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Abstract 

The transit agencies aim to allocate limited resources properly and maximise ridership. 
Measuring the performance of individual transit routes within a transit system plays a critical 
role in finding operational problems and increasing transit ridership.  

The Data Envelopment Analysis (DEA) method has been employed to compare the 
performance of different units (e.g., transit operators, transit lines/ routes within a transit 
system). This paper first reviews the application of DEA for transit performance evaluation. 
Thereafter, with a case study on a bus route in Brisbane, a pilot study is conducted to 
discuss the application of DEA for temporal performance evaluation (service effectiveness) 
of a transit route considering number of services and travel time as inputs and transit work 
and on-time performance as outputs. 

Keywords: Data envelopment analysis, smart card, Automatic fare collection, transit 
performance evaluation.  

1. Introduction 

The transit agencies aim to increase ridership, for instance Queensland government, 
Australia has an official targets to increase the transit ridership in South East Queensland 
from 7% in 2006 to 14% in 2031 (connecting-seq-2031-finalised). Agencies have limited 
resources and increasing financial burden. Therefore, smart utilisation of the limited 
resources is the need of the hour. 

Measuring the performance of individual transit routes within a transit system plays a critical 
role in finding problems in the transit system design, operation and control, and increasing 
transit ridership. However, evaluating the performance of individual transit routes is a 
complex procedure because multiple objectives and multiple input and output variables 
relate to this procedure (details in section 2). The transit agencies thus need to develop and 
exploit tools that can support them to evaluate the efficiency of the transit routes 
performance, identify the key factors leading to the inefficiency, and make rational decisions 
for planning, operations and management of their network. Data Envelopment Analysis 
(DEA) method has been utilized widely for comparing the performance of different transit 
systems or different transit routes as production units (Chu, Fielding, & Lamar, 1992; 
Georgiadis, Politis, & Papaioannou, 2014; Sheth, Triantis, & Teodorović, 2007; Viton, 1997, 
1998; M.-M. Yu & Fan, 2009). However, due to the simple transit data collected through 
manual survey, the application of DEA models to measuring the performance of individual 
transit routes is fairly limited. 

The objective of the paper is twofold. It first, critically reviews the applications of DEA model 
to evaluating the performance of transit systems. Thereafter, with a case study on Brisbane, 
a pilot study is conducted to evaluate a DEA based temporal performance of a bus route 
(Route 111). Recently, the availability of smartcard based automated fare collection systems 
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(AFC) in the transit sector has provided a valuable opportunity for estimating transit 
performance indicators in greater detail (Trépanier, Morency, & Agard, 2009). In this paper 
we exploit AFC data to generate the indicators needed for the aforementioned case study.  

The remaining of the paper is organised as follows: section 2 introduces the concepts of 
transit performance; section 3 provides information about the applications of DEA model to 
measuring the performance of transit systems, and individual transit routes within a transit 
system. The DEA approach is presented in section 4. The case study on a Brisbane bus 
route is presented in section 5 and finally the paper is concluded in section 6. 

2. Transit performance concepts 

The performance of a given transit system as well as transit route can be distinguished into 
the three dimensions: technical efficiency (also termed as cost efficiency), operational 
effectiveness (also termed as cost effectiveness), and service effectiveness (see Figure 1). 

 Technical/cost efficiency represents the process through which service inputs are 
transformed into outputs. This means that a transit agency will invest capital in the 
transit vehicles, fuel, the information systems, employees, maintenance, and other 
costs (inputs). This investment will produce a certain service for a community such as 
vehicle-kilometres, seat-kilometres, and seat-hours which forms the outputs. An 
agency is considered efficient if it can reduce the inputs to produce a fixed amount of 
outputs, or it can increase the outputs while using the similar or less inputs.  

 Operational/cost effectiveness indicates the relationship between service inputs and 
consumed services. A transit agency spends money to offer its service, and a 
number of passengers (per day or week) consume its service. Transit agency will 
achieve higher cost effectiveness, if it increases the ridership without increasing total 
cost of producing the service.  

 Service effectiveness examines the relationship between produced outputs and 

consumed service or how well a service offered by operators can be consumed by a 
community (Georgiadis et al., 2014), which means that not all of the service offered 
by a transit agency (measured by vehicle-kilometres, seat-kilometres, and/or seat-
hours) will be used by a community. If it attracts more passengers without increasing 
the service, or reduces the service but still serves the similar number of passengers, 
it will be more effective. Note: The case study (section 5) applied in this paper 
evaluates service effectiveness. 

Figure 1. Framework for a transit performance concept model (Fielding et al. (1985)) 
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Figure 1 illustrates that there are a number of uncontrollable variables (population density, 

accessibility, parking space availability, car ownership) influencing the actual service 
consumption of a community with regard to the effectiveness perspective. Also, concerning 
the efficiency component, external factors (traffic conditions, location of transit stops) 
significantly affect the produced service. 

3. The application of DEA approach for transit performance 
evaluation 

Measuring the performance of urban transit systems with regard to the efficiency and the 
effectiveness is a major challenge to transit agencies, as multiple factors simultaneously 
influence the operation of any public transport system. Fielding et al. (1985) used the cluster 

analysis to construct 12 peer groups of fixed-route urban transit. They then analysed the 
variance and discriminant among the peer groups in terms of operating characteristics to 
build up a decision tree typology that is an intellectual device for clarifying the performance 
similarities as well as differences among transit agencies. This approach provided the basic 
for developing the Irvine Performance Evaluation methodology (IPEM), which subsequently 
was used by some researchers to study the performance of transit agencies like Perry et al. 
(1986), Yu (1988) and Fielding et al. (1988). However, the IPEM statistics is a cumbersome 

method for evaluating transit performance. It does not provide a single overall measure of 
transit performance (Chu et al., 1992).  

To overcome this drawback, Chu et al. (1992) applied the DEA model to measure the 

efficiency and effectiveness of public transit agencies in the United States (US). Based on 
the results obtained, the authors reinforced the notion of Hatry (1980) that in measuring the 
performance of transit agencies, efficiency should be evaluated separately from 
effectiveness. Thereafter, many researchers have used DEA models for transit performance 
analysis (Barnum, Tandon, & McNeil, 2008; Georgiadis et al., 2014; Karlaftis, 2004; Lao & 
Liu, 2009; Rohác̆ová, 2015; Sheth et al., 2007; Tsamboulas, 2006; Viton, 1997, 1998). 

Table 1 provides an overview of the application of DEA models to measuring the transit 

performance at both system and route levels. Here, the review is separated into two groups: 
the formers focuses on the performance of transit systems and the later focuses on the 
performance of individual transit routes/lines. The columns represent the DEA models used, 
number of Decision Making Units (DMUs), inputs and outputs selected for DEA models, time 
frame of data, and finally the findings. 

As summarized in Table 1 most of the research focuses on evaluating the performance of 
different transit systems on yearly data (first group). Recently, few researchers have focused 
on evaluating the performance of individual transit routes within a system (Triantis, 2004). 
Comparing the performance of different transit systems plays a key role in determining the 
average operational efficiency of a transit system and problems related to the operation of 
the whole system, but cannot explore the problems related to the internal activities of each 
transit route. On the other hand, the performance evaluation of individual transit routes within 
a transit system substantially provides the transit agency the opportunity to understand its 
internal activities (Barnum et al., 2008; Benn, 1995), and then investigate the source of 
inefficiency. Possible actions then can be taken by transit agencies to optimize the 
operational efficiency of inefficient transit routes, and thus leads to performance 
improvement for the whole transit system. Evaluating the performance of individual transit 
routes therefore is of importance for optimizing the operation of transit route and system. 

Most of the research has focused on technical efficiency and cost effectiveness. 
Researchers have evaluated the relationship between the technical efficiency and cost 
effectiveness and literature had contrary findings. Chu et al. (1992) suppose that these two 
dimensions of transit performance should be evaluated separately, while Karlaftis (2004) 
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claims that efficiency and effectiveness seem to be positively related. The correlation 
between technical efficiency and cost effectiveness should be further studies. 

Limited research (Barnum et al., 2008; Lao & Liu, 2009) is on service effectiveness. This is 
because of the complexity in modelling the service effectiveness which is often based on the 
uncontrolled factors (such as living standards of the residents, quality of service with respect 
to passenger perception, parking space and private vehicle ownership). Moreover, the 
availability of the integrated data needed to the modelling is also hard to obtain. 

The DEA model only provides a mean of estimation of DMUs’ technical efficiency (TE). To 
evaluate the factors (environmental variables such as socio-economic variables) affecting 
the efficiency level, a two stage process is adopted (Nolan (1996), Georgiadis et al. (2014)). 
Here, at the first stage the DEA model is applied to estimate the TE and thereafter, at the 
second stage a truncated regression model is applied to analyse the sensitivity of the TE 
values obtained in the first stage to those factors. However, the limitation of these studies is 
that they lack information on some potential uncontrollable variables such as structure of 
population, private vehicle ownership, and average income of residents. The environmental 
factors influencing the transit performance thus were not studied sufficiently.     

The performance evaluation of individual transit routes within a transit system has drawn the 
attention of a few researchers (Barnum et al., 2008; Georgiadis et al., 2014; Lao & Liu, 2009; 
Rohác̆ová, 2015; Sheth et al., 2007). However, due to the simple transit data collected 
through manual survey, the temporal and spatial performance of transit routes in those 
studies was not analysed sufficiently. For instance, the travel time is estimated through the 
operating speed which depends on the distribution of transit route in urban or suburban area. 
Most researchers use “passenger-km” as the output for evaluating the service effectiveness 
of transit route, while the corresponding input is “seat-km” representing vehicle passenger 
carrying capacity. “Passenger-km” was defined as the total number of passenger 
transmission of a route multiply by the total number of kilometres travelled by all the vehicles 
operating on the corresponding route during a weekday. “Passenger-km” thus does not 
reflect the service consumption accurately because it considers the total number of 
kilometres travelled by all the vehicles instead of the average route length travelled by 
passengers.  

Regarding the above relationship between the vehicle passenger carrying capacity and the 
service consumption, Vuchic (2007) defined “transportation work” (𝑤) as the number of 

transported objectives (𝑢) multiplied by the distance (𝑠) over which they are carried: 𝑤 = 𝑢. 𝑠 

Based on the work of Vuchic, Bunker (2013) introduced “transit work” and “transit service 
work efficiency” of an individual transit service h along its route L with n segments 
constituting route L. “Transit work” was the sum of the transit work performed along all 
consecutive segments along the transit route. 

Transit work performed by service h along its route L, given by (p-km): 

𝑾𝒉,𝑳 = ∑ 𝑷𝑶𝑩,𝒉,𝒊𝒔𝒊
𝒏
𝒊=𝟏                                                                                                                (1) 

Where:  𝑠𝑖 = length of segment 𝑖 

             𝑃𝑂𝐵,ℎ,𝑖 = Passengers on board for service h along segment 𝑖 

             𝑛 = Number of consecutive segments constituting line L traversed by service h 

It is clear that “transit work” comparing to “passenger-km” reflects the service consumption 
more accurately because “transit work” takes the actual route length traversed by 
passengers into account and reflects the actual vehicle’s loading level along the transit 
route. 
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Table 1: An overview of the application of DEA models in measuring the transit performance 

Referen-
ces 

DEA model DMUs Inputs Outputs Time 
frame 
conside-
red 

The findings 

Obeng 
(1994) 

DEA model 73 bus 
agencies in 
USA  

Labour; Fuel; Fleet size 

 

Vehicle- Miles 

 

Annual 
data 

Subsidies improve technical 
efficiency (TE) in approximately 75% 
of the transit systems studied 

Nolan 
(1996) 

DEA model 
(BCC-DEA) and 
Tobit model 

25 mid-sized 
bus 
agencies in 
USA 

Vehicle operated; Fuel; Labour. Vehicle- Miles 

 

Annual 
data 

 

Average fleet age is significantly and 
negatively correlated with the TE 
measure. 

Operating subsidies can create 
significant and negative impacts on 
TE. 

Kerstens 
(1996) 

DEA model and 
Free Disposal 
Hull (FDH) DEA 
model 

114 French 
urban transit 
companies 

Vehicles; Employees; Fuel. 

Explanatory variables: Owner; 
Group; Linelength; Stoplength; 
Popdens; Vehage; Ctype; Cterm; 
Ssub; Tax.  

Vehicle-Km; 

Seat-Km 

Annual 
data 

 

It confirms the important role of the 
alternatives among deterministic 
nonparametric approach for TE 
assessment, and the relevance of 
ownership and the harmful impact of 
subsidies. 

Viton 
(1997) 

Russel DEA 
model, with 
VRS + Weak 
Disposal 

217 multi-
mode motor-
bus transit 
systems in 
USA 

Average speed; Average Fleet age; 
Number of directional miles; The fleet 
sizes; Fuel; Labour hours for 
transportation, maintenance, admin, 
capital; Tires and material cost; 
Service cost; Utilities cost; Insurance 
cost.  

Vehicle-miles; 

Passenger-trips. 

Annual 
data 

 

Public and private systems do not 
have an observed systematic 
efficiency difference. 

Around 80% of the sample is 
technically efficient. The extent of 
inefficiency in the industry is slight. 

Viton 
(1998) 

The Russell 
and Malmquist 
DEA models 

183 US bus 
systems in 
1988, and 
169 systems 
in 1992. 

Average speed; Average fleet age; 
Number of directional miles; The fleet 
sizes; Fuel; Labour hours for 
transportation, maintenance, admin, 
capital; Tires and material cost; 
Service cost; Utilities cost; Insurance 

Vehicle-miles;  

Passenger-trips;  

Vehicle-hours. 

Annual 
data 

 

Bus transit efficiency has improved 
slightly over the period. The 
proportion of technically efficient 
systems rose from 74% in 1988 to 
82% in 1992. In most inefficiency 
category, there were proportionately 
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cost. fewer systems in 1992 than in1988. 

Chu et al. 
(1992) 

DEA model 86 bus 
agencies in 
USA 

Vehicle operating cost; Maintenance 
cost; General cost; Other expenses; 
Revenue vehicle hours; Population 
density; % of household with car; 
Subsidy passenger 

Revenue vehicle 
hours 

Unlinked 
passenger- trips 

Annual 
data 

Average input-oriented TE: 85% 

Average input-oriented cost 
effectiveness: 65% 

Boilé 
(2001) 

DEA model 23 bus 
agencies in 
USA 

The operating costs;  

Vehicle revenue hours 

Vehicle revenue 
hours; Unlinked 
passenger- trips 

Annual 
data 

Systems that operate locally 
inefficiently may improve their service 
by using operation strategies. 
System that exhibit scale 
inefficiencies may be improved upon 
by identifying and dealing with 
external factors. 

Karlaftis 
(2004) 

DEA model and 
the Return to 
scale analysis. 

256 US 
transit 
systems 

Total vehicles; 

Fuel;  

Total employees 

Total annual 
vehicle-miles; 

Total annual 
ridership 

Annual 
data 
(1990-
1994) 

Efficiency and effectiveness are 
positively related. 

Optimal scale of operation varies 
significantly and depends on the 
output specification selected and the 
performance dimension.  

Tsambo-
ulas 
(2006) 

DEA model and 
Tobit 
regression 
model 

15 European 
transit 
systems 

Total vehicles; 

Total employees; 

Transit system characteristics: 

Population; Area. 

Vehicle-Km; 

Passengers 

Annual 
data 
(1990-
2000) 

Private systems are more efficient, 
while public systems are more 
effective. The transit systems appear 
to have experienced a certain growth 
during the examined time period. 

Ayadi 
(2013) 

DEA model and 
an econometric 
regression 
model. 

12 urban 
transit 
systems in 
Tunisia 

Total number of bus park; 

Number of staff; 

Annual amount of fuel consumed 

Travelled Km Annual 
data 
(2000-
2010) 

The annual technical efficiency (input 
orientation) is 92.44%. The average 
technical efficiency (output 
orientation) is 90.13% 
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Lao et al. 
(2009) 

DEA model and 
geographic 
information 
system (GIS) 

24 fixed bus 
routes in 
Monterey 
County, 
California, 
USA. 

Operation time;  

Round trip distance;  

Number of bus stops; 

Commuters who use buses; 
Population 65 and older;  

Persons with disabilities 

Total number of 
passenger. 

 

Total number of 
passenger. 

 

Annual 
data 

For TE: 6 bus lines are technically 
efficient, 6 bus lines are fairly efficient 
(scores ≥ 0.6), and 12 bus lines are 
inefficient. 

For spatial effectiveness: 11 of them 
are technically efficient (scores ≥ 
0.8) and 13 bus lines are inefficient 

Barnum 
et al. 
(2008) 

DEA model 46 bus 
routes of a 
US transit 
agency 

Seat kilometre (SK); 

Seat hours (SH); 

 

Population density; 

Population. 

Ridership; Span 
of service; 
Average 
frequency; 
Maximum 
frequency; On-
time 
performance. 

The 
average 
weekday 
trips 

Comparing the performance of 
multiple bus routes of one transit 
agency. 

20 bus routes became more efficient, 
12 did not change, and 14 became 
less efficient. 

Sheth et 
al. (2007) 

Network DEA 
model 

60 bus 
routes in 
Virginia, 
USA. 

The provider node: Headway; Service 
duration; Costs; Number of 
intersections; Priority lanes. 

The societal variable: Number of 
accidents; Emissions; Noise pollution; 
Resources degraded. 

The environmental variables: 
Accessibility; Parking space 
availability; Population density; 
Connectivity; Comfort standards 
factor. 

The provider 
node and inputs 
for the 
passenger 
node: Vehicle-
mile; Schedule 
reliability; 
Average travel 
time. 

The passenger 
node: 
Passenger-mile 

The 
average 
weekday 
trips 

Capture the relationship among the 
supplier, the customer of the 
transportation service as well as the 
external and environmental variables 
related to the urban transit 
performance. 

Georgia-
dis et al. 
(2014) 

DEA model and 
Bootstrap-ping 
techniques 

60 bus 
routes in 

Greece. 

Model 1: Length; Span of service; 
Vehicles. 

Model 2: Length; Span of service; 
Vehicles. 

Model 3: Revenue vehicle-km; 
Vehicles. 

Revenue seat-
km; 

Passenger 

 

Passenger 

Annual 
data 
(2009-
2011) 

There is not clear relationship 
between efficiency and operational 
effectiveness. 

Evaluating the transit route 
performance is more reliable when 
correcting for bias.  
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4. Data envelopment analysis (DEA) 

Data envelopment analysis (DEA), as developed by Charnes, Cooper, and Rhodes (CCR) in 
1978 and later modified by Banker, Charnes and Cooper (BCC) in 1984, builds on the 
frontier efficiency concept first elucidated in Farrell (1957). DEA is a non-parametric and 
empirical modelling based on linear programming and optimization. It is widely used to 
measure the relative efficiencies of production units (termed as Decision making units, 
DMUs) with multi-inputs and multi-outputs. Literature is abundant with its application in 
banking (Depren & Depren, 2016; Mohamed Shahwan & Mohammed Hassan, 2013), 
hospitals (Jat et al., 2013; Torabipour, Najarzadeh, Arab, Farzianpour, & Ghasemzadeh, 
2014), schools (Agasisti, 2013; Rosenmayer, 2014), electricity (Andrade, Alves, Silva, & de 
Mello, 2014; Azadeh, Motevali Haghighi, Zarrin, & Khaefi, 2015), and transportation 
(Fancello, Uccheddu, & Fadda, 2014; Georgiadis et al., 2014; Lao & Liu, 2009; Zhao, 
Triantis, Murray-Tuite, & Edara, 2011). 

The modelling process of DEA includes: a) identification of the production frontier (or 
isoquant) of a set of comparable DMUs. Within a set of comparable DMUs, those exhibiting 
the best use of inputs to produce outputs will be identified, and would form an efficient 
frontier; b) measures the level of efficiency of each DMU by comparing its production 
function with the production frontier (Cook & Seiford, 2009). The production function 
(technology) is described by the production possibility set T of feasible output vectors y 

producible from input vectors x:  

T = {(x, y): y is feasibly produced from x}                                                                                               (2)                      

The CCR model measures efficiency of a DMU relative to a reference technology exhibiting 
constant returns to scale (CRS) whereas the BCC model exhibits variable (increasing, 
constant, or decreasing) returns to scale (VRS) at different points on the production frontier 
(see Figure 2). These two basic DEA models play a crucial role in providing practitioners a 

non-parametric approach to evaluate the efficiency of DMUs with multi-inputs and multi-
outputs. 

In transit, due to capacity constrains (bus station capacity) the output (on time performance, 
transit work) might not have a constant increase by increasing the inputs (the size of the bus, 
service frequency etc.). Therefore the return to scale might not be constant. However for the 
current problem application (case study, section 5) we can consider CRS under the 
assumption that the system is operating below capacity.  For broader application, we need to 
consider VRS so as to reflect the capacity constrain. The comparison of the results from 
CRS is beyond the scope of this paper. As this study utilises CRS, next section provides the 
details of the CRS model. Interested readers can refer to Coelli et al. (1998) for detailed 

understanding of CRS and VRS models.  

Figure 2. Production frontier of CCR (CRS) and BCC (VRS) models    

 Input

O
u

tp
u
t

o

Production

Possibility

Set

Production Frontier
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CCR model 

Suppose that each DMUj (j=1…n) uses m inputs xij (i=1…m) to generate s outputs yrj 
(r=1…s), and the vi, ur are the variable weights of inputs and outputs respectively.  

This method uses the known inputs and outputs of all DMUs in the given set of data to 
determine the efficiency of one member DMUj (j=1…n), which is assigned as DMU0. The 
efficiency of DMU0 is obtained by solving the following fractional programming problem n 
times, each DMU once.  

max ℎ0 =
∑ 𝑢𝑟 𝑦𝑟0

𝑠
𝑟=1

∑ 𝑣𝑖𝑥𝑖0
𝑚
𝑖=1

                                                                                                                                        (3) 

Subject to:       
∑ 𝑢𝑟 𝑦𝑟𝑗

𝑠
𝑟=1

∑ 𝑣𝑖𝑥𝑖𝑗
𝑚
𝑖=1

≤ 1;                 𝑗 = 1, … , 𝑛 

                        𝑢𝑟 , 𝑣𝑖  ≥ 𝜀 > 0;        𝑟 = 1, … , 𝑠;         𝑖 = 1, … , 𝑚. 

Where ε is a “non-Archimedian infinitesimal”, which is smaller than any positive real number. 
This means that all variables are constrained to positive values.  

The objective is to obtain the input and output weights vi, ur as variables that maximize the 
ratio of the DMU0, the DMU being evaluated. The value of h0 obtained from this formulation 
represents the efficiency score of the DMU0. The constraints mean that h0

*, the optimal value 
of h0, should not exceed 1 for every DMU. In case h0

*=1, this DMU places on the efficiency 

frontier (Tone, Cooper, & Seiford, 1999). 

To solve this problem, the authors apply the theory of Charnes and Cooper (1962) to 
converted this fractional programming problem to the linear programming (LP) model with 

the changes of variables 𝑡(∑ 𝑣𝑖 𝑥𝑖0) = 1
𝑚

𝑖=1
; 𝜇𝑟 = 𝑡𝑢𝑟  and 𝜗𝑖 = 𝑡𝑣𝑖. The above problem is 

replaced by the following equivalent: 

max ℎ0 = ∑ 𝜇𝑟 𝑦𝑟0

𝑠

𝑟=1

                                                                                                                                           (4) 

Subject to:         ∑ 𝜗𝑖 𝑥𝑖0 = 1𝑚
𝑖=1  

                          ∑ 𝜇𝑟 𝑦𝑟𝑗
𝑠
𝑟=1 − ∑ 𝜗𝑖 𝑥𝑖𝑗 ≤ 0                          𝑗 = 1, … , 𝑛

𝑚

𝑖=1
 

                          𝜇𝑟 , 𝜗𝑖  ≥ 𝜀 > 0;        𝑟 = 1, … , 𝑠;         𝑖 = 1, … , 𝑚. 

The dual problem reproduced here for input-oriented model is as follows: 

min   𝜃 − 𝜀(∑ 𝑠𝑟
+𝑠

𝑟=1 + ∑ 𝑠𝑖
−𝑚

𝑖=1
)                                                                                            (5)                                                                                              

Subject to:        ∑ 𝜆𝑗 𝑥𝑖𝑗  + 𝑠𝑖
−  = 𝜃𝑥𝑖0 

𝑛

𝑗=1
         𝑖 = 1, … , 𝑚    

                         ∑ 𝜆𝑗 𝑦𝑟𝑗 − 𝑠𝑟
+  = 𝑦𝑟0 

𝑛

𝑗=1
          𝑟 = 1, … , 𝑠        

                         𝜆𝑗 , 𝑠𝑖
+ , 𝑠𝑖

−  ≥ 0,        𝑎𝑙𝑙 𝑟, 𝑖, 𝑗;           𝜃 𝑓𝑟𝑒𝑒 

Where: (𝑠𝑖
+, 𝑠𝑖

−) are the output and input slack variables 

In case of output-oriented model, the dual problem can be expressed as follows: 

max 𝜑 − 𝜀(∑ 𝑠𝑟
+𝑠

𝑟=1 + ∑ 𝑠𝑖
−𝑚

𝑖=1
)                                                                                            (6)                           
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Subject to:        ∑ 𝜆𝑗 𝑥𝑖𝑗  + 𝑠𝑖
−  = 𝑥𝑖0 

𝑛

𝑗=1
            𝑖 = 1, … , 𝑚 

                         ∑ 𝜆𝑗 𝑦𝑟𝑗 − 𝑠𝑟
+  = 𝜑𝑦𝑟0 

𝑛

𝑗=1
         𝑟 = 1, … , 𝑠; 𝜆𝑗 , 𝑠𝑖

+, 𝑠𝑖
−  ≥ 0,   𝑎𝑙𝑙 𝑟, 𝑖, 𝑗;      𝜑 𝑓𝑟𝑒𝑒 

5. DEA based bus route temporal performance: a case 
study on route 111, Brisbane 

With a case study on a single bus route 111 on Brisbane, Australia the paper explores the 
application of DEA for evaluating the temporal performance of the route. The methodology 
can be extended to evaluate the spatial-temporal performance by considering multiple 
routes.  

The operational performance of the bus is estimated using (AFC) data- Go-card, Translink. 
For this pilot study, AFC data for 19th August 2013 is used. Other relevant data such as route 
length, section length between stops, schedule time table were obtained from the Translink 
website (http://translink.com.au). 

5.1. Study route and data 

Bus route 111 is one of the major bus routes in Brisbane with high passenger demand. It 
connects the south (Eight Mile Plains) with the Brisbane CBD (see Figure 3) along a 

continuous Bus Rapid Transit corridor. With regard to the inbound direction (toward CBD), 
there are a total of 11 bus stops along the route, commencing at Eight Mile Plains Busway 
Station, and terminating at Roma Street Busway Station. The total length of the route is 17 
km, and the average schedule travel time is 27 minutes. 

Figure 3: Bus route 111 map (source: Google maps) 

 



Data envelopment analysis (DEA) Based Transit Route Temporal Performance Assessment 

11 
 

AFC data from Translink includes details of the individual passenger journey from smart 
card. This includes the following fields: operator, operation date (date corresponding to the 
bus operation), smart card ID (encrypted smart card ID of the passenger), route (bus route 
used by the passenger), direction (inbound or outbound), schedule start (the schedule start 
time of corresponding trip), actual start (the actual departure time of bus at the starting stop), 
actual end (the actual arrival time of bus at the destination), boarding and alighting stop (the 
stop ID that passenger uses to board and alight), boarding and alighting time (the time that 
passenger touch on or touch off the smart card when boarding or alighting), vehicle ID 
(encrypted ID of bus vehicle), journey ID (encrypted ID of bus trip), and ticket type (the type 
of smart card used by passenger such as adult, student or school children). 

The template of smart-card data is expressed in Table 2, which shows that smart-card data 

can provide information to reconstruct vehicle’s service performed along all consecutive 
segments composing a transit route during a given time window (a day or an hour). 

Table 2. Template of smart-card data in Brisbane, Australia 

Operator Operations 
Date 

Smartcard 
ID 

Route Service Direction Scheduled 
Start 

Actual 
Start 

… … … … … … … … 

Actual End Boarding 
stop 

Alighting 
stop 

Boarding 
time 

Alighting 
time 

Vehicle 
ID 

Journey ID Ticket 
type 

… … … …. … … … … 

 

Figure 4: Extracting transit route performance indicators flowchart 

 

 

Steps implemented to extract needed inputs and outputs from smart-card data are shown in  
Figure 4 where inputs and outputs are extracted utilising the aforementioned smart-card 

data fields: 

Raw Smart-card data

Data for route and

direction

Data for a month and

working days only

Data for a given

working day

Data for a given

vehicle

Data for a given

service of vehicle

Data for a given

segment of route

Transit work of

service

Total passenger

Average dwell

time

On time

performance

Route

Direction

Month

Working calendar

Working calendar

Vehicle Index

Schedule starting time Index

Smart-card ID IndexActual starting time

Actual ending time

Travel time

Alighting stop Index

Boarding stop Index

Alighting time

Boarding time

First and last alighting time

First and last boarding time

Inputs and

outputs extracted
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1. Based on the raw smart-card data, data for a given route and direction (inbound and 
outbound) is separated. 

2. Based on the working day calendar and month index, data for a given month and 
working day only are extracted. 

3. Based on the day index, data for a given working day are extracted. Data for a given 
vehicle then will be extracted on the basic of vehicle index.  

4. Based on the schedule starting time index, data for each service of a given vehicle 
are extracted. 

5. Service data for a given segment of bus route are extracted on the basics of alighting 
stop index and boarding stop index. Transit work then can be calculated for each 
service based on segment data (see Equation 1 in section 3).  

6. Based on the actual starting time (𝑡0 ) and actual ending time (𝑡1 ) index of each 

service, the actual travel time (∆𝑡 ) of a given service is calculated as follows: 

∆𝑡 = 𝑡1 − 𝑡0 . Comparing the arrival time of bus vehicle at bus stops and ending point 
with schedule time can compute the on-time performance (OTP) indicator. OTP is 
defined as the proportion of observed trips that arrives the stops and ending point of 
the trip on time, where “on time” is less than 1 minute early and less than 5 minutes 
late. 

7. The total number of passenger equals to the total number of boarding passenger or 
alighting passenger. At each bus stop, smart-card data can provide the first and last 
alighting time as well as the first and last boarding time, if there are passengers 
boarding and alighting. Thus, it enables to determine a proxy dwell time (2013), and 
the time that a bus vehicle arrives at a given stop. 

Based on the aforementioned steps, performance indicators (OTP, Transit work, and Total 
travel time) of route 111 with inbound direction have been extracted from the raw smart-card 
data for every hour of 19th Aug, 2013. The operation of route 111 during one hour is 
regarded as a DMU in the DEA model.  

Table 3 shows the briefly statistical description of the inputs (Number of services and Total 
travel time) and outputs (OTP and Transit work). Table 4 expresses the major performance 
indicators extracted for 111 where the Hour starts from 6 because there is no bus service 

from 0:00 to 5:00 am. OTP is defined in the current paper as the proportion of observed trips 
that arrive the ending point of the trip on time (not account for arrival time at stops). In some 
hours (such as from 22:00 to 24:00), there are not any services that arrive the destination on 
time, so OTP is 0.  

Table 3. Statistical description of the inputs and outputs 

Variables Mean Minimum Maximum Standard deviation 

Number of services 4 1 11 2.74 

Total travel time (hour) 1.73 0.32 6.52 1.54 

Average travel time (hour) 0.43 0.32 0.59 0.06 

OTP (%) 25 0 82 22.99 

Transit work (p-km) 1193 46 7832 1975 

5.2. Data analysis and results 

This section investigates the service effectiveness of one bus route during every hour of a 

working day on the basis of maximizing the outputs. DMU thus is defined as the 
performance of bus route 111 in an hour (all bus services in an hour). However, due to the 
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duration of one bus service can across the two different hours, bus services in a given hour 
are selected based on the schedule start time. CCR model with output orientation is used to 
calculate the efficiency score of DMUs. The service effectiveness relates the service output 
offered by the operators to the service consumption (refer Figure 1), the benchmarking for 

which should help to maximize the bus ridership and quality of service.  The rationale behind 
the selection of input and output is as follows: 

Input variables: the variables should represent service outputs offered by the operator. Here, 
we select number of service and total travel time. The number of service provided in an hour 
represents the bus capacity offered by the operators. Total travel time is the sum of travel 
time of all services in a given hour. This study considers total travel time as input because 
we are focusing on the service effectiveness for which total travel time represents the 

duration for which the service is offered. 

Output variables: the variables should represent the service consumption. Here, we select 
Transit work and OTP. Transit work by definition represents the service consumption of the 

community. Note: OTP is generally used as a variable of service output (Sheth et al., 2007). 
We argue that the transit operators in principle desire to maximize the OTP to increase the 
transit quality of service. OTP is used as an output by Barnum et al. (2008) to measure the 
performance of multiple bus routes. Therefore, we consider OTP as the second output in this 
paper.          

Table 4: Bus route 111’s performance indicators for inbound direction (19th Aug, 2013) 

Hour 
 

No of  
services 

Transit 
work (p-km) 

Total  
passenger 
(p) 

Total travel  
time (hour) 

Average 
travel  
time (hour) 

OTP 
(%) 
 

6 4 1600 137 1.65 0.41 25 

7 6 3605 300 2.50 0.42 17 

8 11 7832 738 5.17 0.47 9 

9 11 5377 563 6.52 0.59 82 

10 3 1468 141 1.43 0.48 67 

11 4 1193 115 1.77 0.44 25 

12 3 545 63 1.28 0.43 33 

13 3 1155 121 1.20 0.40 0 

14 4 1257 136 1.73 0.43 25 

15 4 1082 125 1.77 0.44 50 

16 5 1508 197 2.20 0.44 40 

17 6 1501 188 2.52 0.42 33 

18 6 1296 158 3.22 0.54 33 

19 4 508 57 1.75 0.44 25 

20 2 380 42 0.77 0.38 0 

21 3 174 22 1.10 0.37 0 

22 3 259 35 1.18 0.39 33 

23 1 46 5 0.32 0.32 0 

24 1 118 8 0.33 0.33 0 
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To demonstrate the influence of variables to the DEA efficiency scores of DMUs, this paper 
computes the DEA efficiency scores for three cases, in which each case has a different 
combination between input and output variables (see Table 5). The results obtained from the 
efficiency analysis of the three cases are expressed in Figure 5. Here, case 1 (with one 

input and one output) illustrates the direct relationship between bus capacity and actual bus 
loading; case 2 considers the influence of travel time on the efficiency score of DMUs; and 
case 3 takes travel time as the second input and the OTP as the second output into account. 
The score axis illustrates the efficiency scores of DMUs (hourly operation of bus route). A 
DMU is efficient/effective if its score equals to 1, whereas lower score indicates that it is 
more inefficient/ineffective. For instance, hour 8 in case 1 is efficient (score equals to 1) and 
become benchmark for other inefficient DMUs (score < 1) whereas hour 6 with score of 0.56 
is inefficient against hour 8. It is possible to increase the output of hour 6 by 78.6% (= (1-
0.56)/0.56) using the similar inputs. 

Table 5: Inputs and outputs using for DEA models in cases 1, 2, 3 

Case DEA model Orientation Input variables Output variables 

1 CCR (CRS) output Number of service Transit work 

2 CCR (CRS) output No of service, Total travel 
time 

Transit work 

3 CCR (CRS) output No of service, Total travel 
time 

Transit work, OTP 

  

Figure 5: The DEA efficiency score of the case 1, 2, 3 

 

In case 1 and 2, there is only one efficient DMU (from 7:00 am to 8:00 am) which is the 
morning peak hour with the highest passenger demand. However, case 2 witnesses the 
slight increase of efficiency scores of DMUs in the afternoon compared to case 1 because 
they experience the lower travel time. Case 3 shows a significant increase of efficiency 
scores of most DMUs with two efficient DMUs at hours 8 and 10. It also expresses the 
significant growth of efficiency scores at hour 10 and 22 because at these two hours the 
OTP values are notably higher than the average value of the sample (25%). Those results 
are evident to state that OTP significantly influences the DEA efficiency scores, and the DEA 
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efficiency scores of inefficient DMUs are relative to the best performing DMUs (hour 8, 10). 
The efficiency scores can be utilised to identify the services which are:  

 Best performance (benchmarks) with score 1,  

 Good performance (score 0.8-1),  

 Fairly good performance (score 0.5-0.8),  

 Fairly bad performance (score 0.3-0.5), and  

 Bad performance (score 0-0.3).  

This work is substantially worth, especially identifying the benchmarks, because transit 
operator may find factors that lead to the inefficiency by looking at the best and the least 
performance hours.  The study is currently extended to identify the reasons for the inefficient 
DMUs using bootstrap model (Simar & Wilson, 2007) in the second stage analysis. 

6. Conclusion 

Evaluating the temporal performance of individual transit routes within a transit system can 
help transit agencies to get insight into the operation of a transit route, and then identify the 
benchmarks and the factors that may result in the inefficiency of transit routes.  

In this study we have reviewed the application of DEA models to measuring the transit 
performance at both system and route levels. Limited research is on the transit route 
performance evaluation. In literature, generally total passenger-km is used as the service 
consumption. We argue that transit work is a better service consumption indicator than 
passenger-km because the former incorporates the actual route length traversed by the 

passengers.  

This pilot study has evaluated temporal performance of a single bus route. For this, CCR 
model is applied, with the required data obtained from the AFC database. The scores 
quantify the service effectiveness of the DMUs. The DMUs with low score should be further 
studied in the second stage analysis using truncated regression models to identify the 
reasons for the ineffectiveness. The knowledge gained will help to provide transit operators 
with additional information for decision makings.    

This study indicates the significant contribution of OTP to the overall efficiency scores of 
DMUs. However, in the current analysis OTP is estimated based on the arrival time at the 
destination stop. Future research needs to use the arrival time at intermediate stops to 
enhance the accuracy of OTP and could use this method to compare the performance of 
different transit routes with different features such as the schedule time, the length of route 
and segments, and the size of vehicle. 
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