Dithienylbenzothiadiazole-based donor-acceptor organic semiconductors and effect of end capping groups on organic field effect transistor performance

Sonar, Prashant, Singh, Samarendra P., Lin, Ting Ting, & Dodabalapur, Ananth (2013) Dithienylbenzothiadiazole-based donor-acceptor organic semiconductors and effect of end capping groups on organic field effect transistor performance. Australian Journal of Chemistry, 66(3), pp. 370-380.


View at publisher


Donor-Acceptor-Donor (D-A-D) based conjugated molecules 4,7-bis(5-(4-butoxyphenyl)thiophen-2-yl)benzo[c][1,2,5]thiadiazole (BOP-TBT) and 4,7-bis(5-(4-trifluoromethyl)phenyl)thiophen-2-yl)benzo[c][1,2,5]thiadiazole (TFP-TBT) using thiophene-benzothiadiazole-thiophene central core with trifluoromethyl phenyl and butoxyphenyl end capping groups were designed and synthesised via Suzuki coupling. Optical, electrochemical, thermal, and organic field effect transistor (OFET) device properties of BOP-TBT and TFP-TBT were investigated. Both small molecules possess two absorption bands. Optical band gaps were calculated from the absorption cut off to be in the range of 2.06–2.25 eV. Cyclic voltammetry indicated reversible oxidation and reduction processes and the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) energy levels were calculated to be in the range of 5.15–5.40 eV and 3.25–3.62 eV, respectively. Upon testing both materials for OFET, trifluoromethylphenyl end capped material (TFP-TBT) shows n-channel behaviour whereas butoxyphenyl end capped material (BOP-TBT) shows p-channel behaviour. Density functional theory calculations correlated with shifting of HOMO-LUMO energy levels with respect to end capping groups. Vacuum processed OFET of these materials have shown highest hole carrier mobility of 0.02 cm2/Vs and electron carrier mobility of 0.004 cm2/Vs, respectively using Si/SiO2 substrate. By keeping the central D-A-D segment and just by tuning end capping groups gives both p- and n-channel organic semiconductors which can be prepared in a single step using straightforward synthesis.

Impact and interest:

2 citations in Web of Science®
Search Google Scholar™

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

4 since deposited on 10 Oct 2016
4 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 99794
Item Type: Journal Article
Refereed: Yes
DOI: 10.1071/CH12421
ISSN: 0004-9425
Divisions: Current > Schools > School of Chemistry, Physics & Mechanical Engineering
Current > QUT Faculties and Divisions > Science & Engineering Faculty
Copyright Owner: Copyright 2013 CSIRO
Deposited On: 10 Oct 2016 23:06
Last Modified: 15 Oct 2016 18:41

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page