Acetylation of Raw Cotton for Oil Spill Cleanup Application: an FTIR and 13-C MAS NMR Spectroscopic Investigation

& (2004) Acetylation of Raw Cotton for Oil Spill Cleanup Application: an FTIR and 13-C MAS NMR Spectroscopic Investigation. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 60(10), pp. 2315-2321.

[img]
Preview
PDF (252kB)
58_acetylation.pdf.

View at publisher

Description

Fourier transform infrared (FTIR) and 13C MAS NMR spectroscopy have been used to investigate the acetylation of raw cotton samples with acetic anhydride without solvents in the presence of different amounts of 4-dimethylaminopyridine (DMAP) catalyst. This is a continuation of our previous investigation of acetylation of commercial cotton in an effort to develop hydrophobic, biodegradable, cellulosic sorbent materials for cleaning up oil spills. The FTIR data have again provided a clear evidence for successful acetylation. The NMR results further confirm the successful acetylation. The extent of acetylation was quantitatively determined using the weight percent gain (WPG) due to acetylation and by calculating the ratio R between the intensity of the acetyl C=O stretching band at 1740-1745 cm-1 and the intensity of C-O stretching vibration of the cellulose backbone at about 1020-1040 cm-1. The FTIR technique was found to be highly sensitive and reliable for the determination of the extent of acetylation. The level of acetylation of the raw cotton samples was found to be much higher than that of cotton fabrics and the previously studied commercial cotton. The variation of the R and WPG with reaction time, amount of DMAP catalyst and different samples of raw cotton is discussed

Impact and interest:

75 citations in Scopus
66 citations in Web of Science®
Search Google Scholar™

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

1,965 since deposited on 13 Apr 2005
33 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 1016
Item Type: Contribution to Journal (Journal Article)
Refereed: Yes
Measurements or Duration: 7 pages
DOI: 10.1016/j.saa.2003.12.005
ISSN: 1386-1425
Pure ID: 34189931
Divisions: Past > QUT Faculties & Divisions > Faculty of Science and Technology
Past > QUT Faculties & Divisions > Science & Engineering Faculty
Current > Research Centres > Australian Research Centre for Aerospace Automation
Copyright Owner: Consult author(s) regarding copyright matters
Copyright Statement: This work is covered by copyright. Unless the document is being made available under a Creative Commons Licence, you must assume that re-use is limited to personal use and that permission from the copyright owner must be obtained for all other uses. If the document is available under a Creative Commons License (or other specified license) then refer to the Licence for details of permitted re-use. It is a condition of access that users recognise and abide by the legal requirements associated with these rights. If you believe that this work infringes copyright please provide details by email to qut.copyright@qut.edu.au
Deposited On: 13 Apr 2005 00:00
Last Modified: 16 Jul 2024 15:50