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 5 

ABSTRACT 6 

INTRO: 7 

Individuals of African descent (AFD) are more susceptible to non-freezing cold injury 8 

(NFCI) compared with Caucasian individuals (CAU). Vasodilatation to acetylcholine 9 

(ACh) is lower in AFD compared with CAU in the non-glabrous foot and finger skin 10 

sites; the reason for this is unknown. Prostanoids are responsible, in part, for the 11 

vasodilator response to ACh, however it is not known whether the contribution differs 12 

between ethnicities.  13 

METHODS:   14 

12 CAU and 12 AFD males received iontophoresis of ACh (1 w/v %) on non-15 

glabrous foot and finger skin sites following placebo and then aspirin (600 mg, single 16 

blinded). Aspirin was utilised to inhibit prostanoid production by inhibiting the 17 

cyclooxygenase (COX) enzyme. Laser Doppler flowmetry was utilised to measure 18 

changes in skin blood flow.  19 

RESULTS:   20 

Not all participants could receive iontophoresis charge due to high skin resistance; 21 

these participants were therefore excluded from the analyses.  22 

Foot:ACh elicited greater maximal vasodilatation in CAU than AFD following placebo 23 

(P=0.003) and COX inhibition (COXib) (P<0.001). COXib did not affect blood flow 24 
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responses in AFD, but caused a reduction in the area under the curve for CAU 1 

(P=0.031). 2 

Finger:ACh elicited a greater maximal vasodilatation in CAU than AFD following 3 

placebo (P=0.013) and COXib (P=0.001). COXib tended to reduce the area under 4 

the curve in AFD (P=0.053), but did not affect CAU. 5 

CONCLUSIONS:  6 

CAU have a greater endothelial reactivity than AFD in both foot and finger skin sites 7 

irrespective of COXib. It is concluded that the lower ACh-induced vasodilatation in 8 

AFD is not due to a compromised COX pathway.  9 

 10 

KEY WORDS: Non-freezing cold injury; ethnicity; skin blood flow; endothelial-11 

dependent vasodilatation; acetylcholine; cyclooxygenase. 12 

 13 

HIGHLIGHTS 14 

 ACh-induced cutaneous dilatation is attenuated in African individuals versus 15 

Caucasians. 16 

 COX inhibition attenuated the dilatation in the foot skin site for Caucasians. 17 

 COX is not responsible for the lower vasodilator responses in African 18 

individuals. 19 

  20 



4 
 

INTRODUCTION 1 

Non-freezing cold injury (NFCI) is a preventable clinical injury that affects the 2 

peripheral skin sites (particularly fingers and toes) of individuals who experience 3 

prolonged exposure to local cold tissue temperatures (0 °C to 20° C) (Ungley and 4 

Blackwood, 1942). Symptoms of this injury may last for many years and often 5 

include pain, numbness and hyperhidrosis which, combined with cold 6 

hypersensitivity of the injured limb, can lead to increased susceptibility to further cold 7 

injuries (Golden et al., 2013; Ungley et al., 1945). This type of injury is a concern for 8 

those involved in outdoor work (e.g. agriculture or forestry work, military) or 9 

recreational activities (e.g. skiing, mountaineering) that take place in cold conditions 10 

which may also elicit freezing cold injuries (Hashmi et al., 1998; Mäkinen et al., 2009; 11 

Morrison et al., 2015).  12 

 13 

Individuals of black African descent (AFD) are more susceptible than Caucasian 14 

(CAU) individuals to NFCI (Burgess and Macfarlane, 2009; DeGroot et al., 2003). 15 

The reason for this is not known but it is thought that sustained skin blood flow in the 16 

extremities in low environmental temperatures can prevent local cold injuries 17 

(Daanen and van der Struijs, 2005; Lewis, 1941; Wilson and Goldman, 1970). During 18 

hand immersion in cold water (8 °C) for 30 minutes and subsequent rewarming of 19 

dry skin in 30 °C air, AFD experienced greater finger vasoconstriction and slower 20 

rewarming compared with CAU (Maley et al., 2014) indicating AFD received a 21 

greater “dose of cold”. We investigated whether this was due to alterations in the 22 

control of the microcirculation of the extremities and demonstrated that endothelial-23 

dependent (ACh), but not -independent (SNP), vasodilatation was significantly 24 
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attenuated in AFD compared with CAU in non-glabrous finger and toe skin sites 1 

(Maley et al., 2015). 2 

 3 

Local application of acetylcholine (ACh) increases prostanoid and nitric oxide 4 

production eliciting vasodilatation (Holowatz et al., 2005; Kellogg et al., 2005). 5 

Prostanoids are produced from arachidonic acid, released from the cell membrane, 6 

metabolised by the enzyme cyclooxygenase (COX) (Vane et al., 1998) to produce 7 

prostaglandin H2 which is further metabolised by various synthase enzymes to 8 

produce various prostanoids (Félétou, 2011; Hamberg et al., 1975; Moncada et al., 9 

1976; Moncada and Vane, 1979). The vascular wall synthesises each of these 10 

prostanoids, the most abundant being prostacyclin (PGI2), whilst platelets are the 11 

main source of thromboxane A2 (TXA2) (Dubois et al., 1998; Félétou, 2011; Majed 12 

and Khalil, 2012; Moncada and Vane, 1978; Tang and Vanhoutte, 2008). In young 13 

healthy individuals TXA2 and PGI2 elicit vasoconstriction and vasodilatation, 14 

respectively (Félétou, 2011; Majed and Khalil, 2012). 15 

 16 

Blocking COX inhibits all vasodilator and vasoconstrictor prostanoid production (Roth 17 

et al., 1975; Vane, 1971). The net action of COX inhibition (COXib) varies between 18 

populations. In young, healthy individuals, COXib attenuates the vasodilator 19 

response to ACh in the forearm circulation assessed with laser Doppler flowmetry 20 

(Holowatz et al., 2005; Kellogg et al., 2005; Noon et al., 1998). However, the role of 21 

COX in response to ACh appears compromised in certain populations. Normotensive 22 

aged (>60 years) and hypertensive individuals (>46 years) exhibit similar endothelial 23 

dysfunction in response to ACh, with COXib (indomethacin) restoring the vasodilator 24 

response as assessed by plethysmography (Taddei et al., 1997b). This vasodilator 25 
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restoration was due to an increase in nitric oxide bioavailability (Taddei et al., 1 

1997a). More recently, in-vitro studies performed on human small arteries noted the 2 

antioxidant, ascorbic acid, and a non-selective COX inhibitor (indomethacin) 3 

augmented the vasodilator response to ACh in hypertensive samples, although their 4 

actions were not additive (Virdis et al., 2013). Collectively, this body of research 5 

provides evidence that the mechanism of endothelial dysfunction in aged and 6 

hypertensive individuals is due, in part, to COX activity diminishing the vasodilator 7 

response to endothelial-dependent vasodilators through reductions in nitric oxide 8 

bioavailability. Whether the endothelial dysfunction in AFD observed previously 9 

(Maley et al., 2015) is caused by a differing contribution of the COX pathway 10 

between ethnic groups is not known. Given that AFD experience greater levels of 11 

oxidative stress (Feairheller et al., 2011; Kalinowski et al., 2004), and COX increases 12 

reactive oxygen species (Kukreja et al., 1986; Virdis et al., 2013) as well as 13 

producing TXA2, it is possible that the COX pathway may contribute to the attenuated 14 

ACh-induced vasodilatation compared with CAU. 15 

 16 

Therefore, the aim of the present study was to establish the contribution of COX to 17 

ACh-induced vasodilatation in both CAU and AFD. As we have previously observed 18 

an attenuated ACh-induced vasodilator response in AFD compared to CAU, it was 19 

hypothesised that AFD would experience a lower vasodilator response to ACh 20 

compared with CAU, and COXib would augment endothelial reactivity in AFD. 21 

 22 

METHODS 23 

PARTICIPANTS 24 
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This study was given a favourable ethical opinion from the University of Portsmouth 1 

Science Faculty Ethics Committee. The participants were made aware of the 2 

purpose, procedures and risks of the study prior to giving their informed written 3 

consent. 12 CAU and 12 AFD male volunteers participated in the study. All CAU 4 

were born in the UK. Eight AFD were born in the UK whilst four were born in Africa 5 

(Zimbabwe, Ghana, Kenya and Uganda) and had resided in the UK for an average 6 

of 11 years with a minimum of seven years. CAU and AFD were of similar age 7 

(mean [SD], 22 [4] years and 20 [2] years, P = 0.069), height (mean [SD], 178.2 [6.9] 8 

cm and 176.0 [7.9] cm, P = 0.790) and body mass (mean [SD], 73.1 [12.3] kg and 9 

74.1 [12.8] kg, P = 0.583). 10 

 11 

In attempt to reduce heterogeneity female participants were not included in the 12 

present study as the menstrual cycle is known to effect vasodilator capacity and 13 

thermoregulation (Charkoudian and Stachenfeld, 2015; Hashimoto et al., 1995), 14 

therefore the results of the present study should only be applied to young healthy 15 

male participants. 16 

 17 

EXPERIMENTAL PROCEDURES AND MEASUREMENTS 18 

Participants attended the laboratory on one occasion where they received 19 

iontophoresis of ACh. The technique of iontophoresis has been described previously 20 

(Morris and Shore, 1996; Roustit et al., 2014). Briefly, iontophoresis is a non-invasive 21 

method of transdermal drug delivery which transfers charged molecules using a low-22 

intensity electric current into and through the skin to a depth of approximately 2 mm 23 

to 4 mm (Anderson et al., 2003). Iontophoresis was performed using both an anode 24 

and cathode connected to a battery powered iontophoresis controller (MIC2, Moor 25 
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Instruments, UK). The iontophoresis chamber, which is a small Perspex ring (MIC-1 

ION1R-P1, Moor Instruments, UK) with an inner diameter of 9.5 mm, was filled with 2 

approximately 0.2 mL of ACh (1 w/v % [55.05 mM], Sigma-Aldrich, UK), diluted in 3 

water for injection. A laser Doppler probe (VP1T / 7, Moor Instruments, UK), utilised 4 

to measure skin temperature and skin blood flow, was placed into the Perspex ring 5 

and connected to a laser Doppler flowmetry monitor (moorVMS-LDF, Moor 6 

Instruments, UK). Laser Doppler and iontophoresis data were recorded using a data 7 

acquisition system and software (Powerlab and LabChart 7, AD Instruments, New 8 

Zealand). 9 

 10 

On the day of testing participants were asked to consume 150 mL of diluted orange 11 

squash immediately prior to entering a temperature controlled chamber set at a dry 12 

bulb temperature of 23.2 (0.8) °C. All participants rested for 30 minutes in a supine 13 

position to allow skin temperature and skin blood flow to stabilise. Participants were 14 

supine throughout the experiment and each skin site was cleaned with deionised 15 

water prior to iontophoresis. Iontophoresis of ACh was delivered to either the right 16 

medial or right lateral dorsal foot first using the anode, with the cathode placed 17 

proximally within 5 cm to 10 cm. Secondly, iontophoresis was applied to the third or 18 

fourth non-glabrous finger skin site (medial phalanx) on the right hand (Fig. 1). 19 

Following this, participants were then asked to consume 150 mL of diluted orange 20 

squash which contained dissolved aspirin tablets to the total of 600 mg of aspirin 21 

(acetylsalicylic acid) (Boots Company, UK). Participants were blinded to the order of 22 

placebo and aspirin. Aspirin irreversibly inhibits COX by acetylation of the active site 23 

of COX (Vane, 1971; Vane and Botting, 2003) with this dose of aspirin shown to 24 
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inhibit 86 % of bradykinin-induced production of PGI2 and 99 % inhibition of TXA2 1 

production by platelets at 30 minutes (Heavey et al., 1985).  2 

 3 

Placebo Foot Site 1 Finger Site 1 
Aspirin 

(600 mg) 
Foot Site 2 Finger Site 2 

Fig. 1. Schematic of the experimental procedure 4 

 5 

Thirty minutes after aspirin treatment, iontophoresis began on the foot at a skin site 6 

that had not been used (medial or lateral). Following this, iontophoresis was applied 7 

to the second finger skin site (third or fourth). The reason for not using the same skin 8 

site was that during pilot experiments the vasodilator response to iontophoresis of 9 

ACh was much longer lasting than 30 minutes, thus using the same skin site would 10 

influence subsequent skin blood flow results; this has been reported previously 11 

(Brocx and Drummond, 2009). The order of participants’ skin sites tested (lateral vs. 12 

medial dorsal foot, third vs. fourth finger) was counter-balanced between 13 

participants. Repeatability studies on six participants demonstrated that the 14 

responses to ACh did not differ between sites (medial vs lateral foot; middle vs fourth 15 

finger) and over time (two dose ACh response curves following placebo). 16 

 17 

The iontophoresis protocol employed in the present study is the same as previously 18 

used (Maley et al., 2015) which consisted of six pulses of 25 μA (0.5 mC) followed by 19 

one pulse of 50 μA (1mC) and one of 100 μA (2 mC) applied for 20 seconds 20 

separated by 60 second intervals in which no current was applied. On completion of 21 

the protocol, and after an interval of five minutes, the protocol was repeated on the 22 

next skin site. Blood pressure from the contralateral arm was recorded pre- and post- 23 
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iontophoresis application and measured using an automated monitor (Minimon 7137 1 

Plus, Kontron Instruments, UK) for calculation of mean arterial pressure (MAP).  2 

 3 

DATA ANALYSES 4 

Due to high skin resistance, it was not possible to deliver all the current pulses in 5 

each skin site for all participants; this occurred more in the AFD participants. 6 

Therefore, only those who could receive the first pulse of iontophoresis were 7 

included in analyses (see results). As skin resistance during iontophoresis charges 8 

of 100 μA have been reported to influence the vasodilator response to ACh (Pienaar 9 

et al., 2014; Puissant et al., 2014) we investigated whether this was true for lower 10 

iontophoresis charges. Following placebo treatment, the skin blood flow responses 11 

(average over the six pulses of 25 μA) were correlated with electrical skin resistance 12 

(average over the six pulses of 25 μA) and were plotted for CAU and AFD separately 13 

and R2 calculated. Skin resistance was calculated by monitoring the applied voltage 14 

and dividing this by the current application, displayed in kilohms.  15 

 16 

Blood pressure remained constant throughout the iontophoresis protocol (see 17 

results) therefore skin blood flow at baseline was expressed as laser Doppler units 18 

(LDU) rather than cutaneous vascular conductance. Average skin blood flow in 19 

response to iontophoresis of ACh was calculated over the final 20 seconds of the 20 

interval between successive pulses and between 40 to 60 seconds after the final 21 

pulse. These responses were expressed as percentage change from that prior to 22 

iontophoresis (averaged over 20 seconds and set at 0 %). ED50, expressed as 95 % 23 

confidence intervals was calculated using GraphPad (Version 5, USA). Maximum 24 

skin blood flow and area under the curve (AUC) were calculated for each participant. 25 
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The point at which the skin blood flow was at a maximum point was not always 1 

identified following the final pulse, therefore maximum skin blood flow was taken 2 

from wherever it was highest. 3 

 4 

Statistical analyses were conducted using IBM SPSS for Windows version 20 (IBM 5 

SPSS Statistics, USA). Normality of data was assessed using Shapiro-Wilks 6 

statistical analysis. An α value of 0.05 was used to determine statistical significance. 7 

Baseline skin blood flow, skin temperature and MAP between- and within-groups 8 

were compared using an independent and paired samples t-test, respectively. ED50, 9 

maximal percentage change, AUC between-groups was analysed using an 10 

independent samples t-test or a Mann-Whitney U test, respectively (statistical test 11 

utilised determined by normality testing). ED50, maximal percentage change, AUC 12 

within-groups was analysed using a paired samples t-test or a Wilcoxon signed rank 13 

test. Non-parametric analysis was utilised to assess skin blood flow over time. Effect 14 

sizes were calculated using Cohen’s d for parametric data (denoted by d in text) and 15 

Rosenthal’s r for non-parametric data (denoted by r in text). Data within figures are 16 

presented as mean (SD) 17 

 18 

RESULTS 19 

MEAN ARTERIAL PRESSURE 20 

MAP at baseline for CAU and AFD following placebo (mean [SD], 83 [8] mmHg and 21 

87 [8] mmHg, respectively, P = 0.627) and COXib (mean [SD], 84 [5] mmHg and 88 22 

[9] mmHg, respectively, P = 0.064) did not differ between- or within-groups (CAU P = 23 

0.748, AFD P = 0.805). 24 

  25 
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BASELINE SKIN BLOOD FLOW AND SKIN TEMPERATURE  1 

There were no differences in baseline skin blood flow or skin temperature between- 2 

or within-groups for either the foot or finger skin sites following treatment of either 3 

placebo or COXib (Table 1). 4 

 5 

Table 1. Mean (SD) baseline skin blood flow (LDU) and skin temperature (°C) for the 6 

foot and finger skin sites following placebo or COXib 7 

  Baseline Skin Blood Flow (LDU)  
 Foot Finger 
 Placebo COXib Within Placebo COXib Within 
CAU 12 (6) 

n = 12 
11 (4) 
n = 12

P = 0.165 54 (19) 
n = 11

47 (23) 
n = 11 

P = 0.111 

AFD 10 (7) 
n = 12 

8 (3) 
n = 12

P = 0.312 52 (25) 
n = 10

48 (23) 
n = 8 

P = 0.089 

Between P = 0.571 P = 0.081  P = 0.890 P = 0.950  
 Skin Temperature (°C) 
CAU 27.1 (1.3) 

n = 12 
26.8 (1.3) 

n = 12
P = 0.079 29.4 (0.8) 

n = 11
28.9 (1.1) 

n = 11 
P = 0.172 

AFD 27.0 (1.1) 
n = 12 

26.6 (1.3) 
n = 12

P = 0.121 28.8 (0.6) 
n = 10

28.5 (0.7) 
n = 8 

P = 0.167 

Between P = 0.848 P = 0.998  P = 0.084 P = 0.355  
 8 

RESPONSES TO ACETYLCHOLINE 9 

FOOT SKIN SITE 10 

WITHIN-GROUPS 11 

Fig. 2 shows the skin blood flow responses to ACh for the foot skin site in CAU and 12 

AFD. CAU experienced a reduced vasodilator response to ACh following COXib 13 

(Fig. 2). Additionally, in CAU following COXib ED50 occurred at a greater cumulative 14 

current (Table 2, P = 0.005), AUC was smaller (P = 0.031, d = 0.80) but maximal 15 

vasodilatation did not differ. COXib did not affect the vasodilator response to ACh in 16 

AFD.  17 

 18 
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 1 

Fig. 2. Mean (SD) skin blood flow responses in the foot skin site for both placebo and 2 

COXib trials. * Significant difference between CAU and AFD for placebo trial (P < 3 

0.05). ‡ Significant difference between CAU and AFD for COXib trial (P < 0.05). † 4 

Significant difference between placebo and COXib trial for CAU (P < 0.05). 5 

Error bars included for CAU and AFD placebo only for reader clarity. 6 

 7 
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Table 2. Maximum, ED50 and area under the curve (AUC) skin blood flow response 1 

to ACh in the foot skin site following placebo or COXib 2 

 Variable 
 ED50 (μA) Max (%) AUC 

Within 

Foot 
CAU 

PLACEBO 
n = 12

54 to 116 ^943 (490) 4808 (2678) 

COXib 
 n = 12

116 to 174 † ^775 (784) 2998 (1761) † 

 P = 0.005 P = 0.308 P = 0.031 

Foot 
AFD 

PLACEBO 
n = 12

150 to 271 ^81 (370) ^190 (1329) 

COXib 
n = 12

118 to 418 ^50 (148) ^95 (894) 

 P = 0.757 P = 0.117 P = 1.000 

Between 

Foot 
placebo 

CAU  
n = 12

54 to 116 ^943 (490) ^4516 (2601) 

AFD 
n = 12

153 to 302 * ^81 (370) * ^190 (1329) * 

 P < 0.001 P = 0.003 P = 0.001 

Foot  
COXib 

CAU  
n = 12

116 to 174 ^775 (784) ^3120 (3170) 

AFD  
n = 12

97 to 424 ^50 (148) * ^95 (894) * 

 P = 0.159 P < 0.001 P = 0.002 
Max given as median (IQR) percentage change from baseline, ED50 given as 95 % confidence 3 

intervals (microamps) and AUC given as mean (SD) or median (IQR). Note: as pairwise analyses 4 

were conducted within-groups, the values reported do not always match the between-groups 5 

analyses which included all participants or until a participant did not receive all applied current. † 6 

Significant difference between placebo and COXib (P < 0.05). * Significant difference between CAU 7 

and AFD (P < 0.05). ^ Median (IQR). 8 

 9 

BETWEEN-GROUPS 10 

AFD demonstrated lower vasodilatation compared with CAU in response to ACh 11 

following both placebo and COXib (Fig. 2). Following placebo treatment ED50 12 

occurred at a greater cumulative current for AFD compared with CAU (Table 2, P < 13 

0.001), and maximal vasodilatation (P = 0.003, r = 0.59) as well as AUC (P = 0.001, r 14 

= 0.62) were lower in AFD than CAU. Following COXib, ED50 did not differ between 15 



15 
 

groups, however maximal vasodilatation (P < 0.001, r = 0.67) as well as AUC (P = 1 

0.002, r = 0.60) were lower in AFD compared with CAU.  2 

 3 

No relationship was observed between electrical skin resistance and skin blood flow 4 

responses in the foot skin site for either CAU or AFD (Fig. 3). 5 

 6 

Fig. 3. Relationship between average skin blood flow (%) and average electrical skin 7 

resistance (kΩ) for CAU and AFD in the foot skin site during 25 µA iontophoresis 8 

pulses of ACh following placebo 9 

 10 

FINGER SKIN SITE 11 

WITHIN-GROUPS 12 

Fig. 4 shows the skin blood flow responses to ACh for the finger skin site in CAU and 13 

AFD. For CAU, COXib did not affect the vasodilator response to ACh. This was 14 

confirmed with no difference in ED50, maximal vasodilatation or AUC (Table 3).  15 
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 1 

In AFD, COXib tended to reduce maximal vasodilatation (P = 0.064, d = 1.28) and 2 

AUC (P = 0.053, d = 1.32). Calculation of ED50 was not possible for AFD following 3 

COXib as no distinctive dose-response curve could be fitted to the data. 4 

 5 

Fig. 4. Mean (SD) skin blood flow responses in the finger skin site for both placebo 6 

and COXib trials. * Significant difference between CAU and AFD for placebo trial (P 7 

< 0.05). ‡ Significant difference between CAU and AFD for COXib trial (P < 0.05). 8 

Error bars included for CAU and AFD placebo only for reader clarity. 9 
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Table 3. Maximum, ED50 and area under the curve (AUC) skin blood flow response 1 

to ACh in the finger skin site following placebo or COXib 2 

Max given as mean (SD) or median (IQR) percentage change from baseline, ED50 given as 95 % 3 

confidence intervals (microamps) and AUC given as mean (SD). Note: as pairwise analyses were 4 

conducted within-groups, the values reported do not always match the between-groups analyses 5 

which included all participants or until a participant did not receive all applied current. * Significant 6 

difference between CAU and AFD (P < 0.05). ^ Median (IQR). 7 

 8 

BETWEEN-GROUPS 9 

AFD demonstrated lower vasodilatation compared with CAU in response to ACh 10 

following both placebo and COXib (Fig. 4). Following placebo in AFD, ED50 11 

occurred at a greater cumulative current than CAU (Table 3, P < 0.001). Additionally, 12 

maximal vasodilatation was lower (P = 0.013, r = 1.27) and AUC was smaller (P = 13 

0.002, r = 1.78) in AFD than CAU. Following COXib, AFD demonstrated lower 14 

 Variable 
 ED50 (μA) Max (%) AUC 

Within 

Finger 
CAU 

Placebo  
n = 11

49 to 98 301 (76) 1542 (597) 

COXib 
n = 11

24 to 137 311 (222) 1255 (872) 

 P = 0.646 P = 0.902 P = 0.273 

Finger 
AFD 

Placebo  
n = 8 

105 to 187 188 (139) 642 (632) 

COXib 
n = 8 

- 57 (43) 22 (202) 

 Unable to 
calculate 

P = 0.064 P = 0.053 

Between 

Finger 
placebo 

CAU  
n = 11

49 to 98 301 (76) 1542 (597) 

AFD  
n = 10

125 to 282 * 160 (139) * 539 (660) * 

 P < 0.001 P = 0.013 P = 0.002 

Finger 
COXib 

CAU  
n = 11

24 to 137 ^287 (162) 1255 (872) 

AFD  
n = 8 

- ^53 (88) * 35 (218) * 

 Unable to 
calculate 

P = 0.001 P = 0.001 
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maximal vasodilatation (P = 0.001, r = 0.64) and a smaller AUC (P = 0.001, d = 1.96) 1 

compared with CAU.  2 

 3 

No relationship was observed between electrical skin resistance and skin blood flow 4 

responses in the finger skin site in either CAU or AFD (Fig. 5). 5 

 6 

Fig. 5. Relationship between average skin blood flow (%) and average electrical skin 7 

resistance (kΩ) for CAU and AFD in the finger skin site during 25 µA iontophoresis 8 

pulses of ACh following placebo 9 

 10 

DISCUSSION 11 

The present study demonstrated that the vasodilator response to local application of 12 

ACh in the non-glabrous foot and finger skin sites is lower in AFD compared with 13 

CAU irrespective of COXib. This data supports previous observations in the hands 14 

and feet cutaneous microcirculation (Maley et al., 2015) and forearm circulation 15 
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(Cardillo et al., 1999; Jones et al., 1999; Ozkor et al., 2014; Stein et al., 1997) where 1 

an attenuated vasodilator response to ACh or methacholine was observed in AFD 2 

compared with CAU. The effect of COXib on the responses to ACh appeared to be 3 

site and ethnicity dependant. CAU, but not AFD, experienced a lower vasodilator 4 

response to ACh following COXib in the foot skin site indicating the role of 5 

vasodilator prostanoids, supporting previous findings in the forearm cutaneous 6 

microcirculation (Holowatz et al., 2005; Kellogg et al., 2005; Noon et al., 1998); 7 

however, in the finger skin site, COXib did not affect CAU but tended to affect AFD 8 

vasodilatation. 9 

 10 

It has been previously reported (Pienaar et al., 2014) that the higher skin resistance 11 

in AFD individuals at iontophoresis currents of 100 µA may be a possible cause of 12 

the reduced response to ACh in AFD compared with CAU. However, no correlation 13 

between electrical skin resistance and skin blood flow responses was observed in 14 

the present study during the 25 µA applied currents (Fig. 3 and Fig. 5). The obvious 15 

differences in applied iontophoresis currents between studies could be a major factor 16 

influencing results as previous investigations in healthy individuals have also 17 

reported that electrical skin resistance influences the ACh-induced vasodilator 18 

response to applied currents of 100 µA (Puissant et al., 2014). Additionally, Pienaar 19 

et al., (2014) correlated skin blood flow responses with electrical skin resistance but 20 

did not separate CAU and AFD data. Therefore, the conclusion from Pienaar et al., 21 

(2014) that iontophoresis in AFD is limited by resistance more so in comparison to 22 

CAU may be flawed as this ethnic group is known for higher skin resistance 23 

(Johnson and Corah, 1963) and decreased endothelial reactivity (Cardillo et al., 24 

1999; Jones et al., 1999; Ozkor et al., 2014; Stein et al., 1997). Different skin sites 25 
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(i.e. forearm vs. foot) and amount of iontophoresis charge may also have influenced 1 

the correlation between electrical skin resistance and skin blood flow responses. 2 

Based on our observations we suggest during 25 µA iontophoresis charges the 3 

depressed ACh-induced vasodilator response in AFD is not due to high electrical 4 

skin resistance in these individuals but due to another mechanism yet to be 5 

identified. 6 

 7 

In elderly and / or hypertensive individuals, COXib restores the vasodilator response 8 

to ACh through an increase in nitric oxide bioavailability (Taddei et al., 1997a, 9 

1997b). In comparison, COXib attenuates the vasodilator response to ACh in young 10 

normotensive individuals (Holowatz et al., 2005; Kellogg et al., 2005). Thus, COX 11 

products appear to facilitate vasodilatation in young normotensive individuals, but 12 

elicit vasoconstriction in older / hypertensive individuals. In the present study it was 13 

hypothesised that COXib in AFD may have augmented the vasodilator response to 14 

ACh by inhibiting the COX associated oxidative stress (Kukreja et al., 1986; Taddei 15 

et al., 1998; Virdis et al., 2013) and vasoconstrictor prostanoid contribution; however, 16 

this was not observed. Therefore, it appears either, (1) the COX pathway is not (or 17 

as) active in young healthy AFD males, or (2) the lower vasodilator response to ACh 18 

in AFD is not due to the COX pathway. Given that finger skin blood flow tended to 19 

decrease with COXib (Table 3) we cannot provide evidence for an inactive COX 20 

pathway in AFD. 21 

 22 

In contrast to our results and the studies mentioned above (Holowatz et al., 2005; 23 

Kellogg et al., 2005), Hendry and Marshall (2004) reported COXib augmented the 24 

response to ACh in the fingers of young healthy individuals. It is not clear why the 25 
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present study observed different responses but a direct comparison between studies 1 

is not possible as methodological differences exist (e.g. 100 μA vs. 25 μA, 2 

respectively). 3 

 4 

Given that AFD did not experience an augmented vasodilator response to ACh with 5 

COXib, the present study suggests other mechanisms are accountable for the lower 6 

vasodilator response compared with CAU. It is well documented that both nitric oxide 7 

and prostanoids are involved in the ACh-induced vasodilatation (Holowatz et al., 8 

2005; Kellogg et al., 2005; Noon et al., 1998). Another mechanism by which 9 

vasodilatation occurs in response to ACh is through endothelial-dependent 10 

hyperpolarising factors (EDHFs) (Brunt et al., 2015). Given that prostanoids 11 

production would be negligible upon COXib, it is assumed that the ACh-induced 12 

vasodilatation would be mainly mediated through nitric oxide or EDHFs. EDHFs are 13 

unlikely to be compromised in AFD as a recent study demonstrated that EDHFs 14 

provide a compensatory mechanism eliciting vasodilatation in response to intra-15 

arterial infusion of ACh in AFD, but not CAU (Ozkor et al., 2014). It is known that 16 

nitric oxide bioavailability is often lower in AFD compared with CAU due, in part, to 17 

an increased oxidative stress (Kalinowski et al., 2004). It is possible oxidative stress 18 

sources other than COX, such as superoxide produced from the enzyme 19 

nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (Paravicini and 20 

Touyz, 2008), may react with nitric oxide forming peroxynitrite resulting in less 21 

bioavailability of nitric oxide and lower vasodilatation (Münzel et al., 2010).  22 

 23 

Whilst prostanoids appear to play a role in the vasodilator response to ACh (Fig. 2) 24 

and in other settings such as whole-body heating (McCord et al., 2006), they are not 25 
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involved in the vasodilator response to local heating (Dahmus et al., 2013; Golay et 1 

al., 2004; McCord et al., 2006). This demonstrates that pharmacological protocols 2 

such as those used to deliver ACh may not always reflect what occurs in an applied 3 

setting. Recently, Belvins et al., (2014) provided preliminary evidence that COXib 4 

may reduce cold-induced vasoconstriction for CAU during local cooling of the foot. 5 

While in the present study COX was not responsible for the lower vasodilator 6 

response to ACh in AFD, COX may play a role during local cooling as this enzyme 7 

releases TXA2 (Serneri et al., 1990, 1981) and reactive oxygen species (Kukreja et 8 

al., 1986) which potentiate vasoconstriction (Bailey et al., 2005; Hamberg et al., 9 

1975). Based on this information it is hypothesised that COX may play some role in 10 

the exaggerated vasoconstrictor response in AFD during cooling, thereby 11 

contributing to the increased risk of NFCI. Future research should investigate the 12 

role of prostanoids during local cooling to elucidate the reasons for the skin blood 13 

flow and skin temperature differences between CAU and AFD during local cooling of 14 

the extremities. 15 

 16 

It is concluded that the attenuated endothelial reactivity to locally delivered ACh in 17 

AFD compared with CAU in foot and finger skin sites is not due to an altered function 18 

of COX in AFD; therefore, other pathways appear to be responsible. 19 
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