
This may be the author’s version of a work that was submitted/accepted
for publication in the following source:

Ostovar, Alireza, Maaradji, Abderrahmane, La Rosa, Marcello, & ter Hof-
stede, Arthur
(2017)
Characterizing drift from event streams of business processes.
In Pohl, K & Dubois, E (Eds.) Advanced Information Systems Engineering:
29th International Conference, CAiSE 2017, Proceedings (Lecture Notes
in Computer Science, Volume 10253).
Springer, Switzerland, pp. 210-228.

This file was downloaded from: https://eprints.qut.edu.au/102264/

c© 2017 Springer International Publishing AG

This work is covered by copyright. Unless the document is being made available under a
Creative Commons Licence, you must assume that re-use is limited to personal use and
that permission from the copyright owner must be obtained for all other uses. If the docu-
ment is available under a Creative Commons License (or other specified license) then refer
to the Licence for details of permitted re-use. It is a condition of access that users recog-
nise and abide by the legal requirements associated with these rights. If you believe that
this work infringes copyright please provide details by email to qut.copyright@qut.edu.au

Notice: Please note that this document may not be the Version of Record
(i.e. published version) of the work. Author manuscript versions (as Sub-
mitted for peer review or as Accepted for publication after peer review) can
be identified by an absence of publisher branding and/or typeset appear-
ance. If there is any doubt, please refer to the published source.

https://doi.org/10.1007/978-3-319-59536-8_14

https://eprints.qut.edu.au/view/person/Ostovar,_Alireza.html
https://eprints.qut.edu.au/view/person/Maaradji,_Abderrahmane.html
https://eprints.qut.edu.au/view/person/La_Rosa,_Marcello.html
https://eprints.qut.edu.au/view/person/ter_Hofstede,_Arthur.html
https://eprints.qut.edu.au/view/person/ter_Hofstede,_Arthur.html
https://eprints.qut.edu.au/102264/
https://doi.org/10.1007/978-3-319-59536-8_14

Characterizing Drift from Event Streams of
Business Processes

Alireza Ostovar, Abderrahmane Maaradji, Marcello La Rosa, and
Arthur H.M. ter Hofstede

Queensland University of Technology, Australia
{alireza.ostovar, abderrahmane.maaradji, m.larosa, a.terhofstede}@qut.edu.au

Abstract. Early detection of business process drifts from event logs enables an-
alysts to identify changes that may negatively affect process performance. How-
ever, detecting a process drift without characterizing its nature is not enough to
support analysts in understanding and rectifying process performance issues. We
propose a method to characterize process drifts from event streams, in terms of
the behavioral relations that are modified by the drift. The method builds upon
a technique for online drift detection, and relies on a statistical test to select the
behavioral relations extracted from the stream that have the highest explanatory
power. The selected relations are then mapped to typical change patterns to ex-
plain the detected drifts. An extensive evaluation on synthetic and real-life logs
shows that our method is fast and accurate in characterizing process drifts, and
performs significantly better than alternative techniques.

1 Introduction

Business processes evolve over time in response to different types of change, such as
changes in regulations, competition, supply, demand, technological capabilities, as well
as seasonal effects. Some process changes are intentional and planned ahead, while
others may occur without being noticed or documented, such as changes resulting from
ad-hoc workarounds initiated by individuals in emergency situations, or changes that
are due to the replacement of human resources. Over time, these changes may affect
process performance, and more generally hinder process improvement initiatives.

In this regard, there is a need for techniques and tools that can discover and char-
acterize, as soon as possible, process drifts [13], i.e. statistically significant changes in
the behavior of business processes. Accordingly, several techniques have been proposed
to detect and localize process drifts from process execution logs (event logs) recorded
by supporting IT systems [6,2,5,14,13,17]. However, detection and localization of a
process drift does not provide, per se, enough insight to undertake a process improve-
ment initiative, unless the drift is characterized, i.e. unless one can understand what has
changed in the process behavior. To the best of our knowledge, there has not been any
attempt to provide a systematic solution for characterizing process drifts.

In this paper, we propose a fully automated online method for characterizing pro-
cess drifts from event streams. For each detected drift, we perform a statistical test to
measure the statistical association between the drift and the distributions of the α+ re-
lations of process behavior extracted from the event stream before and after the drift.
We then rank the relations based on their relative frequency change, and try to match
them with a set of predefined change templates. The best-matching templates are then
reported to the user as the changes underpinning the drift. We extensively evaluated the

2

accuracy of our method by simulating event streams from artificial and real-life logs.
The results show that the approach is fast and highly accurate in characterizing com-
mon change patterns, and performs significantly better than state-of-the-art techniques
for log delta analysis and model-to-model comparison.

The paper is structured as follows. Section 2 discusses related work. Section 3 in-
troduces the proposed method while Sections 4 and 5 present its evaluation on synthetic
and real-life logs, respectively. Section 6 concludes the paper.

2 Related Work

The literature abounds of methods for detecting process drifts [6,2,5,14,13,17]. These
methods are based on the idea of extracting features (e.g. patterns) from the process
behavior recorded in event logs or in event streams. For example, Bose et al. [5] rely on a
statistical test over feature vectors. The user is asked to specify which features to be used
for drift detection, implying that they have a-priori knowledge of the possible nature of
the drift. In our previous work we introduced two online drift detection methods based
on streams of traces [13] or streams of events [17]. The basic idea is to monitor the
distribution of a specific feature representing process behavior over two juxtaposed time
windows sliding over the trace (event) stream in order to detect a process drift. However,
as already remarked, all the above methods only focus on process drift detection, and
while some can also localize with high accuracy the drift in the log, none can actually
characterize the drift detected.

A possible approach to characterize process drifts is to compare the two process
models automatically discovered from the sublogs (or substreams) before and after the
drift point. In [3], Armas-Cervantes et al. identify behavioral differences between two
process models using canonically reduced event structures. Despite the set of retrieved
differences being complete, the accuracy of this approach for process drift characteriza-
tion highly depends on the quality of the discovered process models. In fact, techniques
for automated process discovery are not designed to create overfitting models, i.e. mod-
els that do not generalize the behavior of the log [1]. So these models may intentionally
add behavior. In addition, these models may be underfitting, i.e. they may not be able
to fully capture the process behavior recorded in the log, hence missing behavior [1],
especially if the process behavior captured in the log is highly varied. To avoid the
possible bias introduced by automated process discovery techniques, one can use log
delta analysis techniques, i.e. perform the comparison directly at the level of the log,
rather than at the level of the model extracted from the log. In this context, Van Beest
et al. [4] propose a technique to detect behavioral differences between two event logs
and explain them via natural language statements, by extracting event structures from
logs. This technique may be applied for drift characterization by using the two event
sublogs (substreams) extracted from before and after the drift point. In the evaluation
of our method, we experiment both with the technique for model-to-model comparison
in [3], in combination with state-of-the-art techniques for automated process discovery,
as well as with the technique for log-to-log comparison in [4].

Drift detection has also been studied in the field of data mining [10], where a widely
studied challenge is that of designing efficient learning algorithms that can adapt to
data that evolves over time (a.k.a. concept drift). In this context, the term drift charac-
terization is often used to refer to the identification of the drift nature, e.g. sudden or
gradual [20], as well as the identification of features that explain the drift. For instance,

3

in [18], brushed parallel histograms are used for visualizing concept drifts in multidi-
mensional problem spaces. However, the methods developed in this context deal with
simple structures (e.g. numerical or categorical variables and vectors thereof), while in
business process drift characterization we seek to characterize changes in more complex
structures, specifically behavioral relations between process tasks, such as concurrency,
conflicts and loops. Thus, methods from the field of concept drift characterization in
data mining cannot be readily transposed to business process drift characterization.

3 Drift Characterization Method

The purpose of process drift characterization is to identify the differences in the process
behavior before and after the drift point that best explain the drift. In [17], the α+

binary relations are shown to be suitable for capturing process behavior, in particular in
the context of highly variable business processes. These behavioral relations and their
frequencies are extracted from the time window containing the most recent events of the
stream. As a preprocessing operation, each time this window slides, a snapshot of the
process behavior is captured and stored as a data point. Each binary relation actually
represents a dimension of the stored data point, while the frequency of this relation is
the scalar in this dimension. Sliding the window along the event stream provides us
with a set of data points representing snapshots of the pre-drift and post-drift process
behaviors. These data points are used as input to our two-stage characterization method.

In Stage 1 we measure the statistical association of each of the α+ relations with the
drift using an information gain metric. Those relations that are significantly associated
with the drift are then ordered based on their explanatory power with respect to the
drift. In Stage 2, the resulting ordered list of relations is fed to a template matching
algorithm, where we find the best-matching templates that characterize the drift. The
identified templates are then reported to the user in natural language. An overview of
our method is shown in Fig. 1. The rest of this section describes the method in detail.

Drift
detection	

Data	points	
extraction

Relations	
retrieval	and	
ordering

Change	
templates	

identification

Preprocessing Stage	1 Stage	2

Fig. 1: Overview of our method for process drift characterization.

3.1 Preliminaries

Event logs are at the core of all process mining techniques. An event log is a set of
traces, each capturing the sequence of events originated from a given process instance.
Each event represents an occurrence of an activity. The configuration where these events
are read individually from an online source is known as event streaming. An event
stream is a potentially infinite sequence of events, where events are ordered by time and
indexed. Events of the same trace do not need to be consecutive in the event stream, i.e.
traces can be “overlapping”. Formally:

Definition 1 (Event log, Trace, Event stream). Let L be an event log over the set of labels L,
i.e. L ∈ P(L∗). Let E be the set of event occurrences and λ : E → L a labelling function. An
event trace σ ∈ L is defined in terms of an order i ∈ [0, n − 1] and a set of events Eσ ⊆ E
with |Eσ|= n such that σ = 〈λ(e0), λ(e1), . . . , λ(en−1)〉. An event stream is a partial bijective
function S : N+ → E that maps every element from the index N+ to E .

4

In this paper, we use the α+ relations, as an extension of the α relations, to capture
the behavior of a process. The α-algorithm defines three exclusive relations: conflict,
concurrency and causality. The α+-algorithm adds two more relations: length-two loop
and length-one loop. The α+ relations are formally defined as follows:

Definition 2 (α+ Relations from [15]). Let L be an event log over L. Let a,b ∈ L:

– a4Lb if and only if there is a trace σ = l1l2l3...ln and i ∈ 1, ..., n− 2 such that σ ∈ L and
li = li+2 = a and li+1 = b,

– a �L b if and only if a4Lb and b4La,
– a >L b if and only if there is a trace σ = l1l2l3...ln−1 and i ∈ 1, ..., n− 2 such that σ ∈ L

and li = a and li+1 = b,
– a→L b if and only if a >L b and (b ≯L a or a �L b),
– a#Lb if and only if a ≯L b and b ≯L a, and
– a ‖L b if and only if a >L b and b >L a, and a 6�L b.

A length-two loop relation, including a and b, is denoted with a4Lb. The frequency
of this relation in a log is the number of occurrences of the substring aba. A causality
relation from a to b is denoted with a →L b. The frequency of this relation in a log
is the number of occurrences of the substring ab. A parallel relation between a and
b is denoted with a ‖L b. The frequency of this relation in a log is the minimum of
the frequencies of the two substrings, ab and ba. A conflict relation between a and b
is denoted with a#Lb, and indicates that there is no trace with the substring ab or ba.
The frequency of this relation in a log is the sum of occurrences of a and b. The α+-
algorithm also discovers length-one loop relations (denoted as �) as a pre-processing
operation. For example, there is a length-one loop including the activity a in a log if
there is a trace with the substring aa. The frequency of this relation in a log is the
number of occurrences of the substring aa.

3.2 Preprocessing: Data Points Extraction

For drift detection, we use our technique in [17], which works in online settings with
event streams of highly-variable business processes. This technique has been shown to
be the state of the art in process drift detection, both in terms of detection accuracy
and detection delay. This technique captures process behavior by extracting α+ binary
relations in two juxtaposed windows of the same size, namely reference and detection
windows, sliding along the event stream. The most recent events are equally divided
into these two windows, where the reference window contains the less recent events,
and the detection window contains the more recent ones. The size of these windows
is adjusted using a formula based on the maximum number of distinct activity labels
within the two windows. This adaptive window sizing ensures that there are enough
events in each window for accurately capturing the process behavior.

We use the detection window as a snapshot of the most recent process behavior.
Each time this window slides with the stream on arrival of a new event, we extract α+

relations and their frequencies and store them as a multidimensional data point in a
buffer, namely characterization buffer. Each α+ relation represents a dimension of this
data point. By sliding the detection window the new data points are added to the head
of the buffer. As a drift is detected, the P–value of the statistical test drops below the
detection threshold (drift point). At this point we stop inserting any new data point into
the characterization buffer. We then remove the last w (window size at drift point) data
points from the head of the characterization buffer, as these data points may include the

5

post-drift process behavior. This results in a set of recent data points that only encode the
process behavior from the pre-drift area. We retain these data points for characterizing
the detected drift.

The P–value remains below threshold until the process behaviors within the two
reference and detection windows become statistically similar. In other words until the
process behavior, reflected in the event stream, starts to stabilize. Therefore, we call
the point where P–value returns to above the detection threshold a stabilization point.
This is where we start inserting new data points into the characterization buffer, as the
detection window only includes the behavior from the post-drift process. We continue
extracting data points from the event stream with the next n incoming events. We define
n as the characterization delay, as it indicates the delay that is needed after the stabi-
lization point to characterize the drift. Similarly, we consider only the n most recent
pre-drift data points for drift characterization. In Section 4.2, we perform an experi-
ment to determine the suitable characterization delay that leads to a hight accuracy of
retrieving and ordering the relevant binary relations. The behavioral relations extraction,
explained above, is illustrated in Fig. 2.

Stabilization
point

P
-v

al
u

e

Detection
threshold

Event stream
Characterization
delay (n)

Characterization
delay (n)

Drift
point

Pre-drift area Post-drift area

Characterization
point

w (removed
data points)

Fig. 2: From drift detection to drift characterization.

3.3 Stage 1: Relevant Binary Relations Retrieval and Ordering

The purpose of the first stage of our approach is to identify and order the α+ binary re-
lations that are statistically associated with the detected drift. In other words, we would
like to measure the explanatory power of each relation with respect to the detected
drift. We approach this issue as a classification problem with the α+ binary relations,
extracted from the event stream, as the explanatory variables, and the binary target vari-
able defined with the labels pre-drift and post-drift. One might first opt for a logistic
regression model because of its additive and interpretability properties. However, the lo-
gistic regression requires the least correlation between the independent variables (mul-
ticollinearity problem [16]). Such a requirement cannot be guaranteed, particularity in
our case where the binary relations come from the same process (model). We opted for
a less restrictive classification approach, namely decision tree, where we use K-sample
permutation test (KSPT) in order to measure the statistical association between each
individual explanatory variable (here a binary relation) and the target variable (the drift
classification variable). Similarly to the information gain, the permutation test allows

6

us to measure the mutual information between two variables. We opted for the permu-
tation test since it is more suitable for small sample sizes [9]. We perform a pairwise
permutation test to measure the significance of the statistical association of each binary
relation with the target variable (drift). This latter is encoded with the value 0 (resp. 1)
for the pre-drift (resp. post-drift) behavior. If the null hypothesis is rejected, we discard
the relation as it is not significantly associated with the drift.

As suggested in [9], the KSPT can be applied to identify the relevant features, then
an appropriate distance measure is used to order the selected features. Indeed, despite
identifying the relations that are found to be statistically associated with our binary
drift target variable, some relations may contribute more than others to the change that
occurred. We use a measure that is similar to the chi-squared statistic to measure the
contribution of each relation to the overall change. This metric measures the relative
frequency change (RFC) of each relation, and is defines as RFC = (O−E)2/max(O,E),
where O and E are the average frequencies of a relation before and after the drift point,
respectively. In addition, total relative frequency change (TRFC) is defined as the sum
of the RFCs of all relations. With relations ordered based on their RFCs in descending
order, we can filter out the relations with insignificant RFCs by retaining only the top
relations, summing up to x% of the TRFC, where x% · TRFC is defined as cumula-
tive relative frequency change (CRFC). In section 4.3, we perform an experiment to
investigate the impact of varying CRFC on the characterization accuracy.

3.4 Stage 2: Change Templates Identification

The output of the Stage 1 is a list of relations ordered based on their ex-
planatory power (RFC) with respect to the drift, where the first ordered rela-
tion and the last ordered relation have the highest and the lowest explanatory
power, respectively. In the stage 2, we aim to match the relations with the typ-
ical change patterns that may characterize the drift the best. For that we define
a set of templates based on the change patterns defined in [21]. These templates,
summarized in Table 1, describe different generic change operations commonly

Code Simple change template Cat.
sre Add/remove activity between two process fragments I
pre Add/remove activity to/from parallel branch I
cre Add/remove activity to/from conditional branch I
cp Duplicate activity I
rp Substitute activity I
sw Swap two activities I
sm Move activity to between two process fragments I
pm Move activity into/out of parallel branch I
cm Move activity into/out of conditional branch I
cf Make activities conditional/sequential R
pl Make activities parallel/sequential R
cd Synchronize two activities R
lp Make activity loopable/non-loopable O
cb Make activity skippable/non-skippable O
fr Change branching frequency O

Table 1: Change templates from [21].

occurring in business process mod-
els, such as adding/removing an ac-
tivity, making an activity loopable,
swapping two activities, or paral-
lelizing two sequential activities.
Each template is represented based
on α+ binary relations. We try to
match the process relations, obtained
from Stage 1, with the binary re-
lations of the predefined templates.
Using a matching confidence metric
we find the best matching between
templates and the process relations.
In the rest, we explain our template
matching algorithm in detail.

Example 1 As a running example, let us assume the output of the stage 1 of our method
is the ordered relation list of 〈 e→ f : −, e ‖ f : +, e→ g: +, d→ f : +, a→ b: −,
f → g:↘, d → e : ↘, b→ c: −, a→ c: +〉, where + (resp. −) indicates that the

7

relation appeared (resp. disappeared) after the drift, and ↗ (resp. ↘) indicates that
the frequency of the relation increased (resp. decreased) after the drift.

In the remainder of this paper, unless otherwise indicated, we use both “feature” and
“relation” to refer to an α+ binary relation between two activity labels. A feature set is
used to represent the α+ relations before or after the drift, and is defined as follows.

Definition 3 (Feature Set). Let L be a set of activity labels, and T := {→, ‖,#, �,4} a set of
binary α+ relations symbols, denoting causality, concurrency, conflict, length one and two loops,
respectively. A feature set F :L×L� T is a partial function that yields the type of α+ relation
between two labels.

Two feature sets, will be used to represent the sets of the discovered features before
and after a given drift point, along with a classification of a feature frequency change be-
fore and after the drift point. The classification only considers the relations that existed
both before and after the occurrence of the drift, in our example {f → g, d → e}. A
relation is classified as increasing (↗), decreasing (↘) or not applicable (⊥), depend-
ing on whether its frequency increased, decreased, or remained unchanged. A relation
that disappeared (resp. appeared) after the drift does not need to be classified as it only
belongs to the pre-drift (resp. post-drift) feature set. All the features existing before and
after the drift are ordered in terms of their explanatory power. The two feature sets from
before and after the drift, the classification and the ordering functions form a drift fea-
ture set which constitutes the output of the first stage of our method. Formally, a drift
feature set is defined as follows:

Definition 4 (Drift Feature Set). Let O := {↗,↘,⊥} be a set of feature frequency change
types. A drift feature set is a tuple D := 〈Fpre, Fpost,DiffD ,v,L〉, where Fpre (resp. Fpost)
is the feature set before (resp. after) a drift, DiffD is a classification function defined as
DiffD :Fpre ∩ Fpost → O, and v is a total order on Fpre ∪ Fpost.

The following function returns the index of a feature in a given drift feature set.

Definition 5 (Rank). Let � be a total order on a finite set B. For all b ∈ B,
Rank(b,�,B) = |{b′ ∈ B | b′ � b}|.

Example 2 With the Definition 4, Example 1 is represented as a drift feature set
D1 = 〈 FD

1

pre , F
D1

post, DiffD , ↘, L 〉, where L = {a, b, c, d, e, f, g}, FD
1

pre = {e → f ,
a → b, f → g, d → e, b → c}, FD

1

post = {e ‖ f , e → g, d → f , f → g, d → e, a → c},
v = 〈 e → f , e ‖ f , e → g, d → f , a → b, f → g, d → e, b → c, a → c〉, and
DiffD = { (f → g,↘), (d→ e,↘)}.

Our drift characterization method aims at explaining a detected drift using prede-
fined change templates. In this regard, we define a set of change templates representing
the typical change patterns [21]. These templates are presented in Table 1. A change
template is represented by a process model fragment before the change compared to
another process model fragment after the change.

Consequently, a template is a generic way to describe a typical change pattern. It
enumerates the expected sets of relations before and after the change based on a change
pattern representation. The relations that are present in both process model fragments,
before and after the change, need to be classified based on their expected frequency
evolution in the change pattern. Besides, the importance of every relation in the change
pattern is appended to the template. A template handles variables that can be instantiated
with actual activity labels in a matching operation.

8

Definition 6 (Template). Let V be a set of variables, T a set of α+ binary rela-
tions symbols, and O a set of relation frequency change types. A template is a tuple
T := 〈 Tpre, Tpost, DiffT , S, V〉 where Tpre : V × V � T represents the relations be-
fore the change, Tpost : V × V � T represents the relations after the change, DiffT is a
classification function defined as DiffT : Tpre ∩ Tpost → O, and S is a function specifying
the importance of each relation to the template T defined as S : Tpre ∪ Tpost → (0, 1].

Example 3 Let us assume the two change templates, parallelize activities (T pl) and remove ac-
tivity (T sre), for our example, illustrated in the Fig. 3 and Fig. 4, respectively. With the Definition
6 T pl = 〈{X → Y , W → X , Y → Z}, {X ‖ Y , W → Y , X → Z, W → X , Y → Z},
{(W → X,↘), (Y → Z,↘)}, {(X → Y, 1), (W → X, 1), (Y → Z, 1), (X ‖ Y, 1),
(W → Y, 1), (X → Z, 1)}, {W,X, Y, Z}〉, and T sre = 〈{X → Y , Y → Z}, {X → Z}, ∅,
{(X → Y, 1), (Y → Z, 1), (X → Z, 1)}, {X,Y, Z}〉.

X

X YYW Z W Z

X Y Z X Z
Fig. 3: Parallelize activities template (T pl)

X

X YYW Z W Z

X Y Z X Z

Fig. 4: Remove activity template (T sre)

In order to explain a drift, the discovered features represented with a drift feature
set are matched to a predefined template. All the variables in the template need to be
mapped to a label from the drift feature set. This operation is called a valid instantiation,
and is defined as follows:

Definition 7 (Valid Instantiation). Given a drift feature set D := 〈Fpre, Fpost,DiffD ,v,L〉,
and a template T := 〈Tpre, Tpost,DiffT ,S,V〉, a valid instantiation of T throughD is a function
ID,T : V → L such that

– Tpre(v1, v2) = t1 iff Fpre(ID,T (v1), ID,T (v2)) = t1,
– Tpost(v3, v4) = t2 iff Fpost(ID,T (v3), ID,T (v4)) = t2, and
– Diff T (v5, v6) = ϑ iff Diff D(ID,T (v5), ID,T (v6)) = ϑ

Example 4 In our example, we can have two valid instantiations, one per template. The first
instantiation ID1,Tpl = { W : d, X : e, Y : f , Z : g} , whereas the second instantiation
ID1,Tsre = {X : a, Y : b, Z : c}.

A confidence is calculated for each matching (valid instantiation) in order to as-
sess the likelihood of such a matching. The confidence of an instantiation is based on
the Discounted Cumulative Gain (DCG) measure [11], which indicates the quality of
ranking relations in a drift feature set with regards to their predefined importance in a
template. In our method, we consider the same importance of 1 for all the relations of a
template. The confidence of an instantiation is defined as follows.

Definition 8 (Confidence in an Instantiation). Given a drift feature set
D := 〈Fpre, Fpost,DiffD ,v,L〉, a template T := 〈Tpre, Tpost,DiffT ,S,V〉, and a
valid instantiation ID,T : V → L, the confidence C(ID,T) of D matching T through ID,T is:

C(ID,T) =
∑

(x,y,t)∈Tpre∪Tpost

S(x, y, t)
log2(Rank((ID,T (x), ID,T (y), t), v, Fpre ∪ Fpost) + 1)

Example 5 In our example, the confidence of ID1,Tpl is calculated as follows:
C(ID1,Tpl) = 1

log2(1+1)
+ 1

log2(2+1)
+ 1

log2(3+1)
+ 1

log2(4+1)
+ 1

log2(6+1)
+ 1

log2(7+1)
≈ 2.25.

The confidence of ID1,T sre is calculated in the same way and approximates to 0.62.

9

As we want to find the best-matching template among all matching templates we
need to rank them based on their confidences. However, as the number of relations in
different templates may not be the same, we need to normalize the confidence of an
instantiation with respect to the maximal confidence of its template. Similarly to the
normalized DCG (nDCG) [11], we first define the notion of ideal confidence of a tem-
plate T as the DCG obtained after ordering relations of T based on their importance
defined by S. The normalized confidence (nC) of an instantiation is calculated by di-
viding the confidence of the instantiation by the ideal confidence of its template.

Definition 8 (continued). The Ideal confidence iC(T) of T is computed as

iC(T) =
∑

(x,y,t)∈Tpre∪Tpost

S(x, y, t)
log2(Rank((x, y, t), ≥, range(S)) + 1)

, and the normalized

confidence nC(ID,T) of D matching T through ID,T is computed as nC(ID,T) = C(ID,T)

iC(ID,T)

Example 6 In our example, iC(T pl) ≈ 2.30 and nC(ID1,Tpl) ≈ 0.98, whereas
iC(T sre) ≈ 1.13 and nC(ID1,Tsre) ≈ 0.54. As nC(ID1,Tpl) ≥ nC(ID1,Tsre), T pl is
identified as the best-matching template with the drift feature set.

Simultaneous changes. Identifying one template is not enough as a process drift may
involve more than one change. In order to characterize all the simultaneous changes,
each time that a best-matching template with the drift feature set is identified, we re-
move the features that were used for this template instantiation from the drift feature
set. The new resulting drift feature set is then reused for the identification of a new best-
matching template. We repeat this cycle until we cannot find any more templates that
match the remaining features within the drift feature set. It is worth mentioning that if
there are two overlapping changes in the process, i.e. changes that share a non-empty
set of features, only the one with higher nC can be matched with a template. This is be-
cause each time we find a best-matching template we remove the matched features from
the drift feature set. This limits the ability of the proposed method to the identification
of non-overlapping simultaneous changes.

Example 7 In our example, as there is no feature shared between ID1,Tpl and ID1,Tsre , both
change templates can be identified. The identified templates, T pl and T sre, are then reported to
the user using the two following statements, respectively:

– Before the drift, activity “e” preceded “f”, while after the drift, they are in parallel.
– Activity “b” has been removed from between activities “a” and “c” after the detected drift.

Time complexity. Given the number of data points 2n, where n is the characterization
delay, and the maximum possible number of α+ relations |L|2, where L is the label
set, the complexity of our drift characterization method is the maximum of the worst-
case complexities of the following sequential operations: (i) performing KSPT between
the α+ relations and a binary target variable (O(2n · |L|2)), (ii) computing the aver-
age frequencies and RFCs of the relations (O(2n . |L|2)), (iii) ordering the relations
(O(|L|2· log(|L|2))), and (iv) template identification O(|L|2· m · |L|2!).1 Hence, the

1 Matching a template of k relations to a drift feature set of |L|2 relations requires iterating
over all possible permutations (nPk = |L|2!/(|L|2−k)!). The upper-bound complexity of this
operation isO(|L|2!). Next, to identify the best-matching template, we iterate over the number
of predefined templatesm. Finally, we need to match simultaneous changes which in the worse
case are |L|2 (where each template has only one relation). The upper-bound time complexity
of identifying multiple non-overlapping templates is O(|L|2·m · |L|2!).

10

time complexity of our method is O(|L|2·m · |L|2!). This time complexity is a theoret-
ical upper-bound, however in practice the number of relations rarely approaches |L|2,
and not all permutations are verified for the template identification operations (relations
are first filtered based on their types, e.g. causality).

4 Evaluation on Synthetic Logs
We implemented the proposed method as an extension of the ProDrift 2.0 plugin for
the Apromore platform.2 This tool is fed with an event stream replayed from an event
log, and reports, for each detected drift, its characterization as a verbalization in natural
language, based on the applicable templates. We used this tool to evaluate the effec-
tiveness of our method with different parameters settings. In the rest of this section we
discuss the setup of the experiments and a two-pronged evaluation to assess the effec-
tiveness of the relevant relations retrieval and ranking with respect to each individual
template, and the accuracy of template identification. Finally, we compare our method
with model-to-model comparison in combination with automated process discovery, as
well as log-to-log comparison.

4.1 Setup
We generated a synthetic dataset using the same approach and CPN3 base model in [17]
that represents a highly variable process. For each simple change template in Tab. 1, we
generated a log featuring 9 drifts, each injected by alternatively activating and deac-
tivating the template within the base model. For instance, for the template “sre” we
alternatively added or removed an activity to or from the process model. For the partic-
ular change template “lp”, three logs were generated with length-one, length-two and
length-three loops, and the reported results for this template were averaged over these
three logs. This resulted in 17 logs, each containing 10,000 traces with nine equidistant
drifts of the same change template. To evaluate the characterization of drifts in the con-
text of simultaneous changes, we organized our change templates in three categories:
Insertion (“I”), Resequentialization (“R”) and Optionalization (“O”) (cf. Table 1). Lim-
ited to two and three simultaneous cross-category changes, these categories make four
possible scenarios of simultaneous changes (“IR”, “IO”, “RO”, “RIO”). For each such
scenarios two logs were generated by randomly selecting single templates from dif-
ferent categories. For instance, a drift from the simultaneous changes scenario of “IR”
could simultaneously add a new activity (“I”) and a loop back (“R”) in two different lo-
cations of the process. This resulted in eight logs for the simultaneous changes setting.
All in all, the dataset contained 25 logs for both single and simultaneous changes.4

4.2 Impact of Characterization Delay on Relations Ordering

In Stage 1 of our method, the KSPT is used to retrieve the relations that are significantly
associated with the drift, and discard the irrelevant ones. Then, the retrieved binary
relations are ordered based on their RFCs with respect to the TRFC that occurred in the
drift. For each detected drift, the ground truth (ideal case) is that the relations related to
the injected drift template are correctly identified and placed in the top of the returned

2 Available at http://apromore.org/platform/tools
3 http://cpntools.org
4 All the CPN models used for this simulation, the resulting synthetic logs, and the detailed

evaluation results are available with the software distribution.

11

ordered list. However, some spurious relations may affect the relations ordering. We
use the normalized discounted cumulative gain (nDCG) to evaluate the accuracy of the
relations ordering. The nDCG is a relative measure where a value of 1.0 indicates that
the ordered list corresponds to the ground truth, while 0.0 indicates that none of the
relations related to the injected drift template have been retrieved. This measure is also
used for computing the confidence of a template matching, as explained in Section 3.3.

In the first experiment, we study how the accuracy of the ordered binary relations list
is impacted by changing the characterization delay. We vary the characterization delay
from 200 to 1,000 events, and report the mean and the standard deviation of the nDCG
over all the simple change templates, where each template was evaluated separately
over nine injected drifts (cf. Fig. 5). In this experiment, we do not apply any filtering on
the ordered binary relations list (CRFC = 100% · TRFC).

Not surprisingly, for a characterization delay of 200 events, the KSPT does not have
enough data to identify the relevant binary relations causing the drift, which leads to a
relatively low average nDCG of around 0.84 and a standard deviation of 0.19 over all
templates. Consequently, spurious relations, most often resulting from a slight change
in a branching probability, appear in the ordered relations list. However, we observe that
the accuracy of the relations ordering increases when the characterization delay grows
and eventually plateaus at an average of 0.98 with a standard deviation of 0.02. As
expected, the more data points are fed to the KSPT, the more accurate is the statistical
association between the explanatory variable (here an individual binary relation) and
the target variable (the drift classification variable), and the better the estimation of
the RFC for ordering the relations is. However, the characterization delay cannot grow
indefinitely, hence, we select 500 events as a trade-off between a short characterization
delay and a high characterization accuracy (fewer spurious relations). This value is used
as the default delay in the remaining experiments.

We note that the characterization delay does not only indicate how many events our
method needs to fetch from the event stream to obtain an accurate characterization, but
it also allows us to infer the minimum inter-drift distance that our method can handle.
In other terms, the next potential drift must occur at least after a number of events equal
to this characterization delay (+ one detection window) after the stabilization point (cf.
Fig. 2) in order to be accurately characterized.

4.3 Impact of Relation Filtering on Characterization Accuracy
As introduced in Section 3.3, the ordered relations list resulting from Stage 1 can be fil-
tered based on the CRFC to discard the relations with insignificant RFCs. Thus, only the
top relations that sum up their CRFC to a certain proportion of the TRFC are retained.
The filtered list is then fed to the template identification stage to find the best-matching
templates with the relations. In this experiment, we study how the filter affects the ac-
curacy of template identification. We vary the CRFC threshold (x%) from 70% to 100%
(no filtering), and report the F-score of the template identification averaged over the 25
synthetic logs. The F-score is measured as the harmonic mean of recall and precision,
where recall measures the ratio of correctly identified change templates of a specific
type over the total number of injected templates of the same type, and precision mea-
sures the ratio of correctly identified change templates of a specific type over the total
number of identified templates of that same type. Figure 6 shows the average accuracy
over all templates and per single change, double and triple simultaneous changes.

As expected, we observe that the F-score increases as the CRFC threshold increases.
When the threshold is low, many relations are filtered out, and if only one relation

12

corresponding to an injected template is discarded then its corresponding template will
not be matched. On the other hand, when the threshold increases, more relations remain
in the filtered list, thereby increasing the likelihood of matching the relevant template,
leading to a higher recall. However, when no relations are filtered out (threshold =
100%), spurious relations will be matched with the frequency template “fr”. This will
impact the precision, explaining the drop in the average F-score at the threshold value
of 100%. As an example, for the change template parallel move “pm” (with 8 relations),
the output of the first stage of our method was an ordered list of 50 relations. A filter
threshold of 70% retains only the top five relations out of 50, leading to a recall of 0
for this template. On the other hand, a threshold of 90% retains the top nine relations,
leading to a recall of 1. In the remaining experiments we use a CRFC threshold of 95%
that is suitable for both single and simultaneous changes.

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

200 300 400 500 600 700 800 900 1000

O
rd

e
ri

n
g

ac
cu

ra
cy

 (
n
C

)

Characterization delay (events)

Fig. 5: Impact of characterization delay on
relevant relations retrieval and ordering

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

70 75 80 85 90 95 100

F-
sc

o
re

Cumulative change [x%]

Single template

Double templates

Triple templates

Average (all)

Fig. 6: Impact of relation filtering on char-
acterization accuracy

4.4 Comparison with Baseline
As discussed in Section 2, a possible approach to process drift characterization is to
apply automated process discovery before and after the drift point, and compare the
resulting process models. We first conducted an exploratory experiment using a sample
artificial log with a single injected drift. After drift detection, we extracted the pre-drift
and post-drift sublogsand fed these to two state-of-the-art automated process discovery
techniques: Inductive Miner [12] and BPMN Miner [7]. The resulting models, obtained
from each technique, were then compared using the model-to-model technique in [3].
The comparison between the pair of models discovered by the Inductive Miner did not
finish after six hours of execution. This is explained by the over-generalization intro-
duced by the Inductive Miner in the discovered models. In the particular situation of a
highly variable process, this miner tends to produce a model close to the so-called flower
model. This causes the model-to-model comparison technique to explore the combina-
tion of all the possible execution paths from the two models. using BPMN Miner, the
model comparison technique produced many incorrect differences. This false positives
are due to the two models being underfitting. For instance, if the discovered pre-drift
model misses to represent a particular process behavior, the comparison technique mis-
takenly reports this behavior as being added after the drift. Based on these results, we
decided to discard this approach as a baseline to benchmark our method.

We then evaluated the possibility of using the log-to-log comparison technique in [4]
as a baseline. This technique is designed to compare logs with complete traces, while in
our setting the pre-drift and post-drift sublogs are extracted from an event stream, and
hence contain many incomplete traces. As a first attempt, we fed the log comparison

13

technique with the two sublogs before and after the drift as is, but as expected, the
comparison led to a large number of misleading differences. We then decided to only
use complete traces within the two sublogs. This was possible as we knew the start and
end activities of the process. However, in an online setting such activities may not be
known. For each change template, we evaluated the accuracy of the differences returned
by the technique manually. We calculated recall by considering the missing differences
for a given template as false negatives, so that a recall of 1 is obtained if a template is
fully described by the differences. Similarly, precision was calculated by considering
the statements that were not related to the template as false positives.

Figure 7 reports the F-score obtained for each change template for our method and
for the baseline. Our method had almost a perfect F-score for every template as it could
retain the (great majority of the) relations that were involved in the injected change
template, without returning relations that did not fit the templates. On the other hand,
the baseline produced a low F-score for all the change templates. Admittedly, this tech-
nique had a high average recall of around 0.85 over all logs. However, its precision was
very low due to a high number of false positives (wrong differences returned). Indeed,
the two sublogs capture partial process behavior, which, even if similar at the event
level, is quite variable at the trace level. This was exacerbated by the high variability
of the process. These results are in line with the findings in [17] on drift detection (the
step preceding the drift characterization). In the latter study, we showed that techniques
based on (abstraction of) complete traces such as [13] do not perform well when detect-
ing drifts in highly variable logs and that finer-grained features such as the α+ relations
are more suitable to capture process behavior in high variability settings.

0

0.2

0.4

0.6

0.8

1

sr
e

p
re cr
e cp rp sw sm cm p

m cf p
l

cd lp cb fr R
I

R
O IO

R
IO

F-
sc

o
re

Change templates

Our method

Log delta

Fig. 7: F-score per change template, obtained with our method vs. [4].

We conducted all the experiments on an Intel i7 2.20GHz with 16GB RAM (64 bit),
running Windows 7 and JVM 7 with standard heap space of 4GB. The time required to
extract, order, and then match the α+ relations to the predefined templates for each drift
ranged from a minimum of 410ms to a maximum of 660ms with an average of 530ms.
The baseline method took on average 15 seconds to report the differences between the
pre-drift and post-drift sub-logs.

5 Evaluation on Real-life Log
We further evaluated our method on the BPI Challenge (BPIC) 2011.5 We chose this
log, which records patient treatments in a Dutch hospital, because of its high trace
variability (∼ 70%). We prepared the log by filtering out infrequent behavior using the
noise filter in [8] with its default settings. This operation resulted in a log with 1,121
traces, of which 798 are distinct, and 42 activity labels. In [17], we had detected two

5 http://dx.doi.org/10.4121/uuid:d9769f3d-0ab0-4fb8-803b-0d1120ffcf54

14

drifts from this filtered log, using our technique for drift detection. The two drifts were
supported by the observation of a sudden increase, and a subsequent decrease in the
number of events while the number of active cases was decreasing.

We applied our method for drift characterization in order to identify the change
templates that explain these two drifts. Two frequency change templates were identified
to characterize the first drift, while the second drift was explained by one frequency
change template. This template was symmetric to the first frequency change template,
identified for the first drift. After investigation, we found that the probability of the
branch which was identified by the change template as increasing (resp. decreasing) af-
ter the first (resp. second) drift point included five activities in a loopback. The increase
from 34% to 46% (resp. decrease from 46% to 34%) in the upper branch probability
of the identified frequency change template is, in fact, the cause of the increased (resp.
decreased) number of events after the first (resp. second) drift. Figure 8 depicts the
identified template, with the activity labels in their original language.

As discussed in Section 4.4, the baseline technique for log-to-log comparison that
we used [4], is designed to compare logs with complete traces. However, there was no
complete trace within the pre-drift and post-drift sublogs. Thus, we ran the baseline
technique using the sublogs containing only partial traces. However, we had to abort
the experiment as it did not complete within six hours.

aanname
laboratoriumonderzoek

ordertarief 190021 klinische opname a002

190205 klasse 3b a205190101 bovenreg.toesl. a101ligdagen - alle
spec.beh.kinderg.-reval.

Fig. 8: Identified template for Drift 1 in BPIC 2011 log.

6 Conclusion and Future Work

We proposed a systematic online drift characterization method based on event streams.
The method can characterize multiple simultaneous changes so long as they do not
overlap in terms of process behavior. The strength of our method resides in the features
used to encode the process behavior and its well-grounded statistical approach, that
allow us to deal with highly variable processes. The collection of change templates that
we use to describe a drift is based on a well-established categorization of typical change
patterns. We do not claim this collection to be complete, but it can easily be extended.

We extensively evaluated our method using both highly variable synthetic logs as
well as a real-life log. The results on the syntetic logs show high accuracy, low char-
acterization delay and low time performance. And despite the lack of a ground truth to
validate our findings on the real-life log, the results were supported by various observa-
tions from the log. In addition, the method outperforms state-of-the-art techniques for
model-to-model comparison, in combination with automated discovery techniques, as
well as techniques for log-to-log comparison.

A first avenue for future work is to provide a visual description of the identified
templates as a simple and effective way to communicate the nature of the drift, as in
[3]. Another avenue is to support process fragments, so as to detect more sophisticated
changes that include subprocesses, overlapping changes or even nested changes. An

15

idea is to combine colocated relations to discover process fragments, such as single-
entry-single-exit fragments or local process fragments [19]. Finally, the characterization
may be extended to other process aspects, such as process data and resources.

Acknowledgments. This research is partly funded by the Australian Research Council
(grant DP150103356).

References

1. van der Aalst, W.M.P.: Process Mining: Discovery, Conformance and Enhancement of Busi-
ness Processes. Springer (2011)

2. Accorsi, R., Stocker, T.: Discovering workflow changes with time-based trace clustering. In:
Data-Driven Process Discovery and Analysis. Springer (2012)

3. Armas-Cervantes, A., Baldan, P., Dumas, M., Garcı́a-Bañuelos, L.: Behavioral comparison
of process models based on canonically reduced event structures. In: BPM. Springer (2014)

4. van Beest, N.R., Dumas, M., Garcı́a-Bañuelos, L., La Rosa, M.: Log delta analysis: Inter-
pretable differencing of business process event logs. In: Proc. of BPM. Springer (2015)

5. Bose, R.P.J.C., van der Aalst, W.M.P., Zliobaite, I., Pechenizkiy, M.: Dealing with concept
drifts in process mining. IEEE Transactions on NNLS (2014)

6. Carmona, J., Gavalda, R.: Online techniques for dealing with concept drift in process mining.
In: International Symposium on Intelligent Data Analysis. Springer (2012)

7. Conforti, R., Dumas, M., Garcı́a-Bañuelos, L., Rosa, M.L.: BPMN miner: Automated dis-
covery of BPMN process models with hierarchical structure. Information Systems (2016)

8. Conforti, R., La Rosa, M., ter Hofstede, A.H.: Filtering out infrequent behavior from business
process event logs. IEEE Transactions on Knowledge and Data Engineering (2016)

9. Frank, E., Witten, I.H.: Using a permutation test for attribute selection in decision trees. In:
International Conference on Machine Learning. Morgan Kaufmann (1998)

10. Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M., Bouchachia, A.: A survey on concept drift
adaptation. ACM Computing Surveys (CSUR) (2014)

11. Järvelin, K., Kekäläinen, J.: Cumulated gain-based evaluation of ir techniques. ACM Trans-
actions on Information Systems (TOIS) (2002)

12. Leemans, S.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured process
models from event logs-a constructive approach. In: International Conference on Applica-
tions and Theory of Petri Nets and Concurrency. Springer (2013)

13. Maaradji, A., Dumas, M., La Rosa, M., Ostovar, A.: Fast and Accurate Business Process
Drift Detection. In: Proc. of BPM (2015)

14. Martjushev, J., Bose, R.P.J.C., van der Aalst, W.M.P.: Change Point Detection and Dealing
with Gradual and Multi-order Dynamics in Process Mining. In: BIR (2015)

15. de Medeiros, A.A., van Dongen, B.F., Van der Aalst, W.M.P., Weijters, A.: Process mining:
Extending the α-algorithm to mine short loops. Tech. rep. (2004)

16. Menard, S.: Applied logistic regression analysis. Sage (2002)
17. Ostovar, A., Maaradji, A., Rosa, M.L., ter Hofstede, A.H.M., van Dongen, B.F.: Detecting

drift from event streams of unpredictable business processes. In: ER (2016)
18. Pratt, K.B., Tschapek, G.: Visualizing concept drift. In: Proc. of the ninth ACM SIGKDD

international conference on knowledge discovery and data mining. ACM (2003)
19. Tax, N., Sidorova, N., van der Aalst, W.M., Haakma, R.: Heuristic approaches for generat-

ing local process models through log projections. In: IEEE Symposium on Computational
Intelligence and Data Mining (CIDM) (2016)

20. Webb, G.I., Hyde, R., Cao, H., Nguyen, H.L., Petitjean, F.: Characterizing concept drift. Data
Mining and Knowledge Discovery (2016)

21. Weber, B., Reichert, M., Rinderle-Ma, S.: Change patterns and change support features–
enhancing flexibility in process-aware information systems. DKE (2008)

	Characterizing Drift from Event Streams ofBusiness Processes
	Introduction
	Related Work
	Drift Characterization Method
	Preliminaries
	Preprocessing: Data Points Extraction
	Stage 1: Relevant Binary Relations Retrieval and Ordering
	Stage 2: Change Templates Identification

	Evaluation on Synthetic Logs
	Setup
	Impact of Characterization Delay on Relations Ordering
	Impact of Relation Filtering on Characterization Accuracy
	Comparison with Baseline

	Evaluation on Real-life Log
	Conclusion and Future Work

