# Browse By Person: Drovandi, Christopher

Up a level |

Group by: Item Type | Date

Number of items:

**46**.## Book Chapter

McGree, James, Drovandi, Christopher C., & Pettitt, Anthony N.
(2012)
Implementing adaptive dose finding studies using sequential Monte Carlo.
In
Alston, Clair, Mengersen, Kerrie, & Pettitt, Anthony N. (Eds.)

*Case Studies in Bayesian Statistical Modelling and Analysis.*Wiley, United Kingdom, pp. 361-373.

Drovandi, Christopher C. & Pettitt, Anthony N.
(2012)
Likelihood‐free inference for transmission rates of nosocomial pathogens.
In

*Case Studies in Bayesian Statistical Modelling and Analysis.*Wiley, United Kingdom, pp. 374-387.## Journal Article

Drovandi, Christopher C., Cusimano, Nicole, Psaltis, Steven, Lawson, Brodie A. J., Pettitt, Anthony N., Burrage, Pamela, et al.
(2016)
Sampling methods for exploring between-subject variability in cardiac electrophysiology experiments.

*Journal of the Royal Society Interface*,*13*(121), Article no. 20160214.
42

Mengersen, Kerrie, Drovandi, Christopher C., Robert, Christian P., Pyne, David B., & Gore, Christopher G.
(2016)
Bayesian estimation of small effects in exercise and sports science.

*PLoS ONE*,*11*(4), Article Number-e0147311.
11

Drovandi, Christopher C. & McCutchan, Roy A.
(2016)
Alive SMC^2: Bayesian model selection for low-count time series models with intractable likelihoods.

*Biometrics*,*72*(2), pp. 344-353.
74

Drovandi, Christopher C., Pettitt, Anthony N., & McCutchan, Roy A.
(2016)
Exact and approximate Bayesian inference for low count time series models with intractable likelihoods.

*Bayesian Analysis*,*11*(2), pp. 325-352.
465

Ryan, Elizabeth G., Drovandi, Christopher C., McGree, James M., & Pettitt, Anthony N.
(2016)
A review of modern computational algorithms for Bayesian optimal design.

*International Statistical Review*,*84*(1), pp. 128-154.

Vo, Brenda N., Drovandi, Christopher C., Pettitt, Anthony N., & Pettet, Graeme J.
(2015)
Melanoma cell colony expansion parameters revealed by approximate Bayesian computation.

*PLOS Computational Biology*,*11*(12), e1004635.
83

Vo, Brenda N., Drovandi, Christopher C., Pettitt, Anthony N., & Simpson, Matthew J.
(2015)
Quantifying uncertainty in parameter estimates for stochastic models of collective cell spreading using approximate Bayesian computation.

*Mathematical Biosciences*,*263*, pp. 133-142.
6

3

3

Drovandi, Christopher C., Pettitt, Anthony N., & Lee, Anthony
(2015)
Bayesian indirect inference using a parametric auxiliary model.

*Statistical Science*,*30*(1), pp. 72-95.
431

1

Ryan, Elizabeth G., Drovandi, Christopher C., & Pettitt, Anthony N.
(2015)
Fully Bayesian experimental design for pharmacokinetic studies.

*Entropy*,*17*(3), pp. 1063-1089.
30

1

Lee, Xing Ju, Drovandi, Christopher C., & Pettitt, Anthony N.
(2015)
Model choice problems using approximate Bayesian computation with applications to pathogen transmission data sets.

*Biometrics*,*71*(1), pp. 198-207.
15

1

2

Ryan, Caitriona M., Drovandi, Christopher C., & Pettitt, Anthony N.
(2015)
Optimal Bayesian experimental design for models with intractable likelihoods using indirect inference applied to biological process models.

*Bayesian Analysis*. (In Press)
75

Moores, Matthew T., Drovandi, Christopher C., Mengersen, Kerrie, & Robert, Christian P.
(2015)
Pre-processing for approximate Bayesian computation in image analysis.

*Statistics and Computing*,*25*(1), pp. 23-33.
14

1

1

Ryan, Elizabeth, Drovandi, Christopher C., & Pettitt, Anthony N.
(2015)
Simulation-based fully Bayesian experimental design for mixed effects models.

*Computational Statistics and Data Analysis*,*92*, pp. 26-39.
1

Ali, Hammad, Cameron, Ewan, Drovandi, Christopher C., McCaw, James M., Guy, Rebecca J., Middleton, Melanie, et al.
(2015)
A new approach to estimating trends in chlamydia incidence.

*Sexually Transmitted Infections*,*91*, pp. 513-519.
16

1

McGree, James, Drovandi, Christopher C., White, Gentry, & Pettitt, Anthony N.
(2015)
A pseudo-marginal sequential Monte Carlo algorithm for random effects models in Bayesian sequential design.

*Statistics and Computing*. (In Press)

Ryan, Elizabeth, Drovandi, Christopher C., Thompson, Helen, & Pettitt, Anthony N.
(2014)
Towards Bayesian experimental design for nonlinear models that require a large number of sampling times.

*Computational Statistics and Data Analysis*,*70*, pp. 45-60.
30

4

4

Drovandi, Christopher C., Pettitt, Anthony N., Henderson, Robert D., & McCombe, Pamela A.
(2014)
Marginal reversible jump Markov chain Monte Carlo with application to motor unit number estimation.

*Computational Statistics & Data Analysis*,*72*, pp. 128-146.
36

2

1

Drovandi, Christopher C., McGree, James, & Pettitt, Anthony N.
(2014)
A sequential Monte Carlo algorithm to incorporate model uncertainty in Bayesian sequential design.

*Journal of Computational and Graphical Statistics*,*23*(1), pp. 3-24.
215

2

2

Drovandi, Christopher C. & Pettitt, Anthony N.
(2013)
Bayesian experimental design for models with intractable likelihoods.

*Biometrics*,*69*(4), pp. 937-948.
137

10

9

Drovandi, Christopher C., McGree, James, & Pettitt, Anthony N.
(2013)
Sequential Monte Carlo for Bayesian sequentially designed experiments for discrete data.

*Computational Statistics and Data Analysis*,*57*(1).
164

10

8

McGree, James Matthew, Drovandi, Christopher C., Thompson, Helen, Eccleston, John, Duffull, Stephen, Mengersen, Kerrie, et al.
(2012)
Adaptive Bayesian compound designs for dose finding studies.

*Journal of Statistical Planning and Inference*,*142*(6), pp. 1480-1492.
167

7

6

McGree, J.M., Drovandi, C.C., & Pettitt, A.N.
(2012)
A sequential Monte Carlo approach to design for population pharmacokinetics studies.

*Journal of Pharmacokinetics and Pharmacodynamics*,*39*(5), pp. 519-526.
168

2

2

Drovandi, Christopher C. & Pettitt, Anthony N.
(2011)
Estimation of parameters for macroparasite population evolution using approximate Bayesian computation.

*Biometrics*,*67*(1), pp. 225-233.
48

50

Drovandi, Christopher C., Pettitt, Anthony N., & Faddy, Malcolm J.
(2011)
Approximate Bayesian computation using indirect inference.

*Journal of the Royal Statistical Society, Series C (Applied Statistics)*,*60*(3), pp. 317-337.
187

24

13

Drovandi, Christopher C. & Pettitt, Tony
(2011)
Likelihood-free Bayesian estimation of multivariate quantile distributions.

*Computational Statistics and Data Analysis*,*55*(9), pp. 2541-2556.
14

10

Drovandi, Christopher C. & Pettitt, Anthony N.
(2011)
Using approximate Bayesian computation to estimate transmission rates of nosocomial pathogens.

*Statistical Communications in Infectious Diseases*,*3*(1).
145

Drovandi, Christopher C. & Pettitt, Anthony N.
(2008)
Multivariate Markov Process Models for the transmission of methicillin-resistant Staphylococcus Aureus in a hospital ward.

*Biometrics*,*64*(3), pp. 851-859.
11

10

## Conference Paper

Drovandi, Christopher C., McGree, James, & Pettitt, Anthony N.
(2014)
A sequential Monte Carlo framework for adaptive Bayesian model discrimination designs using mutual information. In
Lanzarone, Ettore & Ieva, Francesca (Eds.)

*Springer Proceedings in Mathematics & Statistics : the Contribution of Young Researchers to Bayesian Statistics*, Springer, Milan, Italy, pp. 19-22.
21

Pettitt, Anthony N., Drovandi, Christopher C., & Faddy, Malcolm
(2010)
Approximate Bayesian computation using auxiliary model based estimates. In
Bowman, Adrian (Ed.)

*Proceedings of the 25th International Workshop on Statistical Modelling*, University of Glasgow, Glasgow, pp. 433-438.
45

Whiten, Bill, McDonald, Barry, & Drovandi, Christopher C.
(2010)
Taxonomic analysis of marine phytoplankton. In
Shephard, John, Stacey, Andrew, & Roberts, Anthony (Eds.)

*Proceedings of the 2010 Mathematics and Statistics in Industry Study Group, MISG-2010*, Australian Mathematical Society, RMIT University, Melbourne, VIC, M119-M146.## QUT Thesis

Drovandi, Christopher Colin
(2012)

*Bayesian algorithms with applications.*PhD thesis, Queensland University of Technology.
243

## Working Paper

Price, Leah F., Drovandi, Christopher C., Lee, Anthony, & Nott, David J.
(2016)

*Bayesian synthetic likelihood.*[Working Paper] (Unpublished)
128

Dehideniya, Mahasen Bandara, Drovandi, Christopher C., & McGree, James
(2016)

*Efficient Bayesian design for discriminating between models with intractable likelihoods in epidemiology.*[Working Paper] (Unpublished)
25

Drovandi, Christopher C. & Tran, Minh-Ngoc
(2016)

*Improving the efficiency of fully Bayesian optimal design of experiments using randomised quasi-Monte Carlo.*[Working Paper] (Unpublished)
11

Xueou, Wang, Nott, David J., Drovandi, Christopher C., Mengersen, Kerrie, & Evans, Michael
(2016)

*Using history matching for prior choice.*[Working Paper] (Unpublished)
16

Ong, Victor M-H., Nott, David J., Tran, Minh-Ngoc, Sisson, Scott A., & Drovandi, Christopher C.
(2016)

*Variational Bayes with Synthetic Likelihood.*[Working Paper] (Unpublished)
1

Vo, Brenda N., Drovandi, Christopher C., & Pettitt, Anthony N.
(2015)

*Bayesian parametric bootstrap for models with intractable likelihoods.*[Working Paper] (Unpublished)
100

8

Drovandi, Christopher C., Moores, Matthew T., & Boys, Richard J.
(2015)

*Accelerating Pseudo-Marginal MCMC using Gaussian Processes.*[Working Paper] (Unpublished)
48

Nott, David, Drovandi, Christopher C., Mengersen, Kerrie, & Evans, Michael
(2015)

*Approximation of Bayesian predictive p-values with regression ABC.*[Working Paper] (Unpublished)
84

Drovandi, Christopher C., Holmes, Christopher, McGree, James, Mengersen, Kerrie, Richardson, Sylvia, & Ryan, Elizabeth
(2015)

*A principled experimental design approach to Big Data analysis.*[Working Paper] (Unpublished)
159

Drovandi, Christopher C.
(2014)

*Pseudo-marginal algorithms with multiple CPUs.*[Working Paper] (Unpublished)
161

McGree, James, Drovandi, Christopher C., & Pettitt, Anthony N.
(2012)

*A sequential Monte Carlo approach to the sequential design for discriminating between rival continuous data models.*[Working Paper] (Unpublished)
90

## Other

Drovandi, Christopher C. & Pettitt, Anthony N.
(2012)

*Discussion of : constructing summary statistics for approximate Bayesian computation: semi-automatic approximate Bayesian computation.*Journal of the Royal Statistical Society, Series B : Statistical Methodology.
69

104

73