Light-Adaptive Supramolecular Nacre-Mimetic Nanocomposites

Zhu, B., Noack, M., Merindol, R., Barner-Kowollik, C., & Walther, A. (2016) Light-Adaptive Supramolecular Nacre-Mimetic Nanocomposites. Nano Letters, 16(8).

View at publisher


Nature provides design paradigms for adaptive, self-healing, and synergistic high-performance structural materials. Nacre's brick-and-mortar architecture is renowned for combining stiffness, toughness, strength, and lightweightness. Although elaborate approaches exist to mimic its static structure and performance, and to incorporate functionalities for the engineering world, there is a profound gap in addressing adaptable mechanical properties, particularly using remote, quick, and spatiotemporal triggers. Here, we demonstrate a generic approach to control the mechanical properties of nacre-inspired nanocomposites by designing a photothermal energy cascade using colloidal graphene as light-harvesting unit and coupling it to molecularly designed, thermoreversible, supramolecular bonds in the nanoconfined soft phase of polymer/nanoclay nacre-mimetics. The light intensity leads to adaptive steady-states balancing energy uptake and dissipation. It programs the mechanical properties and switches the materials from high stiffness/strength to higher toughness within seconds under spatiotemporal control. We envisage possibilities beyond mechanical materials, for example, light-controlled (re)shaping or actuation in highly reinforced nanocomposites. © 2016 American Chemical Society.

Impact and interest:

0 citations in Scopus
Search Google Scholar™

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

ID Code: 99482
Item Type: Journal Article
Refereed: Yes
Additional Information: Export Date: 5 September 2016
Correspondence Address: Walther, A.; DWI-Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, Germany; email:
References: Wegst, U.G.K., Bai, H., Saiz, E., Tomsia, A.P., Ritchie, R.O., (2014) Nat. Mater., 14, pp. 23-36; Fratzl, P., Weinkamer, R., (2007) Prog. Mater. Sci., 52, pp. 1263-1334; Podsiadlo, P., Kaushik, A.K., Arruda, E.M., Waas, A.M., Shim, B.S., Xu, J., Nandivada, H., Kotov, N.A., (2007) Science, 318, pp. 80-83; Bonderer, L.J., Studart, A.R., Gauckler, L.J., (2008) Science, 319, pp. 1069-1073; Munch, E., Launey, M.E., Alsem, D.H., Saiz, E., Tomsia, A.P., Ritchie, R.O., (2008) Science, 322, pp. 1516-1520; Bouville, F., Maire, E., Meille, S., Van De Moortele, B., Stevenson, A.J., Deville, S., (2014) Nat. Mater., 13, pp. 508-514; Walther, A., Bjurhager, I., Malho, J.M., Pere, J., Ruokolainen, J., Berglund, L.A., Ikkala, O., (2010) Nano Lett., 10, pp. 2742-2748; Das, P., Malho, J.M., Rahimi, K., Schacher, F.H., Wang, B., Demco, D.E., Walther, A., (2015) Nat. Commun., 6, p. 5967; Zhu, B., Jasinski, N., Benitez, A., Noack, M., Park, D., Goldmann, A.S., Barner-Kowollik, C., Walther, A., (2015) Angew. Chem., Int. Ed., 54, pp. 8653-8657; Wang, J., Cheng, Q., Tang, Z., (2012) Chem. Soc. Rev., 41, pp. 1111-1129; Dreyer, A., Feld, A., Kornowski, A., Yilmaz, E.D., Noei, H., Meyer, A., Krekeler, T., Schneider, G.A., (2016) Nat. Mater., 15, pp. 522-528; Maekiniemi, R.O., Das, P., Hoenders, D., Grygiel, K., Cordella, D., Detrembleur, C., Yuan, J., Walther, A., (2015) ACS Appl. Mater. Interfaces, 7, pp. 15681-15685; Capadona, J.R., Shanmuganathan, K., Tyler, D.J., Rowan, S.J., Weder, C., (2008) Science, 319, pp. 1370-1374; Habault, D., Zhang, H., Zhao, Y., (2013) Chem. Soc. Rev., 42, pp. 7244-7256; White, T.J., Broer, D.J., (2015) Nat. Mater., 14, pp. 1087-1098; Biyani, M.V., Weder, C., Foster, E.J., (2014) Polym. Chem., 5, pp. 5501-5508; Kundu, P.K., Samanta, D., Leizrowice, R., Margulis, B., Zhao, H., Borner, M., Udayabhaskararao, T., Klajn, R., (2015) Nat. Chem., 7, pp. 646-652; Sánchez-Ferrer, A., Finkelmann, H., (2013) Soft Matter, 9, pp. 4621-4627; Ji, M., Jiang, N., Chang, J., Sun, J., (2014) Adv. Funct. Mater., 24, pp. 5412-5419; Wang, E., Desai, M.S., Lee, S.W., (2013) Nano Lett., 13, pp. 2826-2830; Koerner, H., Price, G., Pearce, N.A., Alexander, M., Vaia, R.A., (2004) Nat. Mater., 3, pp. 115-120; Ji, Y., Huang, Y.Y., Rungsawang, R., Terentjev, E.M., (2010) Adv. Mater., 22, pp. 3436-3440; Zhang, H., Han, D., Yan, Q., Fortin, D., Xia, H., Zhao, Y., (2014) J. Mater. Chem. A, 2, pp. 13373-13379; Yang, Y., Pei, Z., Li, Z., Wei, Y., Ji, Y., (2016) J. Am. Chem. Soc., 138, pp. 2118-2121; Haberl, J.M., Sánchez-Ferrer, A., Mihut, A.M., Dietsch, H., Hirt, A.M., Mezzenga, R., (2014) Adv. Funct. Mater., 24, pp. 3179-3186; Mueller, J.O., Schmidt, F.G., Blinco, J.P., Barner-Kowollik, C., (2015) Angew. Chem., Int. Ed., 54, pp. 10284-10288; Klajn, R., Wesson, P.J., Bishop, K.J.M., Grzybowski, B.A., (2009) Angew. Chem., Int. Ed., 48, pp. 7035-7039; Audorff, H., Kreger, K., Walker, R., Haarer, D., Kador, L., Schmidt, H.-W., Holographic Gratings and Data Storage in Azobenzene-Containing Block Copolymers and Molecular Glasses (2010) Complex Macromolecular Systems II, pp. 59-121. , Müller, E. A. H. Schmidt, H.-W. Springer: Berlin/Heidelberg; Heinen, L., Walther, A., (2015) Soft Matter, 11, pp. 7857-7866; Burnworth, M., Tang, L.M., Kumpfer, J.R., Duncan, A.J., Beyer, F.L., Fiore, G.L., Rowan, S.J., Weder, C., (2011) Nature, 472, pp. 334-337; Kautz, H., Sijbesma, R.P., Meijer, E.W., Van Beek, D.J.M., (2006) Macromolecules, 39, pp. 4265-4267; Yamauchi, K., Lizotte, J.R., Long, T.E., (2003) Macromolecules, 36, pp. 1083-1088; Tsukahara, Y., Namba, S., Iwasa, J., Nakano, Y., Kaeriyama, K., Takahashi, M., (2001) Macromolecules, 34, pp. 2624-2629; Tolle, F.J., Fabritius, M., Mulhaupt, R., (2012) Adv. Funct. Mater., 22, pp. 1136-1144
Keywords: adaptive materials, bioinspired materials, mechanical properties, supramolecular polymers, toughness, Gems, Nanocomposites, Polymers, Self-healing materials, Supramolecular chemistry, Bio-inspired materials, Mechanical materials, Reinforced nanocomposite, Spatiotemporal control, Static structures, Supramolecular bond, Stiffness
DOI: 10.1021/acs.nanolett.6b02127
ISSN: 15306984
Divisions: Current > Schools > School of Chemistry, Physics & Mechanical Engineering
Current > Institutes > Institute for Future Environments
Current > QUT Faculties and Divisions > Science & Engineering Faculty
Deposited On: 22 Sep 2016 04:50
Last Modified: 25 Sep 2016 21:24

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page