., Franzreb, M., & Barner-Kowollik, C. (2016) Thermoresponsive Agarose Based Microparticles for Antibody Separation. Biomacromolecules, 17(1).

View at publisher


We report the development of thermoresponsive 4-mercaptoethylpyridine (MEP)-based chromatographic microsphere based resins for antibody separation that show switchable release abilities by adsorbing immunoglobulins at 40 °C and releasing the proteins at 5 °C. The thermoswitchable release properties were introduced to the porous resins by the grafting of linear poly(N-isopropylacrylamide) (PNIPAM) chains synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization, which were modified to possess MEP end functionalities. Adsorption of γ-globulins as a model antibody on the shortest PNIPAM-MEP (3 kDa) grafted microparticles display binding capacities of up to 20 g L-1 at 40 °C and a significant decrease in binding capacity to less than 2.5 g L-1 at 5 °C. By switching the temperature to 5 °C, the release of bound γ-globulins is shown to be as high as 90%. The effects of polymer chain length on the binding capacity are studied in detail and found to be critical as they influence the density of MEP functionalities on the particle surfaces. © 2015 American Chemical Society.

Impact and interest:

0 citations in Scopus
Search Google Scholar™

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

ID Code: 99474
Item Type: Journal Article
Refereed: Yes
Additional Information: Export Date: 5 September 2016 CODEN: BOMAF Correspondence Address: Franzreb, M.; Institute for Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Germany; email: Chemicals/CAS: agarose, 9012-36-6; immunoglobulin, 9007-83-4; poly(n isopropylacrylamide), 25189-55-3 References: Shukla, A.A., Hubbard, B., Tressel, T., Guhan, S., Low, D., (2007) J. Chromatogr. B: Anal. Technol. Biomed. Life Sci., 848, pp. 28-39; Christy, C., Vermant, S., (2002) Desalination, 147, pp. 1-4; Shukla, A.A., Thömmes, J., (2010) Trends Biotechnol., 28, pp. 253-261; Hober, S., Nord, K., Linhult, M., (2007) J. Chromatogr. B: Anal. Technol. Biomed. Life Sci., 848, pp. 40-47; Füglistaller, P., (1989) J. Immunol. Methods, 124, pp. 171-177; Godfrey, M.A.J., Kwasowski, P., Clift, R., Marks, V., (1993) J. Immunol. Methods, 160, pp. 97-105; Boschetti, E., (2001) J. Biochem. Biophys. Methods, 49, pp. 361-389; Burton, S.C., Harding, D.R.K., (1998) J. Chromatogr. A, 814, pp. 71-81; Boschetti, E., (2002) Trends Biotechnol., 20, pp. 333-337; Ghose, S., Hubbard, B., Cramer, S.M., (2006) J. Chromatogr. A, 1122, pp. 144-152; Hirano, A., Maruyama, T., Shiraki, K., Arakawa, T., Kameda, T., (2014) J. Chromatogr. A, 1373, pp. 141-148; Maharjan, P., Woonton, B.W., Bennett, L.E., Smithers, G.W., DeSilva, K., Hearn, M.T.W., (2008) Innov. Food Sci. Emerg. Technol., 9, pp. 232-242; Schild, H.G., (1992) Prog. Polym. Sci., 17, pp. 163-249; Maharjan, P., Hearn, M.T.W., Jackson, W.R., De Silva, K., Woonton, B.W., (2009) J. Chromatogr. A, 1216, pp. 8722-8729; Kobayashi, J., Kikuchi, A., Sakai, K., Okano, T., (2002) J. Chromatogr. A, 958, pp. 109-119; Kobayashi, J., Kikuchi, A., Sakai, K., Okano, T., (2003) Anal. Chem., 75, pp. 3244-3249; Li, Y., Schadler, L.S., Benicewicz, B.C., (2008) Handbook of RAFT Polymerization, pp. 423-453. , Barner-Kowollik, C. Wiley-VCH: Weinheim, Germany; Zhao, B., Brittain, W.J., (2000) Prog. Polym. Sci., 25, pp. 677-710; Barbey, R., Lavanant, L., Paripovic, D., Schüwer, N., Sugnaux, C., Tugulu, S., Klok, H.-A., (2009) Chem. Rev., 109, pp. 5437-5527; Matyjaszewski, K., (2012) Macromolecules, 45, pp. 4015-4039; Moad, G., Rizzardo, E., Thang, S.H., (2012) Aust. J. Chem., 65, pp. 985-1076; Goldmann, A.S., Walther, A., Nebhani, L., Joso, R., Ernst, D., Loos, K., Barner-Kowollik, C., Müller, A.H.E., (2009) Macromolecules, 42, pp. 3707-3714; Ohno, K., Ma, Y., Huang, Y., Mori, C., Yahata, Y., Tsujii, Y., Maschmeyer, T., Perrier, S., (2011) Macromolecules, 44, pp. 8944-8953; Lai, J.T., Filla, D., Shea, R., (2002) Macromolecules, 35, pp. 6754-6756; Khanal, B.P., Zubarev, E.R., (2007) Angew. Chem., Int. Ed., 46, pp. 2195-2198; Knudsen, K.L., Hansen, M.B., Henriksen, L.R., Andersen, B.K., Lihme, A., (1992) Anal. Biochem., 201, pp. 170-177; Oscarsson, S., Porath, J., (1990) J. Chromatogr. A, 499, pp. 235-247; Ren, J., Jia, L., Xu, L., Lin, X., Pi, Z., Xie, J., (2009) J. Chromatogr. B: Anal. Technol. Biomed. Life Sci., 877, pp. 1200-1204; Schwartz, W., Judd, D., Wysocki, M., Guerrier, L., Birck-Wilson, E., Boschetti, E., (2001) J. Chromatogr. A, 908, pp. 251-263; Mather, B.D., Viswanathan, K., Miller, K.M., Long, T.E., (2006) Prog. Polym. Sci., 31, pp. 487-531; Hart-Smith, G., Barner-Kowollik, C., (2009) Polymer, 50, pp. 5175-5180; Burton, S.C., Harding, D.R.K., (1997) J. Chromatogr. A, 775, pp. 39-50; Moore, J.S., Stupp, S.I., (1990) Macromolecules, 23, pp. 65-70; Oza, M.D., Meena, R., Prasad, K., Paul, P., Siddhanta, A.K., (2010) Carbohydr. Polym., 81, pp. 878-884; Müller, T.K.H., Cao, P., Ewert, S., Wohlgemuth, J., Liu, H., Willett, T.C., Theodosiou, E., Franzreb, M., (2013) J. Chromatogr. A, 1285, pp. 97-109; Tischer, T., Claus, T.K., Oehlenschlaeger, K.K., Trouillet, V., Bruns, M., Welle, A., Linkert, K., Barner-Kowollik, C., (2014) Macromol. Rapid Commun., 35, pp. 1121-1127; Kaupp, M., Vogt, A.P., Natterodt, J.C., Trouillet, V., Gruendling, T., Hofe, T., Barner, L., Barner-Kowollik, C., (2012) Polym. Chem., 3, pp. 2605-2614; Nebhani, L., Schmiedl, D., Barner, L., Barner-Kowollik, C., (2010) Adv. Funct. Mater., 20, pp. 2010-2020; Rühe, J., Knoll, W., (2002) J. Macromol. Sci., Polym. Rev., 42, pp. 91-138; Xia, Y., Burke, N.A.D., Stöver, H.D.H., (2006) Macromolecules, 39, pp. 2275-2283; Cho, E.C., Lee, J., Cho, K., (2003) Macromolecules, 36, pp. 9929-9934
Keywords: Acrylic monomers, Bins, Chain length, Chains, Free radical polymerization, Grafting (chemical), Resins, Antibody separation, Binding capacities, End-functionality, Poly(N-isopropyl acrylamide) (pNIPAM), Polymer chain length, Reversible addition-fragmentation chain transfer polymerization, Thermo-responsive, Thermo-switchable, Antibodies, 4 mercaptoethylpyridine, agarose, immunoglobulin, microsphere, nanoparticle, poly(n isopropylacrylamide), polymer, pyridine derivative, resin, unclassified drug, adsorption, analytic method, antigen binding, antigen purification, Article, binding affinity, chromatography, fragmentation reaction, hydrophobicity, Michael addition, polymerization, priority journal, protein analysis, reversible addition fragmentation chain transfer, separation technique, synthesis, temperature, thermal analysis
DOI: 10.1021/acs.biomac.5b01391
ISSN: 15257797
Divisions: Current > Schools > School of Chemistry, Physics & Mechanical Engineering
Current > Institutes > Institute for Future Environments
Current > QUT Faculties and Divisions > Science & Engineering Faculty
Deposited On: 22 Sep 2016 04:50
Last Modified: 23 Sep 2016 05:30

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page