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Abstract

In two parts I regard the effects on asset pricing of uncertainty about the tax rate on dividends.

In the first part I develop a model in the fashion of the consumption CAPM adding an uncer-

tain dividend tax rate. To model cyclicality of the tax rate, uncertainty about the tax rate is

solely driven by deviations of output growth from its long-term mean. When all tax payments

are transferred back in a lump sum fashion, a countercyclical tax rate policy increases asset

prices and decreases expected returns as well as the equity premium. The opposite is true for

a procyclical tax policy. This holds for a certain range of the magnitude of the tax rate cycli-

cality. Beyond that range effects of tax rate cyclicality on asset pricing decrease again. When

taxes are not transferred back, the stochastic discount factor fundamentally changes, and many

effects from the case with full transfers do not hold anymore. One important implication is that,

for reasonable risk aversion, a procyclical tax rate policy causes an increase in expected equity

prices.

In the second part I use a real business cycle (RBC) model with habit formation and adjustment

costs for capital to analyze the effects of a volatile tax rate on dividends. Tax rate volatility is

purely exogenous. I find that the variability of the tax rate has weak effects on the volatilities of

business cycle variables such as consumption growth and investment growth and on the volatil-

ities of asset returns. The equity premium is increased only by a few basis points, when an un-

reasonably high volatility of tax rate shocks is applied. In turn, the effects on volatilities of busi-

ness cycle variables and asset returns are very strong in the standard RBC model, i.e., the model

without habits and adjustment costs. Effects not related to tax rate volatility are substantial.

Introducing a certain tax rate increases the (pre-tax) equity premium, so that after taxes the

same is earned as in a world without taxes. Additionally, not paying back taxes as transfer pay-

ments greatly increases the equity premium in the habit model with adjustment costs, but there

is no effect on the equity premium in the standard RBC model.
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1 Introduction

1.1 Overview and Summary

I use this chapter to introduce two research papers that analyze how uncertainty about the tax

rate on dividends affects asset pricing. I use the notions risk and uncertainty interchangeably.

That means agents attach certain probabilities to realizations of tax rates. For example Sialm

(2006) shows that in the U.S. tax rates on dividends and capital gains changed considerably

since their introduction. I make the basic assumption that agents care about those corporate

distributions that they can actually consume, i.e., the after-tax dividends. Thus, agents must

also care about the tax rate and its stochastic properties. I focus on tax effects on prices and on

expected returns on equity and on risk-free bonds, as well as on the respective excess return, i.e.,

the equity premium.

I present two papers in the following two chapters. Apart from their main contents they both

include a literature review and an appendix. The notation differs marginally in some instances,

in which I regarded those differences as necessary. For the interested reader, I put the program-

ming code in the general appendix of this thesis. I disregard all other forms of taxes to isolate

the effects of the tax rate on dividends.

Chapter 2 presents the first paper. It analyzes a certain form of tax rate uncertainty. The tax

rate process is such that it responds to output growth. This way I model procyclical, counter-

cyclical or acyclical tax policies. Two basic cases, which I distinguish, are that taxes are fully

transferred back to the investor and that there are no transfer payments at all. I use a consump-

tion CAPM (CCAPM) framework based on the model presented in Sialm (2006). For the first

model the implications are that a more countercyclical tax policy increases asset prices and de-

creases expected returns on equity and the equity premium. A procyclical tax policy does the

opposite. Bond returns are not affected. Intuitively, those effects on equity prices and expected

returns must be limited. Since the tax rate is bounded from below at zero and from above at

one, responses of the tax rate to growth are limited as well. Including those bounds shows limits

to price increases and expected return decreases. However, without transfer payments implica-

tions fundamentally change. Now, a procyclical tax policy is also able to increase prices. Com-

ing back to the model with full transfers, I address some further issues. I change the logarithm

of output growth to a moving average process with a lag of one, i.e., I introduce a simple auto-

correlation structure into the output process. I also introduce a time lag of one period for the

determination of the new tax rate. Both changes do not alter the direction of the price or re-

turn effects of tax rate cyclicality, but they change the magnitude of the effects. I also discuss

the limitations of the research paper within a scope that I deem reasonable.

The second paper is included in Chapter 3. It extends several important papers on asset pricing

and taxes, namely Jermann (1998), Santoro and Wei (2011), and Sialm (2006), with an uncer-

tain tax rate on dividends. The model features a production economy with habit formation and

1 Introduction 1



adjustment costs. I extend the certain tax rate on dividends from Santoro and Wei (2011) to an

uncertain tax rate. I also introduce the possibility of funding a public good as in Sialm (2006),

so that not all of the taxes are paid back as transfer payments. I find that tax rate uncertainty

regularly has an effect on asset returns, but those effects are very small. With the more com-

mon parameterization of high habits and high adjustments costs the risk premium is about three

basis points higher for an unreasonably high volatility of tax rate shocks of 1.6% on a quarterly

basis. For a more realistic volatility the premium is not economically significant at all. Impacts

on volatilities of consumption and investment growth, as well as on asset returns are very strong

without habits and adjustment costs. However, those effects also become very small with high

habits and high adjustment costs. Tax rate uncertainty generates only small additional volatil-

ity of the stochastic discount factor so that the increase in the equity premium is small as well.

Conversely, the capitalization of taxes into prices and returns has a big impact on the (pre-tax)

equity premium. The introduction of a certain tax rate of 32% in the mentioned high habit and

high adjustment cost model increases the pre-tax premium by a bit less than 30 basis points, so

that after-tax the equity premium is equal to the premium in a world without taxes. Further-

more, not paying back taxes as transfer payments has an economically significant effect in the

high habit and high adjustment cost model. Decreasing transfers from 100% to zero can increase

the risk premium up to 40 basis points. When there is no risk premium as in the model without

habits and without adjustment costs, the risk premium does not respond at all to changes in the

share of transfer payments, i.e., it remains zero.

In the conclusion I discuss the limitations of my analysis on a more general level. I also discuss

what kind of topics need to be addressed to further uncover the effects of tax rate uncertainty on

an economy.

1.2 Context and Motivation of the Thesis

Chapters 2 and 3 contain specific literature reviews in their respective introductions. Here I

point out the motivation and the context of both of the papers. The two papers find common

ground in the work of Sialm (2006), who analyzes effects of tax rate uncertainty on asset prices

using a model with power utility and an exogenous output process. His model taxes dividends

and accrual based capital gains at the same tax rate. He models tax rate persistence using a

two-state Markov process. He finds that the equity premium is increased with tax rate volatility

and that this effect is stronger for higher risk aversion. However, at reasonable coefficients of risk

aversion the premium explained by the tax rate volatility is small. Thus, tax rate uncertainty

offers at least a partial explanation of the risk premium.

Sialm (2006), as well as Bizer and Judd (1989), argue that the kind of tax rate uncertainty they

model is due to shifting powers of interest groups, who, in turn, influence the authorities respon-

sible for setting the tax rate. The idea of interest groups in the process of setting the tax rate

is important in its own right, and an early contribution is Becker (1983). However, other forms
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that drive tax rate uncertainty can be identified. Vegh and Vuletin (2015) analyze cyclicality of

different kinds of tax rates with respect to output for several different developed and developing

countries. Thus, uncertainty of tax rates are often at least partly driven by the output process.

This finding motivated me to include this observation in a simple model of asset pricing.

(Sialm, 2006, p. 532) points out that his model does not feature real investments, which he

deems a viable extension. I take up this idea. However, the power utility model without adjust-

ment costs does not produce any sizeable risk premium (compare Jermann (1998)). For this rea-

son, I use a model based on Jermann (1998) with habit formation and adjustment cost, which

both have to be present to generate a significant risk premium.

1 Introduction 3



2 Asset Pricing under Tax Rate Cyclicality

2.1 Introduction

Sialm (2006) analyzes the implications of tax rate uncertainty on asset prices in a simple ex-

change economy without real investment opportunities. He motivates his work with the fre-

quently changing tax rates on dividends as well as on long-term and short-term capital gains in

the U.S. since the beginning of the 20th century. Using a very similar model, I introduce a spe-

cial form of tax rate uncertainty. In Sialm (2006) tax rate volatility is said to be the product of

the varying power of interest groups. Here I analyze tax rate uncertainty that is related to ag-

gregate output, which, in turn, contains uncertainty as well and which moves in business cycles.

Looking at tax rates this way is motivated by the results of Vegh and Vuletin (2015), who find

that tax rates are set relative to phases of the business cycle and that for different countries dif-

ferent correlations of tax rates with output can be observed. This is referred to as cyclical tax

policy.

The fundamental model used herein is based on the consumption CAPM with lognormal con-

sumption growth1. The tax base is output, which is paid out as a perishable consumption good.

In the absence of real investments and wages, output can also be interpreted as dividends. In

the basic model all taxes are transferred back to the representative agent. In a variation of the

model none of the taxes are transferred back.

For the model with tax transfers, I find that for reasonable amounts of risk aversion a counter-

cyclical tax policy leads to increased asset prices through decreased discount rates versus the

case of an acyclical tax policy. A procyclical tax policy leads to opposite effects in that it de-

creases prices and increases discount rates. Since bond rates are not influenced by tax rate cycli-

cality in the model with transfers, increased or decreased discount rates also mean increased or

decreased equity risk premiums. The assumption of tax transfers is crucial here. When taxes

are not transferred back, a procyclical tax policy tends to increase asset prices. There are mixed

results for a countercyclical tax policy. Not transferring back taxes has strong effects on the rep-

resentative agent’s consumption, and therefore, on its discount factor so that relations can fun-

damentally change versus the case with transfer payments.

I outline possible implications of a time lag for the setting of the tax rate and autocorrelation

of output growth using a moving average process of lag one (MA(1)) for the model with trans-

fers. Autocorrelated growth increases or decreases the effect of tax rate cyclicality on asset

prices,however, it does not reverse effects. More precisely, if increasing cyclicality decreases asset

prices, then, for the MA(1), increasing tax rate cyclicality decreases prices at a higher or lower

rate, but does not increase prices. Introducing a lag of one increases or decreases the effect of

cyclicality by a greater magnitude, but again does not reverse the effect.

1Apart from its use in Sialm (2006), kinds of this model are described in Campbell and Viceira (2003, pp. 39-40)
and Cochrane (2005, pp. 10-12).
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The model is intentionally set up to allow for analytical solutions. They are bought using var-

ious assumptions, mainly the log-normality of output growth. Since the model allows to make

inferences in an environment of low complexity, it can be used as a benchmark for more complex

models, such as dynamic general equilibrium models that require numerical solutions. It shows

at a basic level, how tax policy affects asset pricing and in which direction an unexpected change

of the tax policy would sent prices and expected returns. My focus is clearly on asset pricing

implications, and the chosen model is useful for this purpose. I do not intend to analyze policy

implications in terms of what it should do and I do not look at social welfare.

I contribute to the literature that analyzes the effects of taxes, tax rate uncertainty, and tax

rate cyclicality on asset pricing. McGrattan and Prescott (2005) observe large movements of as-

set prices relative to GDP in the U.S. and the U.K. and found changes in the tax rate on cor-

porate distributions to be their main driver. Sialm (2009) confirms those effects for U.S. data.

The effect of tax rate uncertainty is analyzed in Sialm (2006). In his model he taxes dividends

and capital gains at a flat uncertain tax rate. He finds that tax rate uncertainty influences asset

prices and may increase the equity premium. Moldovan (2010) and Moldovan (2006) look at the

effects of a countercyclical tax policy for income taxes in a growth model with monopolistic com-

petition. The studies find countercyclical tax policy to decrease aggregate volatility, whereas this

effect is stronger with monopoly power. There is also a growing literature stream that is con-

cerned with fiscal uncertainty in general. A recent work on that is Fernández-Villaverde et al.

(2015), who find fiscal volatility shocks to have negative effects on the economy.

Several studies examine the actual presence of tax rate cyclicality. Furceri and Karrast (2011)

look at correlations of average effective tax rates on the cyclical components of real GDP. They

use total tax rates and the tax rates of different income types of 26 OECD countries from 1965

to 2003. They find that the correlation between those tax rates and the cyclical component is

very small and statistically insignificant from zero. Vegh and Vuletin (2015) analyze 62 coun-

tries from 1960 to 2013. As measures of tax rates they mainly use the highest marginal income

tax rates, corporate tax rates and the value added taxes. They find that tax policy is acyclical

in most industrial countries and procyclical in most developing countries. However, the variation

is quite large. For example, 14 industrialized countries show a negative (procyclical tax policy)

and 6 a positive correlation (countercyclical tax policy) of tax rate changes with the percent-

age change of GDP. For developing countries 28 have a negative correlation and 10 a positive.

They also find that tax and spending policies mostly go hand in hand, i.e., a procyclical tax pol-

icy comes along with procyclical spending and a countercyclical tax policy with countercyclical

spending.

I will proceed as follows. Section 2.2 presents the assumptions of the model and derives basic

pricing equations. Section 2.3 presents and discusses the tax rate process. In the following two

sections the model is first analyzed with tax transfers and then without transfers. Section 2.6

provides numerical examples for the two different cases. Section 2.7 discusses possible limitations
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of the model and Section 2.8 provides a conclusion.

2.2 The Model

2.2.1 Assumptions

Output. As in Sialm (2006) there is a single asset that produces the perishable, risky output

Yt. The output process is exogenously given. Agents hold equity securities, which are claims on

that output. That means the equity security pays dividends in the form of the output so that

aggregate dividends are equal to output:

DS
t = Yt. (2.1)

I use the term dividends here for corporate distributions as in Sialm (2006). It should be clear

that in the absence of other forms of distributions such as wages, those dividends have a more

general meaning. I denote output growth by Gt. The natural logarithm (log) of output growth

ln(Gt) = gt follows the process

gt = µg + εt, εt ∼ i.i.d.N(0, σ2), (2.2)

where µg is the unconditional expectation of the log growth rate. This simple random walk with

drift is mainly used herein, but I also present an extension to an MA(1) process below. The log

of output growth for one period is given as

gt+1 = ln(Yt+1)− ln(Yt) = ln(DS
t+1)− ln(DS

t ),

and

gt,t+i = gt+1 + ...+ gt+i = ln(Yt+i)− ln(Yt) = ln(DS
t+i)− ln(DS

t ),

for i periods. The growth rate exp(gt+1) is a gross rate, i.e., something like 1.05 rather than 5%.

The expected dividend as of time t in terms of the growth rate is

Et
[
DS
t+i

]
= DS

t Et

[
exp

( i∑
s=1

gt+s

)]
= DS

t exp
(
iµg + 0.5iσ2

)
(2.3)

= DS
t exp

(
µg + 0.5σ2

)i
. (2.4)

I also use E(G) = exp(µg + 0.5σ2) as a shorthand notation for single period expected growth. I

leave out time subscripts when they are not necessary.

Financial assets. Households can issue and purchase risk-free bonds with maturity M . The

bonds are in zero aggregate net supply. Bonds pay a dividend of one: DB,M
t = 1, with maturity

M ∈ 1, 2, ... . I assume that those assets are tradable so that prices exist. They are denoted by

6 2 Asset Pricing under Tax Rate Cyclicality



pSt for the equity security and pBt for the bonds. There are no transaction costs or borrowing or

short-selling constraints. Ex-dividend prices and dividends can be summarized as column vectors

Dt = (DS
t 1)′ and pt = (pSt p

B
t )′. The agent’s share in the equity asset xSt and holdings of bonds

xBt are summarized as xt = (xSt x
B
t )′.

Taxes. I assume that there is no government consumption and that taxes in any period are just

transferred from one group to another. The tax base are dividends from the equity asset DS
t .

I abstain from taxing capital gains as Sialm (2006) and concentrate on dividends.2 Dividends

are taxed with a flat but uncertain tax rate3 τt, which depends on output/dividend growth. I

explain the tax rate processes used later in detail.

The agent’s problem. Consumption in t of the representative agent is

Ct = Dτ ′
t xt−1 + p′t(xt−1 − xt) +Qt, (2.5)

whereas Dτ ′
t = (DS

t (1− τt) 1)′ and Qt are transfer payments back to the agent. In the aggregate

the whole taxes are rebated to the representative investor. Individually, the agent cannot influ-

ence the tax rebates. If all investors recovered their taxes exactly as they were paid, there would

be no difference to the no-tax case.

The agent chooses his portfolios xt to maximize expected utility over consumption, where I use

power utility with γ being the coefficient of relative risk aversion:

max
xt+i

∞∑
i=0

Et

[
βi
C1−γ
t + 1

1− γ

]
. (2.6)

I assume the time preference parameter β to be constant over time. I also assume a risk averse

representative agent so that γ > 0. Given his initial endowment and his preferences the agent

chooses an after-tax consumption stream Ct, Ct+1, ... that maximizes expected utility via choos-

ing how many of the financial assets to hold. The first order conditions lead to the usual Euler

equations.

2.2.2 General Pricing Equations

From the first order conditions I derive the pricing equation for the equity security:

pSt = Et

[
β

(
Ct+1

Ct

)−γ
((1− τt+1)DS

t+1 + pSt+1)

]
. (2.7)

2Sialm (2006) taxes capital gains in an accrual based fashion. Most capital gains taxes are actually realization
based, which causes substantial challenges for any analysis. For further reference see for example Viard (2000)
and Klein (2001).

3I use the terms uncertainty and risk interchangeably, i.e., agents can quantify outcomes of states and attach
probabilities to them.
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The M-period pricing kernel or stochastic discount factor mt+M is mt+M = βM
(
Ct+M
Ct

)−γ
. The

price of a bond with maturity M is the expectation of the stochastic discount factor

pB,Mt = Et[mt+M ] = Et

[
βM

(
Ct+M
Ct

)−γ]
. (2.8)

I define gross one-period after-tax returns on equity as

RS,τt+1 =
DS
t+1(1− τt+1) + pSt+1

pSt
, (2.9)

and the pre-tax gross return is

RSt+1 =
DS
t+1 + pSt+1

pSt
. (2.10)

From equation (2.7) it becomes clear that the after-tax gross return has a price of one, whereas

this is not generally true for the pre-tax gross return.

The gross return on a bond with M = 1 is

RB,1t =
1

pB,1t

. (2.11)

Since this is a risk-free bond and the return is known at time t, I keep the time subscript at t.

Since the equity premium uses pre-tax returns I will focus on the latter return for the analysis

of the equity premium. I define the equity premium as the single-period unconditional expected

excess pre-tax returns of the equity asset over the bond return:

E[RE ] = E[RS ]− E[RB,1]. (2.12)

Transfers cannot be influenced per assumption so that they do not play a role in valuation. In

the aggregate, consumption is equal to the dividends. Due to monotonicity of preferences the

agent is always better off to consume a bit more, making it optimal to consume the whole pro-

duce, so that DS
t = Ct. The pricing equations can be restated as

pSt = Et

[ ∞∑
i=1

βi
(
Ct+i
Ct

)−γ
(1− τt+i)DS

t+i

]
= Et

[ ∞∑
i=1

βiDS
t

(
DS
t+i

DS
t

)1−γ

(1− τt+i)

]
, (2.13)

pB,Mt = Et

[
βM

(
Ct+M
Ct

)−γ]
= Et

βM (DS
t+M

DS
t

)−γ . (2.14)
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For an expression in terms of growth rates I define exp(−δ) = β, and I obtain

pSt = Et

 ∞∑
i=1

DS
t exp(−δi)

(
exp

(
i∑

s=1

gt+s

))1−γ

(1− τt+i)

 , (2.15)

pB,Mt = Et

exp(−δM)

(
exp

(
M∑
s=1

gt+s

))−γ . (2.16)

As in Sialm (2006) I will frequently use the price dividend ratio as a convenient way to denote

equity prices per unit of pre-tax dividend paid:

ΨS
t =

pSt
DS
t

. (2.17)

Furthermore, I define pS,nt as the equity price in a world without taxes. In the same way I will

use ΨS , E[RS,n], and RB,1,n as the price dividend ratio, the expected single-period return on

equity and the single-period return on the bond, respectively, in a no-tax world. Those figures

show up as a constant in the different pricing equations. They are derived in terms of more fun-

damental values such as µg and σ2 in Appendix 2.9.2.

2.3 The Tax Rate Process

To focus on the tax rate’s dependence on changes in output growth I use a term that accounts

for tax rate cyclicality, but I do not include other random variables. For mathematical conve-

nience I determine the process of 1− τt instead of τt as

1− τt = exp(µτ
∗
− φ(gt − µg)− φ20.5σ2), (2.18)

so that the process for the tax rate is

τt = 1− exp(µτ
∗
− φ(gt − µg)− φ20.5σ2). (2.19)

That means that 1 − τt is bounded from below at zero, i.e., that τt is bounded from above by

one. To minimize any effects of negative τt, which is possible in this model, the volatility of the

growth rate reflected by the tax term has to be low. An alternative would be to bound τ from

below as well using min or max functions. I abstain from that to reduce complexity but discuss

this case and its quantitative implications in Section 2.7. The term φ determines the strength

and the direction of the tax rate cyclicality, i.e. the tax rate reaction on changes in the log of

output growth. Notice that the deviations of the log growth rate of output from the long-term

mean is εt. Therefore, the equation can be restated as

τt = 1− exp(µτ
∗
− φ20.5σ2)

(
1

exp(εt)

)φ
. (2.20)
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Since I do not want to have the tax rate cyclicality to have an effect on the expected tax term I

introduce the term −φ20.5σ2.

It is well known that a constant tax rate will automatically generate countercyclical tax rev-

enues. When the tax rate is a certain percentage of a cyclical tax base, then tax revenues must

be lower in the lower phase of the cycle and higher in the higher phase. Vegh and Vuletin (2015)

mention that even tax rates that are lower in good states and higher in bad states do not trigger

procyclical tax revenues (i.e., lower tax revenues in good states than in bad states), as long as

the effect of the higher or lower tax base is greater than the one of the tax rate.

Considering those observations, I follow Vegh and Vuletin (2015) with the following definition of

the cyclicality of tax policy:

Definition 2.1. A countercyclical tax policy is a policy in which the tax rate and the cyclical

component of output covary positively. A countercyclical procyclical tax policy is a policy in

which the tax rate and the cyclical component of output covary negatively.

In the case at hand the shock εt determines variability of growth and is therefore the cyclical

element. I define cyclicality of the tax rate accordingly:

Definition 2.2. A countercyclical tax rate covaries positively with the cyclical component of

output. A procyclical tax rate covaries negatively with the cyclical component of output.

Thus, as in Vegh and Vuletin (2015), I use the terms counter- and procyclical with respect to

what the government intends to do, since the government sets the tax rate. Its influence on out-

put is much more limited4 so that I do not look at tax revenues, which is the product of the tax

rate and the tax base (output) and might have a different cyclicality.

For φ > 0, a countercyclical tax policy, the tax rate is increased when log output is above its

long-term trend, i.e., when εt > 0 (εt < 0). Conversely, the tax rate is decreased when the log of

output growth is below its long-term trend.

For φ < 0, a procyclical tax policy, the tax rate is decreased when the log of output is above its

long-term trend. The tax rate is increased when the log of output is below its long-term trend.

For φ = 0 the tax policy is acyclical. The term µτ
∗

is the long-term mean of the log of the tax

term 1 − τt when φ = 0. The agents make investment decisions at t − 1 before they know the

tax rate at t. This way they do not know the tax rate of the next period when they make their

investment decisions. I discuss the implications of time lags between setting the tax rate and its

coming into effect in Section 2.7.

The expectation of the tax rate is

E[τt] = 1− E[exp(µτ
∗

+ φεt − φ20.5σ2)]

= 1− exp(µτ
∗
). (2.21)

4In this model it is nonexistent because output is exogenous.
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Conditional and unconditional expectations are equal here. It holds that 1 − E[τ ] = exp(µτ
∗
),

which I will frequently use in the equations that are about to come.

I derive the covariance of the tax rate with the stochastic element of output growth exp(εt) in

Appendix 2.9.1. For your convenience I restate the resulting equation here:

Cov(τt, exp(εt)) = (1− E[τ ]) exp(0.5σ2)(1− exp(−φσ2)). (2.22)

The term (1 − E[τ ]) exp(0.5σ2) is always positive so that the sign of the covariance depends on

the second term (1 − exp(−φσ2)). This term is zero for φ = 0, always positive for φ > 0 and

always negative for φ < 0. Expectedly, the covariance reflects the desired cyclicality characteris-

tics.

2.4 The Case with Full Tax Transfers

I regard the case when all of the tax payments are transferred back to the agents. That means,

in the aggregate, all of the dividends are consumed by the representative agent: Ct = DS
t .

Since consumption is the same as the one without taxes the stochastic discount factor is not af-

fected and therefore bond prices are not affected by taxes. For this reason, I focus on equity. As

introduced above, I denote price of untaxed equity by pS,nt . I use the price dividend ratio for the

case of no taxes, ΨS,n, to make equations better comparable and to save space.

The full derivation of the following price dividend ratio can be found in Appendix 2.9.3. I

present the result here:

ΨS = ΨS,n(1− E[τ ]) exp(φ(γ − 1)σ2). (2.23)

Proposition 2.1. Under the assumptions put forward above and

a) with 1 < γ, ΨS is increasing in φ,

b) with 1 > γ, ΨS is decreasing in φ.

Proof. This follows from observation of Equation (2.23) and the fact that σ2, as well as ΨS,n(1−

E[τ ]), must be positive.

For γ > 1 and from Proposition 2.1 a) follows that there is always an increase in the price divi-

dend ratio versus the one for an acyclical tax policy (φ = 0) for positive φ, a countercyclical tax

policy, and a decrease for φ < 0, a procyclical tax policy. For γ < 1, i.e., for very small coeffi-

cients of risk aversion, which are implied by case b), a φ < 0 increases prices and φ > 0 decreases

prices.

The results have the following economic interpretation. For a countercyclical tax policy tax rates

are higher in good states and lower in bad states. Tax payments are higher in good states, i.e.,

the states in which cash flows are less valued by risk averse agents in terms of state prices. In

good states, when agents already enjoy a high level of consumption, even more consumption
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only adds little utility. Tax payments are lower in bad states, i.e., the states in which any cash

flow and any unit of consumption is highly valued by risk averse agents. A tax relief is very

welcome in this case because it increases consumption when marginal utility of consumption is

high. A countercyclical tax policy insures agents to some extend against low consumption and it

smoothens their consumption streams. The net effect is a lower value of tax payments today as

compared to taxes with a flat and certain tax rate.

Still, for low risk aversion (γ < 1) a countercyclical tax policy can decrease the price and a pro-

cyclical tax policy can increase the price versus a constant tax. Intuitively, for an agent with low

risk aversion a flat consumption stream is less important. To have a closer look at where this

ambiguity comes from I look at the cash flow and the discount rate effect.

According to Appendix 2.9.3, conditional after-tax expected dividends are determined by

Et[D
S
t+1(1− τt+1)] = DS

t E[G](1− E[τ ]) exp(−φσ2). (2.24)

Proposition 2.2. Under the assumptions put forward above, conditional expected after-tax

dividends Et[D
S
t+1(1− τt+1)] are decreasing in φ.

Proof. This follows from inspection of Equation (2.24) and the term −φσ2, where σ2 > 0.

It follows that with positive φ, i.e., with a countercyclical tax policy, after-tax dividends are ex-

pected to be lower than with φ = 0, an acyclical tax policy. Positive φ means higher tax rates

in good states, i.e., states with high pre-tax dividend, and lower ones in bad states. The net ef-

fect on the expected value of after-tax dividends is negative. By construction, the cyclicality has

no impact on the expectation of the tax term E[1 − τt] and on dividends E[DS
t ]. But there is

an effect on the after-tax dividend E[DS
t (1 − τt)] introduced by the covariance Cov(DS

t , 1 − τt).

Since E[DS
t (1 − τt)] = Cov(DS

t , 1 − τt) + E[DS
t ]E[1 − τt] = −Cov(DS

t , τt) + E[DS
t ]E[1 − τt],

and we know from Equation (2.22) that the covariance Cov(DS
t , τt) is always positive for posi-

tive φ and negative for negative φ5, E[DS
t (1 − τt)] is decreased for positive φ and increased for

negative φ versus E[DS
t ]E[1 − τt]. Agents know about the tax policy and therefore they know

that with a countercyclical tax policy, tax rates are, on average, high when dividends are high

and low when dividends are low. Therefore, expected after-tax dividends are not just expected

dividends multiplied by the expected tax rate, since this would ignore the interaction of the tax

rate and dividends.

I turn to expected return or discount rate effects, which reflect risk aversion of agents. The ex-

pected return on the equity asset, i.e., on a claim on after-tax dividends, is

E[RS,τ ] = exp(−γφσ2)(E[RS ]− E[G]) + E[G], (2.25)

5The fact that Equation (2.22) does not use dividends but only the random part of dividend growth does not
change the sign of the covariance but merely scales it by some factor.
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where time subscripts are dropped. The derivation can be found in Appendix 2.9.3.

Proposition 2.3. For the assumptions put forward above, single-period after-tax expected re-

turns E[Rτ ] are decreasing in φ.

Proof. The proposition follows from equation (2.25). For a positive and finite price of untaxed

equity I need E[RS ] − E[G] > 0 (see Appendix 2.9.2 for convergence conditions). Taking the

derivative of Equation (2.25) with respect to φ yields −γσ2 exp(−γφσ2)(E[RS ] − E[G]). This

expression is always negative under the assumptions made. That means that the expected return

strictly monotonously decreases with increasing φ or increases with decreasing φ.

Thus, the expected return is increased for φ < 0, a procyclical tax policy, and decreased for

φ > 0, a countercyclical tax policy, versus the case with φ = 0. It turns out that the discount

rates and the cash flows have opposite effects on the price. With a different tax policy the after-

tax dividends have different risk characteristics. For example, when the policy is countercyclical

the risk of low consumption in a bad state is lowered so that the agent requires a lower return.

Notice that expected after-tax dividends are also expected to be lower with a countercyclical tax

policy. With that I come back to the case of a low coefficient of risk aversion. For γ < 1 the cash

flow effect is stronger and for γ > 1 the discount rate effect is stronger. For log utility (γ = 1)

tax rate cyclicality does not have an effect on the price and the price dividend ratio, since dis-

count rate and cash flow effect exactly cancel each other out.

Eventually, I will have a look at the equity premium. Remember that what is usually referred to

as the equity premium is a pre-tax premium. The equation derived in Appendix 2.9.3 is

E[RE ] = (1− E[τ ])−1 exp(φσ2(1− γ))(E[RS ]− E[G]) + E[G]−RB,1. (2.26)

Proposition 2.4. Under the assumptions put forward above, the equity premium is increasing

in φ if

a) 1 > γ.

The equity premium is decreasing in φ if

b) 1 < γ.

Proof. This follows from observation of Equation (2.26) and the fact that σ2, (1 − E[τ ])) as well

as E[RS ]− E[G] must be positive. The bond rate is not affected by taxes at all.

Notice that this is a slightly different behavior than the one of the expected return. This is due

to the fact that the pre-tax return is used for the equity premium, but the discount rate explic-

itly accounts for taxes. Equation (2.26) shows that even with φ = 0 the equity premium in-

creases with an increasing expected tax rate. For reasonable risk aversion, i.e., for γ > 1 the

equity premium decreases with φ. Thus, a more procyclical tax policy would contribute to ex-

plain an elevated equity premium.
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With γ > 1 the propositions suggest that one can increase the equity value just by increasing

φ ever more. However, the effects of tax rate cyclicality presented here are only valid in certain

ranges for φ. I discuss those limits in Section 2.7. The assumption of full tax transfers is cru-

cial here for the resulting effects. The next section will show that there are fundamental changes

when this assumption is relaxed.

2.5 The Case without Tax Transfers

I regard the case that taxes are not transferred back to the representative agent, so that Qt = 0.

This assumption can be justified in several ways. Sialm (2006) uses a similar setting but also

includes a public good that enters the representative agent’s utility function in a separable

way. The separability has the effect that there is no influence on pricing of the financial assets

through the public good. In his numerical example he assumes that this good is funded with all

of the tax revenues so that transfer payments are zero. Another justification may be that agents

that hold financial assets do not receive transfers and agents that do not hold financial assets re-

ceive all of the transfer payments, which are nontradable. This way, transfer payments go out of

the economy of agents that are involved in asset trading and in determining the asset’s price.

An important effect compared to the prior model is that the stochastic discount factor is now

influenced by taxes. For example the single-period SDF mt+1 in the prior section is β(gt+1)−γ

and without tax transfers it changes to β
(
gt+1

1−τt+1

1−τt

)−γ
. Expanding both SDFs, I obtain

exp(−δ) exp(µg + εt+1)−γ for the case with transfers and exp(−δ) exp(µg + εt+1 + φ(εt − εt+1))−γ

for the case without transfers.6 The additional term φ(εt − εt+1) stems from the tax rate term,

and it covaries with gt+1 through φεt+1. For negative φ (procyclical tax policy) any variability

of εt+1 is scaled up. For positive φ the variability introduced through the growth shocks εt+1 can

be decreased (0 < φ < 1) or cancelled (for φ = 1), when growth shocks are exactly offset by tax

rate movements. However, −φεt+1 introduces variability in its own right so that an increase of φ

by more than one increases variability again. Those effects are reflected in the risk-free rate. No-

tice also that a valuation at time t is now dependent on the current tax rate τt, because this rate

is introduced into the SDF. This shows up through the error term εt. Different from the model

with transfers a valuation considers wether the current tax rate is low or high.

Since the stochastic discount factor of the representative agent is now fundamentally changed,

bond rates also change:

RB,1t = Et[mt+1] = RB,1,n exp(−γ2(φ2 − 2φ)0.5σ2 + γφεt). (2.27)

I refer to Appendix 2.9.4 for the derivation of the equation. The risk-free rate is not constant

over time but depends on γφεt. For an interpretation of the term γφεt I regard the case of a

6The constant terms µτ
∗

and φ20.5σ2 in the tax terms cancel out.
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countercyclical tax rate policy (φ > 0) and a positive growth shock. In this case the current

tax rate is increased above its expectation. Taxes reduce consumption by more than the average

reduction through taxes. Agents expect to pay less taxes in the future which increases the expec-

tation about consumption tendencially. Since consumption is expected to be higher, again, only

from the tax effect, agents require a higher return on the bond to induce them to save and not

to consume immediately.

The M-period bond rate is

RB,Mt = RB,M,n exp(−γ2(φ2 − 2φ)0.5σ2 + γφεt). (2.28)

Equation (2.28) shows that the yield curve is not flat anymore. For example the yield for an M-

year bond is (RB,Mt )1/M = exp(δ + γµg − γ20.5σ2) exp(− 1
M γ2(φ2 − 2φ)0.5σ2 + 1

M γφεt), which

now depends on M through the second term.

To be not arbitrary about the error term at t and since I work towards the risk premium, which

is usally referred to as an unconditional expectation, I take unconditional expectations of the

single-period bond rate. Notice that E[exp(γφεt)] = exp(γ2φ20.5σ2) is the convexity effect that

is introduced through taking an unconditional expectation. This can be interpreted as an addi-

tional premium about uncertainty of the single-period bond rate. This uncertainty is introduced

through the tax rate. An investor whose strategy is to invest in consecutive single-period bonds

faces this risk. Equation (2.27) turns into

E[RB,1] = RB,1,n exp(φγ2σ2). (2.29)

Proposition 2.5. Under the assumptions put forward above, the unconditional expected single-

period bond rate is increasing in φ.

Proof. This follows from inspection of Equation (2.29) and the fact that the gross rate RB,1,n as

well as the parameter γ2σ2 are strictly positive.

With a more countercyclical tax policy agents require, on average, a higher return on the single-

period bond. The countercyclical tax policy mitigates the risk of a volatile consumption so that

agents engage less in precautionary savings. This can be observed from Equation (2.29), in

which the cyclicality term is attached to γ2σ2, which expresses aversion to volatility of consump-

tion growth σ2. Risk aversion combined with consumption growth volatility is normally inter-

preted as a trigger for precautionary savings (Cochrane, 2005, p.12). Here tax rate cyclicality

additionally influences precautionary savings.

The derivation of the conditional price dividend ratio can be found in Appendix 2.9.4. I present

the unconditional expectation, which factors in a premium for uncertainty about the state of the

2 Asset Pricing under Tax Rate Cyclicality 15



tax rate. The equation is

E[ΨS ] = ΨS,n(1− E[τ ]) exp(φ2(γ2 − γ)σ2 − φ(1− γ)2σ2). (2.30)

The exponent is now quadratic in φ so that for a given γ the exponent changes the sign of its

slope along φ.

Proposition 2.6. Under the assumptions put forward above, the unconditional expected price

dividend ratio increases in φ if

a) γ > 1 and φ > 0.5(1− 1/γ) or

b) γ < 1 and φ < 0.5(1− 1/γ).

The price dividend ratio decreases in φ if

c) γ > 1 and φ < 0.5(1− 1/γ) or

d) γ < 1 and φ > 0.5(1− 1/γ).

Proof. Taking the first derivative of Equation (2.30) yields 2φ(γ2 − γ)− (1− γ)2 times a positive

constant. A positive slope means 2φ(γ2 − γ) > (1 − γ)2 or 2φγ(γ − 1) > (1 − γ)2. If γ > 1, this

leads to φ > 0.5(1 − 1/γ) (case a)), and for γ < 1, this leads to φ < 0.5(1 − 1/γ) (case b). A

negative slope means 2φγ(γ−1) < (1−γ)2. If γ > 1, this leads to φ < 0.5(1−1/γ) (case c)), and

for γ < 1, this leads to φ > 0.5(1− 1/γ) (case d).

Also notice that the zeros of the exponent in Equation (2.30) are at φ = 0 and φ = 1 − 1/γ.7

The slope is zero at φ = 0.5(1 − 1/γ), which is greater than zero for γ > 1 and less than zero for

γ < 1.

It follows that for γ > 1 the expected price dividend ratio decreases in φ until φ = 0, when it is

equal to the expected price dividend ratio without tax rate cyclicality. It decreases further until

φ = 0.5(1 − 1/γ) < 0. After this point it increases again until φ = 1 − 1/γ, where the expected

price dividend ratio is again equal to the one without cyclicality, and increases beyond that. For

γ < 1 the expected price dividend ratio is first less than the one without cyclicality. It increases

until φ = 1 − 1/γ < 0, increases further until φ = 0.5(1 − 1/γ − 1) < 0, and then decreases until

φ = 0, where it is again equal to the ratio without cyclicality, and decreases beyond that point.

Figure 1 in the next section shows an example of this behavior for differences of the ratio with

respect to the one at φ = 0 for γ equal to 0.5, 2, and 3 and a range for φ ∈ [−2, 2].

For an interpretation I regard the cases with γ > 1. I simplify the setting a bit and look at the

valuation of only one dividend at t+ 1. The SDF at t+ 1 is

mt+1 = β

(
gt+1

1− τt+1

1− τt

)−γ
= exp(−δ) exp(−γµg − γεt+1 + γφεt+1 − γφεt).

7To see this just set (φ2(γ2 − γ)σ2 − φ(1 − γ)2σ2) equal to zero, divide by φ, σ2 and γ − 1 and rearrange.
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The additional term, due to the fact that there are no transfers, is γφεt+1 − γφεt in the expo-

nent. Now, the additional effect of a postive φ (countercyclical tax policy) is that it increases

the SDF when shocks are positive, and it decreases the SDF when shocks are negative. Symmet-

ric shocks, due to normality, and the exponential function lead to a higher increase of the SDF

for a positive shock than a decrease for a negative shock of the same size. The effect on divi-

dends is exactly in the oppositive way. For example the dividend in t + 1, i.e., DS
t+1(1 − τt+1) =

DS
t exp(µg+εt+1 +µτ

∗−φεt+1−φ20.5σ2), contains the term −φεt+1, which leads to smaller after-

tax dividends in good states and bigger ones in bad states. However, with γ > 1 the effect of the

tax rate cyclicality on the SDF is scaled up as φ increases. The opposite effects due to dividends

are not scaled up by γ. Thus, surpassing a certain threshold for φ the net effect is an increase

in the price of the dividend. This is basically what happens in case a) of the above proposition.

Agents marginal utility rapidly increases in good states for a more and more countercyclical tax

rate. Therefore agents attach higher and higher values to cash flows in those states. Actually,

the high tax rate in states with high pre-tax dividends and which are good states before taxes

become bad states with high marginal utility after taxes.

For γ > 1 the price increases when the tax policy becomes more procyclical. For φ < 0 symmet-

ric shocks and the exponential function lead to a lower decrease of the SDF for a positive shock

than an increase for a negative shock of the same size. The effect on the dividend is now in the

same direction as for the SDF. Therefore, the increasing effect on the price is more immediate.

The examples in Figure 1 show that for any φ < 0 the expected price dividend ratio is higher

than with φ = 0. These are the basic mechanics of case c).

Since I have taken an unconditional expectation the risk premium exp(γ2φ20.5σ2) for the un-

certainty about the conditional price dividend ratio is included in Equation (2.30). The effect of

this premium even enforces the effects described before. The premium is increasing for increasing

φ when φ > 0 and it is increasing for decreasing φ when φ < 0.

Notice that there is no change in the after-tax expected dividends compared to the case with full

tax transfers. Therefore, I immediately turn to the single-period expected return. The condi-

tional expected return on the equity asset is derived in Appendix 2.9.4. I again analyze its un-

conditional form and divide it into the expected dividend yield

E

[
DS
t+1(1− τt+1)

pSt

]
= exp((γφ2 − 2γφ+ γ2φ)σ2)(E[RS,n]− E[G]) (2.31)

and the expected capital gain

E

[
pSt+1

pSt

]
= exp((γ2φ2 − γφ)σ2)E[G]. (2.32)

Proposition 2.7. Under the assumptions put forward above, the unconditional expected single-

period after-tax dividend yield increases in φ if

a) φ > 1− γ/2,
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and decreases in φ if

b) φ < 1− γ/2.

Proof. The first derivative of the dividend yield with respect to φ is 2φγ − 2γ + γ2 multiplied

by a positive constant. Setting this term greater zero, dividing by the constant and by γ, which

are always positive, and rearranging for φ leads to a). Setting the term less than zero leads to

b).

The exponent in Equation (2.31) has up to two zeros. Apart from φ = 0 the expected dividend

yield is also equal to the equivalent yield without tax rate cyclicality for φ = 2 − γ.8 The ex-

pected dividend yield E[DS
t+1(1− τt+1)/pSt ] is decreasing in φ until φ = 1− γ/2 and then increas-

ing again. It intersects the abscissa two times, at φ = 0 and at φ = 2 − γ, except when γ = 2,

when the function is tangent to the abscissa. An example can be observed in Figure 3a of the

next section.

I continue with the expected single-period capital gain.

Proposition 2.8. Under the assumptions put forward above, the unconditional expected single-

period capital gain increases in φ if

a) φ > 1/(2γ),

and decreases in φ if

b) φ < 1/(2γ).

Proof. The first derivative of the capital gain is 2φγ2 − γ times a positive constant. Setting

this term greater zero dividing by the positive constant and by positive γ, and rearranging for

φ leads to a). Setting the term less than zero leads to b).

Since the exponent in Equation (2.32) has again up to two zeros, which are at φ = 0 and φ =

1/γ. In φ-cappital gain space the function falls until φ = 1/(2γ) and then increases. It intersects

the abscissa two times - at φ = 0 and φ = 1/γ. Only for infinite risk aversion the two points fall

together. An example for the behavior of the expected capital gain for different parameters of

risk aversion can be observed in Figure 3b of the next section.

Looking at both, the expected value of the dividend yield and of the capital gain, I can make

some general statements about the expected return outside of certain bounds. For φ < min(1 −

γ/2, 1/(2γ)) both functions decrease and therefore also the expected return is decreasing in φ,

and for φ > max(1 − γ/2, 1/(2γ)) they are increasing. Looking at the zeros, for φ < min(2 −

γ, 0, 1/γ) and for φ > max(2 − γ, 0, 1/γ) both functions and therefore also the expected return

are above the abscissa so that the expected return with cyclicality is greater than without it.

Notice that the components of the unconditional expected return follow the same U-shape pat-

tern along φ as the expected price dividend ratio. For a discount rate one would expect more

8To see this, set γφ2 − 2γφ+ γ2φ equal to zero divide by γ and rearrange for φ.
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something like an inverse relation between the two. This is not happening here because we are

not looking exactly at a discount rate but on an unconditional expectation of it. The premium

introduced through taking this expectation is again exp(γ2φ20.5σ2), which quickly dominates

the expected value for increasing φ. For the case with transfers the conditional and the uncon-

ditional means are the same. Thus, comparing unconditional expected returns of the cases with

and without tax transfers leads to big differences. For example, unconditional expected after-tax

returns for the no-transfers case can be higher with a countercyclical tax policy, i.e., with φ > 0.

For γ = 2, the function max(2− γ, 0, 1/γ) = max(0, 0, 0.5) = 0.5, so that for φ > 0.5 the expected

return is definitely higher than with zero cyclicality. It would be lower than without cyclicality

in the case with tax transfers.

Eventually, I turn to the equity premium. It contains the pretax expected dividend yield, the

expected captal gain and the expected bond return. Above, the after-tax dividend yield was ana-

lyzed so that the new variable here is the pretax dividend yield:

E

[
DS
t+1

pSt

]
= (1− E[τ ])−1 exp((γφ2 + φ(γ − 1)2)σ2)(E[RS ]− E[G]) (2.33)

This is the first term from Equation (2.64) for the equity premium.9

Proposition 2.9. Under the assumptions put forward above, the unconditional expected single-

period pre-tax dividend yield increases in φ if

a) φ > −(1− γ)2/(2γ),

and decreases in φ if

b) φ < −(1− γ)2/(2γ).

Proof. The first derivative of the pre-tax dividend yield is 2φγ + (γ − 1)2 times a positive con-

stant. Setting this term greater zero, dividing by the positive constant, and rearranging for φ

leads to a). Setting the term less than zero leads to b).

The zeros of the exponent of Equation (2.33) are at φ = 0 and φ = −(1 − γ)2/γ. In φ-

expected pre-tax dividend yield space this is again a hyperbola with a minimum (now at φ =

−(1− γ)2/(2γ)) that cuts the abscissa up to two times.

The equity premium adds up the expectations of the pre-tax dividend yield, the capital gain,

and subtracts the bond return:

E[REt+1] = E

[
DS
t+1

pSt

]
+ E

[
pSt+1

pSt

]
− E[RB,1]. (2.34)

Looking at the three components, the expectations of the pre-tax dividend yield, the capital

gain, and the bond rate I can again make some statements about the equity premium. Notice

9The derivation of the equation can be found in Appendix 2.9.4.
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that the bond rate is subtracted in this equation and the negative of the expected bond rate de-

creases in φ.

For φ < min(1 − γ/2,−(1 − γ)2/(2γ)) all functions decrease and therefore also the risk premium

is decreasing in φ. For φ < min(−(1− γ)2/(γ), 0, 1/γ) all functions, and therefore also the equity

premium, are above the abscissa so that the equity premium with a cyclical tax policy is greater

than with an acyclical one. For φ greater than the respective max functions the expected bond

return behaves differently than expected capital gain and dividend yield. However, asymptoti-

cally in φ the effect of the expected dividend yield and capital gain will outweigh the one of the

bond rate due to the quadratic terms of φ in the expected dividend yield and capital gain and

only a linear one in the expected bond rate.

Bottom line is that for the case without transfers the stochastic discount factor is fundamentally

changed by the tax rate, so that some of the relations with respect to a cyclical tax policy for

the case with transfers are turned into the opposite direction for the case without transfers. To

get a better understanding of the behavior of asset valuation related figures and their magni-

tudes with respect to tax rate policy, I provide some numerical examples in the next section.

2.6 Numerical Examples

The following examples are provided to gauge magnitudes of tax effects on asset pricing using

reasonable parameter values. It is an exercise to learn more about basic asset pricing effects

of tax rate cyclicality under the set of assumptions made herein. I will discuss the scope of the

models, i.e., the implications and its limitations, in the next section. I continue with the descrip-

tion of the parameter values.

Since the proposed models are very basic aggregate pre-tax dividends, consumption and out-

put are the same in the model with transfers. Without transfers aggregate after-tax divideds,

consumption, and after-tax output are the same. Table 1 shows that real annual growth rates

for U.S. data from 1929 to 2013 are around 1.8% and 1.9% for all of the three time series. The

standard deviation shows more variation among the three variables with, for example, 2.3% for

consumption growth and 10.8% for dividend growth. Logarithms of growth rates have a mean

as low as 1.2% for dividend growth and as high as 1.8% for output growth. Standard deviations

range from 2.3% for consumption growth to 10.9% for dividend growth. I will use 0.018 for the

parameter µg and 0.046 for σ. As mentioned in Section 2.3, I need low volatility of the growth

rate to keep the probability of negative tax rates close to zero. Therefore I choose a relatively

low value for σ. I use 0.95 for the time discount rate β.

Table 2 shows the mean of the average marginal tax rate of dividends and the share of tax rev-

enues on aggregate output. A mean farther away from zero also reduces the probability that the

tax rate is less than zero. Therefore I choose -0.449 for µτ
∗
. That means for φ = 0 and εt = 0

τt = 1 − exp(−0.449) = 1 − 0.638 = 0.362 or 36.2%. Since everything is multiplicative in

this model a higher µτ
∗

also leads to stronger reactions of the tax term through shocks of the
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Table 1: Mean and standard deviation of growth rates

GDt − 1 gDt GCt − 1 gCt GYt − 1 gYt

Mean 0.018 0.012 0.018 0.017 0.019 0.018

Std. Dev. 0.108 0.109 0.023 0.023 0.046 0.046

Source: See Appendix 2.9.5

growth rate. For example for φ = −1 a shock of around 1% would multiply exp(0.01) = 1.01

to exp(−0.449) = 0.638 so that the tax term is decreased by around 0.64%10. I show the be-

havior of asset valuation related variables with respect to φ. I choose φ ∈ [−2, 2] as the interval

for the cyclicality parameter. I always show the differences with respect to an acyclical tax pol-

icy. For example Figure 1 shows the percentage differences of (expected) prices for the respec-

tive range of φ and different parameters for risk aversion. Percentage differences for prices are

(pSt (φ = x) − pSt (φ = 0))/pSt (φ = 0). Curves above the abscissa mean that the price is by a cer-

tain percentage higher than it would be if the tax policy were acyclical, i.e., the price for φ = 0.

Notice that the percentage differences for prices and for price dividend ratios are the same since

the dividends would cancel out in computing the percentage difference.

Table 2: Mean of tax rates

τD 1− τD ln(1− τD) τY 1− τY ln(1− τY )

Mean 0.356 0.644 -0.449 0.151 0.849 -0.165

Source: See Appendix 2.9.5

Equation (2.23) shows that the percentage difference of prices must be equal to exp(φ(γ−1)σ2)−

1 for the case with transfers. Thus price differences increase with risk aversion and a higher φ or

a higher σ2 would increase this effect. For the case without transfers and according to Equation

(2.30), the percentage differences of prices are, on average, exp(φ2(γ2 − γ)σ2 − φ(1 − γ)2σ2) − 1.

Panel (a) and (b) in Figure 1 reflect the linear function in φ in the exponent for the case with

transfers and the quadratic one for the case without transfers. The quadratic funtion leads to

very pronounced differences in the expected prices.

According to Equation (2.24), for expected dividends percentage differences from the base case

are exp(−φσ2)− 1. That means for the dividend parameters that with φ = 1 expected dividends

are 4.5% less and with φ = −1 they are 4.71% greater than in the base case.

Figure 2 shows the deviations of expected returns from the base case expected after-tax return.

With transfers, the expected returns are increased for a procyclical tax policy and decreased for

10The term exp(−φ20.5σ2) is very close to one in this case so that its influence can be neglected.
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Figure 1: Price deviations from base case price in %
The full line corresponds to γ = 0.5, the dashed line to γ = 2, and the dotted line to γ = 3. The standard
parameterization is used.

a countercyclical one. The percentage differences, here computed as E[RS,τ (φ = x)]−E[RS,τ (φ =

0)], are modest compared to the case without transfers. Notice that for the case without trans-

fers expected price and return differences show the same pattern and not the opposite one. This

is because we are not looking at prices and the discount rate but on their unconditional expec-

tations, which are different from the conditional expectation in this case due to the γφεt term

showing up with a negative sign in the price dividend and a positive sign in the conditional ex-

pected return equations. Taking the unconditional mean this term shows up as φ2γ20.5σ2 with a

positive sign in the exponent. This leads to the unconditional moments sloping up.

Figure 3 shows the two components of the after-tax expected return for the case without trans-

fers for γ = 3. The graph shows pure differences of the expected dividend yield and capital gain

from the acyclical case as for the expected returns. Both functions are hyperbola with a mini-

mum but minima and zeros are not generally the same. The dividend yield shows much smaller

deviations from the acyclical dividend yield as the capital gain from its acyclical values.

Figure 4 shows the equity premium for both cases. With transfers the equity premium differ-

ences very much resemble the graph for the expected return in direction and scale of the func-

tions. However, since the equity premium uses pre-tax values there are slight changes and for

γ < 1, γ = 0.5 is the example in the figure, the graph is upward sloping. Panel (b) shows the

graphs for the case without transfers. Compared to the expected after-tax returns in Figure 2b,

for a procyclical tax policy, i.e., for negative φ, the equity premiums are very high, and they are

low for a countercyclical tax policy. The expected single period bond return is smaller for neg-

ative φ than for φ = 0 and higher for positive φ, which contributes to the shape of the curves

compared to after-tax returns.
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Figure 2: Deviations of expected returns from the expeted return of the base case
The full line corresponds to φ = 0 (acyclical tax policy), the dashed line to φ = 1 (countercyclical tax policy), and
the dotted line to φ = −1 (procyclical tax policy).
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Figure 3: Components of the expected return for the case without transfers
The examples use the basic parameterization and γ = 3. Panel b) uses a closer range for φ to make the minimum
below the abscissa more visible.

Figure 5 shows conditional bond yields for the case without transfers for the standard parame-

ters µg = 0.018, σ = 0.046, and for εt = 0. The additional tax term in equation (2.28) causes an

upward sloping yield curve for a procyclical tax policy and a downward sloping curve for a coun-

tercyclical tax policy. For the case with transfers bond yields are flat and do not change versus

the ones without taxes.
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Figure 4: Equity risk premium
The examples use the basic parameterization and γ = 3. Panel b) uses a closer range for φ to make the minimum
below the abscissa more visible.
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Figure 5: Bond yields for the case of taxes without transfers
The full line corresponds to φ = 0 (acyclical tax policy), the dashed line to φ = 1 (countercyclical tax policy), and

the dotted line to φ = −1 (procyclical tax policy). The standard parameterization is used with γ = 2.5.

2.7 Discussion of the Limitations and Possible Extensions of the Analysis

I come back to the model with transfers and discuss some further issues. Proposition 2.1 sug-

gests that increasing φ, i.e., having a more cyclical tax policy, can increase the price ever more.

However, the tax rate process, or more specifically, the process 1− τt is only bounded from below
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at zero but not from above. A remedy would be to define

1− τt = min(exp(µτ
∗
− φεt − φ20.5σ2), 1) (2.35)

= exp(µτ
∗
− φεt − φ20.5σ2)−max(exp(µτ

∗
− φεt − φ20.5σ2)− 1, 0). (2.36)

The price dividend ratio becomes then

ΨS
t =

∞∑
i=1

βiEt

[(
DS
t+i

DS
t

)1−γ

(exp(µτ
∗
− φεt+i − φ20.5σ2)−max(exp(µτ

∗
− φεt+i − φ20.5σ2)− 1, 0)

]
,

(2.37)

which is basically the same equation as in Section 2.4, where a series of call option prices is sub-

tracted. The equation can be written as

ΨS
t = ΨS,n(1− E[τ ]) exp(φ(γ − 1)σ2)−

∞∑
i=1

βiEt

[(
DS
t+i

DS
t

)1−γ

max(exp(µτ
∗
− φεt+i − φ20.5σ2)− 1, 0)

]
,

(2.38)

where I use Equation (2.23). I only look at the option part and since growth innovations are

i.i.d. this can be stated as

∞∑
i=1

βiEt[G
1−γ
t,t+i−1]Et[G

1−γ
t+i max(exp(µτ

∗
− φεt+i − φ20.5σ2)− 1, 0)]

= βEt[exp(µg + εt+i)
1−γ max(exp(µτ

∗
− φεt+i − φ20.5σ2)− 1, 0)]

∞∑
i=0

βiEt[G
1−γ
t,t+i]

= βEt[exp(µg + εt+i)
1−γ max(exp(µτ

∗
− φεt+i − φ20.5σ2)− 1, 0)]

E[RS,n]

E[RS,n]− E[G]
.

(2.39)

The second equality shifts the index of the sum and the third equality traces the equation back

to an infinite geometric series that starts with power of zero. I simulate 100,000 N(0, σ2) dis-

tributed shocks ε for different γ and compute the above expression. I use the basic parameteri-

zation with µg = 0.018 and σ = 0.046. Figure 6 shows the percentage price deviations versus

the case when φ = 0. The increase of the absolute value of φ increases the variability of the

cyclicality term φεt in the tax term. The increased variability leads to a higher percentage of

tax terms 1 − τt greater one, i.e., a higher percentage of τt < 0. This increases the option value

that is deducted from the actual price dividend ratio. The grey lines show this effect for different

γ. It becomes clear that the positive effects of a countercyclical tax policy only are effective in

a certain range of φ. The countercyclical tax policy reduces the value of tax payments because

higher taxes are paid in good states, which have a low value (low state prices), and it increases

tax payments in bad states, which have a high value (high state prices). Increasing φ in absolute

terms sends the tax rate in more and more states below zero, but this is countered by the op-

tion. Thus, a higher φ in absolute terms has less and less effect in the bad states and more effect
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in the good states. There are less value decreases and more values increases of tax payments,

which contributes to increasing the overall value tax payments.
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Figure 6: Price differences from base case price in %
Black lines correspond to the case without the option, grey lines show values computed accounting for the option.

The full lines use γ = 0, the dashed lines γ = 3 and the dotted lines γ = 4. Furthermore, µ = 0.018 and
σ = 0.108.

The tax rate is set after the output growth is observed, i.e., immediately prior to the payout of

the dividends. A reasonable variation is that the tax rate is set with a lag. In the model with

uncorrelated i.i.d. shocks this will not have great repercussions on asset pricing except that, for

example for a lag of one, the tax rate in the next period is known today. With autocorrelated

growth gt this becomes more involved. For simplicity I regard the pricing of a single dividend

that arrives at t+ i. Log growth is an invertible MA(1) process of the form

gt = µg + εt + θεt−1, εt ∼ i.i.d.N(0, σ2), (2.40)

with |θ| < 1. The MA(1) process has the advantage that beyond lag one there is no autocorrela-

tion, which simplifies the math. The process of the tax term is

1− τt = exp(µτ
∗
− φ(εt−l + θεt−1−l)− φ2(1 + θ2)0.5σ2), (2.41)

where l is the time lag for setting the tax rate and the term −φ2(1 + θ2)0.5σ2 takes effects of φ

out of the expected value of the tax term. I show the pricing implication of this process as an

example and to get some intuition about consequences of autocorrelated growth, but I do not

claim that its implications are generally valid for any kind of autocorrelated process. For the
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price of a dividend that arrives at t+ i I obtain11

pSt (Dτ
t+i) = DS

t β
iEt

[(
DS
t+i

DS
t

)1−γ

(1− τt+i)

]

= DS
t Et

[
exp(−δi) exp(iµg + εt+1 + θεt + εt+2 + θεt+1...+ εt+i−1 + θεt+i−2 + εt+i + θεt+i−1)1−γ

exp(µτ
∗
− φεt+i−l − φθεt+i−1−l + φ2(1 + θ2)0.5σ2)

]
.

(2.42)

For a zero lag the shocks at times t+ i− 1 and t+ i are important for tax effects. This leads to

pSt (Dτ
t+i) = DS

t β
iEt

[(
DS
t+i

DS
t

)1−γ

(1− τt+i)

]

= DS
t Et

[
exp(−δi) exp((1− γ)(iµg + θεt) + (1− γ)(1 + θ)(εt+1 + ...+ εt+i−2)

+ ((1− γ)(1 + θ)− φθ)εt+i−1 + ((1− γ)− φ)εt+i + µτ
∗
− φ2(1 + θ2)0.5σ2)

]
= DS

t Et

[
exp(−δi) exp((1− γ)(iµg + θεt) + (1− γ)2(1 + θ)2(i− 2)0.5σ2

+ ((1− γ)(1 + θ)− φθ)20.5σ2 + ((1− γ)− φ)20.5σ2 + µτ
∗
− φ2(1 + θ2)0.5σ2)

]
= DS

t Et

[
exp(−δi) exp((1− γ)(iµg + θεt) + (1− γ)2(1 + θ)2(i− 1)0.5σ2

+ (1− γ)20.5σ2 + φ(γ − 1)(θ2 + θ + 1)σ2 + µτ
∗
)

]
.

(2.43)

I focus on the term involving φ, which is φ(γ−1)(θ2 +θ+1)σ2. The term θ2 +θ+1 is greater one

for 0 < θ < 1 and less than one for −1 < θ < 0. Thus autocorrelation can increase or decrease

the effect of tax rate cyclicality in this case but it does not reverse it, i.e., the sign of the effect

of φ is not changed. For a lag of one the shocks at times t+ i− 2 and t+ i− 1 are important for

tax effects. The pricing equation changes to

pSt (Dτ
t+i) =DS

t Et

[
exp(−δi) exp((1− γ)(iµg + θεt) + (1− γ)(1 + θ)(εt+1 + ...+ εt+i−3) + (1− γ)εt+i

+ ((1− γ)(1 + θ)− φθ)εt+i−2 + ((1− γ)(1 + θ)− φ)εt+i−1 + µτ
∗
− φ2(1 + θ2)0.5σ2)

]
= DS

t Et

[
exp(−δi) exp((1− γ)(iµg + θεt) + (1− γ)2(1 + θ)2(i− 1)0.5σ2

+ (1− γ)20.5σ2 + φ(γ − 1)(1 + θ)2σ2 + µτ
∗
)

]
.

(2.44)

11I use the price as an operator here to make clear that only one dividend is valued.
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The term involving φ is now φ(γ − 1)(1 + θ)2σ2. Thus, the only difference to the equation with

lag zero is that here we have (1 + θ)2 = θ2 + 2θ + 1, which is one θ more than above where the

term is θ2 + θ+ 1. Thus, θ between minus one and zero would decrease the effect on φ(γ− 1)σ2 a

bit and for positive θ it would increase the effect versus the lag zero case.

Notice that the equations for lag zero and one are almost identical. However, to price equity one

has to add up all cash flows and as was mentioned above, the tax rate at t + 1 would be certain

for lag one so that this effect has to considered as well.

Eventually, for the MA(1) the cyclicality effect of the tax rate is not reversed for any of the lags

but it can be increased or decreased for 0 < θ < 1 (positively correlated gt) and −1 < θ < 0

(negatively correlated gt, respectively.

Further questions of the effects of tax rate cyclicality may involve how matters change with real

investment opportunities, a suggestion also made by Sialm (2006) for his model with an uncer-

tain tax rate, and non-zero government deficits. Real business cycle models including those fea-

tures may be a tool to answer those questions. The current model is most compatible with a lin-

ear production technology, full depreciation, and a constant share of investment in output. In

this case consumption and investments are both constant shares of output so that all the three

variables grow at the same rates. I will give a short outline on this case. Consider a representa-

tive firm with a linear production technology that produces output according to

Yt = Kt exp(µK + εt), (2.45)

where Kt is the capital stock, exp(µ + εt) the marginal rate of return of capital, with µK as the

mean of its natural logarithm and εt a shock as defined before. A represenative firm determines

the evolution of the capital stock to be

Kt+1 = Kt exp(µg + εt), (2.46)

and investments It = Kt+1, which implies that Kt fully depreciates. The representative firm

finances investments only through retained earnings. The equation also implies that the rep-

resentative firm chooses investments to be a constant share of output: It/Yt = Kt exp(µg +

εt)/(Kt exp(µK + εt)) = exp(µg − µK). Since consumption Ct = Yt − It, consumption is also

a constant share of output. Dividends are again the same as consumption, since they are the re-

maining cash flow after investment is done. Using Equations (2.45) and (2.46) the log of output

growth is now ln(Yt+1) − ln(Yt) = ln(Kt exp(µg + εt) exp(µK + εt+1)) − ln(Kt exp(µK + εt)) =

µg + εt+1, which is the same is Equation (2.2). The consumers problem is the same so that its

solution leads back to the same pricing equations.

28 2 Asset Pricing under Tax Rate Cyclicality



2.8 Conclusion

Building on the model in Sialm (2006) I analyzed tax rate cyclicality of taxes on output and its

effects on asset pricing in a model where output and dividends are the same. The basic model

features full tax transfers, whereas in a variation the taxes are not redistributed to capital mar-

ket participants or invested in a public good that enters utility in a separable fashion. For the

model with tax transfers reasonable amounts of risk aversion and a countercyclical tax policy

lead to increased asset prices through decreased discount rates versus the case of an acyclical tax

policy. A procyclical tax policy has the opposite effect. Prices are decreased, and discount rates

are increased. Bond rates are not influenced by tax rate cyclicality in the model with transfers.

For reasonable risk aversion the equity risk premium is decreased for a countercyclical tax pol-

icy and increased for a procyclical one. All of those effects are limited to certain ranges of the

cyclicality parameter, since the tax rate is bounded at zero and one so that the tax rate can-

not scaled up or down without limit. Fundamental is the assumption of tax transfers. Without

transfers the stochastic discount factor is fundamentally changed, which has various effects on

values and rates. For example for the case without transfers both, a procyclical and a counter-

cyclical tax policy, can increase asset prices. Additionally, I sketched some of the possible exten-

sions of the basic model with tax transfers. I showed the effects of a time lag for the setting of

the tax rate and autocorrelation of output growth using an MA(1) process. The impact of au-

tocorrelated growth is an increase or decrease of the effect of tax rate cyclicality on asset prices

however it does not reverse effects. That is if rising cyclicality decreases asset prices then tax

rate cyclicality with the MA(1) for output growth decreases prices at a higher or lower rate, but

does not increase prices. Introducing a lag of one in the MA(1) model increases or decreases the

effect of cyclicality by a greater magnitude but again does not reverse the effect of the tax policy

versus the effect without a lag and without the MA(1).

The scope for possible extensions is large. Different tax bases, the introduction of real invest-

ment, government debt, and heterogeneous agents with respect to transfer payments may be

fruitful ways to follow.
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2.9 Appendix to Chapter 2

2.9.1 Covariance of the Tax Rate with the Stochastic Part of Output

The covariance between the tax rate and the stochastic part of output growth can be derived as

follows:

Cov(τt, exp(εt)) = Cov

(
1− exp(µτ

∗
− φ20.5σ2)

(
1

exp(εt)

)φ
, exp(εt)

)
= − exp(µτ

∗
− φ20.5σ2)Cov(exp(−φεt), exp(εt))

= − exp(µτ
∗
− φ20.5σ2) (E[exp((1− φ)εt)]− E[exp(−φεt)]E[exp(εt)])

= − exp(µτ
∗
− φ20.5σ2)(exp((1− 2φ+ φ2)0.5σ2)− exp((1 + φ2)0.5σ2))

= − exp(µτ
∗

+ 0.5σ2)(exp(−φσ2)− 1)

= exp(µτ
∗

+ 0.5σ2)(1− exp(−φσ2)) (2.47)

= (1− E[τ ]) exp(0.5σ2)(1− exp(−φσ2)) (2.48)

2.9.2 Pricing without Taxes

The n in the superscript stands for a world without taxes. Using the relation from equation

(2.15) with zero tax rates I obtain

pS,nt = Et

 ∞∑
i=1

DS
t exp(−δi)

(
exp

(
i∑

s=1

gt+s

))1−γ
= DS

t

∞∑
i=1

exp

(
− δi+ (1− γ)iµg + (1− γ)20.5iσ2

)
(2.49)

for equity. I put all the terms related to risk aversion and time discounting into the denomina-

tor. In a second step I use the fact that this is an infinite geometric series:

pS,nt = DS
t

∞∑
i=1

exp(µg + 0.5σ2)i

exp(δ + γµg + (2γ − γ2)0.5σ2)i

= DS
t

exp(µg + 0.5σ2)

exp(δ + γµg + (2γ − γ2)0.5σ2)− exp(µg + 0.5σ2)
. (2.50)

The single-period discount rate or expected return is i.i.d. so that I leave out time subscripts:

E(RS,n) = exp(δ + γµg + (2γ − γ2)0.5σ2). (2.51)

The price dividend ratio is

ΨS,n =
pS,nt
DS
t

=
E[G]

E[RS,n]− E[G]
, (2.52)

which is time independent in this case.
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The pricing equation for bonds is

pB,M,n
t =Et

exp(−δM)

(
exp

(
M∑
s=1

gt+s

))−γ
= exp(−δM − γMµg + γ20.5Mσ2)

= exp(δ + γµg − γ20.5σ2)−M . (2.53)

The single-period risk-free rate is

RB,1,n = exp(δ + γµg − γ20.5σ2). (2.54)

Convergence. For equity prices to exist, i.e., to be finite, the sum in equation (2.49) must con-

verge (transversality condition). That means the price of cash flows must go to zero as time ex-

tends into the future. I look at

lim
i→∞

Et

exp(−δi)

(
exp

(
i∑

s=1

gt+s

))1−γ = lim
i→∞

(
E[G]

E[RS,n]

)i
,

which converges to zero only if E[G]/E[RS,n] < 1 or E[G] < E[RS,n].

2.9.3 Equations for the Case with Taxes and Transfers

The expected value of after-tax dividends arriving at t + i from the viewpoint of time t is equal

to

Et[Dt+i(1− τt+i)] = DS
t Et[exp(iµg +

i∑
s=1

εt+s + µτ
∗
− φεt+i − φ20.5σ2)]

= DS
t exp(iµg + µτ

∗
+ 0.5iσ2 − φσ2)

= DS
t E[G]i(1− E[τ ]) exp(−φσ2) (2.55)

To derive this result I use the fact that Et[exp(εt+i(1 − φ) − φ20.5σ2)] = exp((1 − φ)20.5σ2 −

φ20.5σ2) = exp((1− 2φ)0.5σ2).
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For the price dividend ratio I obtain:

ΨS
t =

∞∑
i=1

βiEt

[(
DS
t+i

DS
t

)1−γ

(1− τt+i)

]

=

∞∑
i=1

Et

[
exp(−δi) exp((1− γ)(iµg +

i∑
s=1

εt+s) + µτ
∗
− φεt+i − φ20.5σ2)

]

=

∞∑
i=1

exp(−δi+ (1− γ)iµg + 0.5(1− γ)2iσ2 + µτ
∗

+ (γ − 1)φσ2)

=

∞∑
i=1

exp(iµg + 0.5iσ2 + µτ
∗ − φσ2)

exp(δ + γµg + (2γ − γ2)0.5σ2)i exp(−γφσ2)

= (1− E[τ ])
E[G]

E[RS,n]− E[G]

exp(−φσ2)

exp(−γφσ2)

= ΨS,n(1− E[τ ])
exp(−φσ2)

exp(−γφσ2)
.

(2.56)

For the transition from the second to the third equality, notice that at t + i there are the terms

(1 − γ)εt+i and −φεt+i. That leads to the combined term εt+i(1 − γ − φ). Taking the variance I

obtain ((1− γ)2− (1− γ)2φ+φ2)0.5σ2 and I still subtract the term φ20.5σ2. The fourth equality

divides into expected taxes according to equation (2.55) and the discount rate. The fifth equality

separates the no-tax equity price dividend ratio. The last equality shows the tax effects whereas

I kept in the numerator the effects on cash flows and in the denominator the effects on the dis-

count rate. This price dividend ratio is also independent from time so that the time subscript

may be omitted.

To derive the single-period after-tax expected return Et[R
S,τ
t+1] I define:

B = (1− E[τ ])
exp(−φσ2)

exp(−γφσ2)
.

The expected return is then

Et[R
S,τ
t+1] = Et

[
DS
t+1(1− τt+1) + pSt+1

pSt

]
= DS

t Et

[
exp(gt+1)(1− τt+1) + exp(gt+1)ΨS,nB

DS
t ΨS,nB

]
= E[G](1− E[τ ]) exp(−φσ2)(ΨS,nB)−1 + E[G]

= exp(−γφσ2)(E[RS,n]− E[G]) + E[G]. (2.57)
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The equity premium is

E[RE ] = E

[
DS
t+1 + pSt+1

pSt

]
−RB,1,n

= E

[
DS
t

exp(gt+1) + exp(gt+1)ΨS,nB

DS
t ΨS,nB

]
−RB,1,n

= E[G](ΨS,nB)−1 + E[G]−RB,1,n

=
exp(−γφσ2)

(1− E[τ ]) exp(−φσ2)
(E[RS,n]− E[G]) + E[G]−RB,1,n

= (1− E[τ ])−1 exp(φσ2(1− γ))(E[RS,n]− E[G]) + E[G]−RB,1,n. (2.58)

2.9.4 Equations for the Case with Taxes and without Transfers

As in Sialm (2006) aggregate consumption changes to Ct = DS
t (1 − τt), which changes the

stochastic discount factor. For the price dividend ratio I obtain:

ΨS
t = (1− τt)

∞∑
i=1

βiEt

[(
DS
t+i(1− τt+i)
DS
t (1− τt)

)1−γ]

=(1− τt)
∞∑
i=1

Et

[
exp(−δi) exp(iµg +

i∑
s=1

εt+s − φεt+i + φεt)
1−γ
]

= exp(µτ
∗
− γφεt − φ20.5σ2)

∞∑
i=1

exp(−δi+ (1− γ)iµg + (1− γ)2(i− 1)0.5σ2 + (1− γ)2(1− φ)20.5σ2)

= exp(µτ
∗
− γφεt − φ20.5σ2)

∞∑
i=1

exp(−δi+ (1− γ)iµg + (1− γ)2i0.5σ2 + (1− γ)2(−2φ+ φ2)0.5σ2)

= exp(µτ
∗
− γφεt − φ20.5σ2)

∞∑
i=1

exp(µg + 0.5σ2)i exp((1− γ)2(φ2 − 2φ)0.5σ2)

exp(δ + γµg + (2γ − γ2)0.5σ2)i

= exp(µτ
∗
− γφεt + (γ2 − 2γ)(φ2 − 2φ)0.5σ2 − φσ2)

E[G]

E[RS,n]− E[G]

= ΨS,n(1− E[τ ]) exp(−γφεt + (γ2 − 2γ)(φ2 − 2φ)0.5σ2 − φσ2).

(2.59)

In the second equality I use (1 − τt) = exp(µτ
∗ − φεt − φ20.5σ2). The constant terms in the

tax terms φ20.5σ2 and µτ
∗

cancel out. In the third equality I use the fact that (1 − τt) exp((1 −

γ)φεt) = exp(µτ
∗ − γφεt − φ20.5σ2).

To derive the single-period expected return Et[R
S,τ
t+1] I define

C = (1− E[τ ]) exp((γ2 − 2γ)(φ2 − 2φ)0.5σ2 − φσ2),

which is the factor in the pricing equation, where I exclude the time dependent term
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exp(−γφεt). The unconditional single-period expected return is then

E[Et[R
S,τ
t+1]] = E

[
Et

[
DS
t+1(1− τt+1)

pSt

]
+ Et

[
pSt+1

pSt

]]
= E

[
Et

[
exp(gSt+1)(1− τt+1)

exp(−γφεt)ΨS,nC

]
+ Et

[
exp(gSt+1) exp(−γφεt+1)ΨS,nC

exp(−γφεt)ΨS,nC

]]
= E

[
exp(γφεt + (2γ − γ2)(φ2 − 2φ)0.5σ2)(E[RS,n]− E[G]) + exp(γφεt + µg + (1− γφ)20.5σ2)

]
= exp((γφ2 − 2γφ+ γ2φ)σ2)(E[RS,n]− E[G]) + exp((γ2φ2 − γφ)σ2)E[G],

(2.60)

where the first term is the unconditional expected after-tax dividend yield and the second term

the unconditional expected capital gain for one period.

Since the stochastic discount factor changes versus the no-tax world, bond prices changes as well:

pB,Mt =Et

[
exp(−δM)

(
DS
t+i(1− τt+i)
DS
t (1− τt)

)−γ]

= Et

[
exp(−δM) exp(Mµg +

M∑
s=1

εt+s − φεt+M + φεt)
−γ
]

= exp(−δM) exp(−γMµg + γ2(M − 1)0.5σ2 + γ2(1− φ)20.5σ2 − γφεt)

= exp(−δM) exp(−γMµg + γ2M0.5σ2 + γ2(−2φ+ φ2)0.5σ2 − γφεt). (2.61)

The single period risk free rate is therefore

RB,1t = exp(δ + γµg − γ20.5σ2 − γ2(φ2 − 2φ)0.5σ2 + γφεt)

= RB,1,n exp(−γ2(φ2 − 2φ)0.5σ2 + γφεt)
(2.62)

The M-period bond rate is

RB,Mt = (RB,1,n)M exp(−γ2(φ2 − 2φ)0.5σ2 + γφεt). (2.63)

The equity premium is

E[RE ] = E

[
exp(gSt+1)

exp(−γφεt)ΨS,nC
+

exp(gSt+1) exp(−γφεt+1)ΨS,nC

exp(−γφεt)ΨS,nC
−RB,1t

]
= exp(γ2φ20.5σ2)[exp(−µτ

∗
− (γ2 − 2γ)(φ2 − 2φ)0.5σ2 + φσ2)(E[RS ]− E[G])

+ exp(µg + (1− γφ)20.5σ2)]−RB,1,n exp(γ2φσ2)

= (1− E[τ ])−1 exp((γφ2 + φ(γ − 1)2)σ2)(E[RS ]− E[G])

+ E[G] exp((γ2φ2 − γφ)σ2)−RB,1,n exp(γ2φσ2).

(2.64)
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2.9.5 Data Sources for Numerical Examples

I use annual data from 1929 to 2013 for the U.S. I use dividends for the S&P 500 from Robert

Shillers website12. Furthermore, I use nominal consumption per capita of nondurables and ser-

vices provided by FRED (Federal Reserve Economic Data) for the period from 1929 to 2013.13

Nominal GDP per capita from 1929 to 2013 is also provided by FRED.14 I deflate all of the

nominal values and compute the growth rates of the real values.

For 1947 to 2013 I compute consumption deflator series from nominal and real consumption per

capita from data provided by FRED.15 For the time prior to 1947 I use the consumption deflator

series from Grossman and Shiller (1981).16

Due to those non-flat tax rates and the optimization at the margin the marginal tax rates are

appropriate here17. For average marginal tax rates on dividends, I use the data provided by

NBER TAXSIM from 1979 to 2013. For tax rate from 1930 to 1978 I use the data from Sialm

(2009)18. I am confident to use time series from two sources since during the overlap period they

are very close with correlation coefficients of over 0.9.

12The data can be found under http://www.econ.yale.edu/~shiller/data.htm.
13The data can be retrieved under https://research.stlouisfed.org/fred2, series A796RC0A052NBEA and

A797RC0A052NBEA.
14The respective time series is A939RC0A052NBEA.
15From FRED I use the annual real consumption series A796RX0Q048SBEA and A797RX0Q048SBEA.
16During the overlapping time of the timer series from 1947 to 1992 the derived inflation rates are virtually the

same and have a correlation coefficient of 0.99.
17For the use of marginal tax rates see for example Sialm (2009) in an empirical paper or Brennan (1970) in a

theoretical asset pricing context.
18The data and the data appendix can be found under https://www.aeaweb.org/articles?id=10.1257/aer.99.

4.1356. During the overlap of the data from Sialm (2009) and the TAXSIM data, the time series are very close.
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3 Asset Pricing under Tax Rate Uncertainty in a Real Business Cycle Model

3.1 Introduction

I combine the ideas of Sialm (2006), who considers uncertain tax rates in a model similar to the

consumption CAPM (CCAPM), and Santoro and Wei (2011), who consider certain tax rates on

dividends and corporate profits in a real business cycle (RBC) model with habits and adjust-

ment costs for capital. Also using an RBC model with habits and adjustment cost, I analyze the

effect of an uncertain tax rate on dividends on business cycle variables and moments of asset re-

turns. I also include the feature in Sialm (2006) that a part of the taxes are invested in a public

good, whose consumption goes into the investor’s utility function in a separable fashion.

As in Santoro and Wei (2011) I assume mature firms, which finance investments out of retained

earnings and abstain from share issues or repurchases. I regard dividend taxes in isolation and

concentrate on the effects of uncertainty about the tax rate.

I confirm that a certain and constant tax rate on dividends has no distortionary effects on in-

vestments at least as long as all tax payments are transferred back to the investor. This result

can be extended to an uncertain tax rate on dividends as long as certain assumptions on the ex-

pected value and correlations of the tax rate with other variables of the firm’s first order con-

dition hold. However, those assumptions are very restrictive so that tax rate uncertainty will

regularly have an effect on the firm’s investment decisions.

I conduct several numerical experiments. Shocks on the tax rate are uncorrelated with produc-

tivity shocks. I compare parameterizations without taxes, with a certain tax rate, without and

with autocorrelated uncertain tax rates. I do this for different groups of models, in which I vary

habit and adjustment cost parameters.

In the numerical experiments I find that tax rate uncertainty has a strong effect on business cy-

cle variables in the standard RBC model without habits and adjustment costs. In the first set of

experiments all of the taxes are paid back as transfer payments. Variability of consumption and

investment growth are strongly increased with tax rate volatility. Volatilies of asset returns are

increased as well. However, those effects diminish greatly with the introduction of adjustment

costs and decrease even more with higher habit parameters. An unexpected increase in the tax

rate leads to a decrease in corporate payouts and consumption and an increase in investments.

With adjustment costs and habits, tax shocks affect consumption and investment much less. For

the equity premium it turns out that the tax capitalization effect is much more important than

effects through tax rate volatility. A certain tax rate of 32% increases the quarterly pre-tax eq-

uity premium by a little bit less than 0.3% in all of the parameterizations. The equity premium,

which is usually determined using pre-tax mean returns, reflects capitalized taxes so that after-

tax, an investor earns the same as in a world without taxes. Introducing tax rate volatility does

not increase the equity premium in an economically significant way. I obtain the greatest effect

for the standard RBC model with an increase of the equity premium by 6 basis points versus the
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case with a certain tax rate. However this is achieved with an unreasonably high volatility of the

tax rate shocks. With a more realistic volatility, the increase is only two basis points. For high

adjustment costs and high habits increases are even less. Without habits and adjustment costs

tax rate shocks are levelled out by strong investment reactions and then do not cause enough

volatility in the stochastic discount factor to increase the equity premium a lot. With adjust-

ment costs and habits small adjustments of investments with small changes in consumption have

already enough effect on the stochastic discount factor to bring first order conditions back to

equality. This additional volatility of the discount factor is too small to cause sizeable effects of

tax rate volatility.

I also regard the case that not all of the taxes are transferred back, but are invested in a public

good. Consumption of this good enters the utility function in a separable fashion. I find that

reducing transfer payments has a big impact on the equity premium when habits are strong and

adjustment costs are high. Reducing transfer payments to zero and investing all tax revenues

in the public good increases the equity premium by around 40 basis points. Making a part of

output unavailable for consumption and regular investment creates extreme additional discount

factor volatility that leads to a much higher equity premium.

I contribute to the literature in which models are developed that explain asset pricing in real

business cycle models and that include taxes as important determinants. Jermann (1998) lays

the foundations to explain the equity premium in RBC models without taxes. He finds that

both, habit formation and adjustment cost of capital, are necessary to generate non-trivial eq-

uity premiums. In turn, standard business cycle models as in Rouwenhorst (1995), which rest on

power utility, are not able to produce substantial risk premiums. Santoro and Wei (2011) look

at flat tax rates on corporate profits and dividends. However, they only find interesting effects

for corporate taxes. A flat dividend tax rate is found to have no effect on investment decisions.

Sialm (2006) considers uncertain tax rates explicitly. He taxes accrual capital gains and divi-

dends at the same flat, but uncertain, tax rate. He finds that tax rate uncertainty can at least

partly explain the equity premium. The model he uses features an exogenous output process

without real investment opportunities so that it very much resembles an endowment economy

in the fashion of the CCAPM. Due to this limitation, Sialm (2006) adds that a model with en-

dogenous investments would be a fruitfull extension. Croce et al. (2012) analyze uncertain cor-

porate tax rates in a production-based model with recursive preferences. They find that tax rate

increases through a tax rate shock lead to less investment and more consumption. I find that the

opposite is true for an increase in dividend taxes through a tax shock.

McGrattan and Prescott (2005) also see strong ties between taxation and asset prices. They ob-

serve large movements of asset prices relative to GDP in the U.S. and in the U.K. They found

changes in the tax rate on corporate distributions to be their main driver. Bizer and Judd

(1989) build a model with random taxes on capital gains. One finding is that the randomiza-

tion of capital income taxation will raise revenue at a relatively low efficiency cost, showing that
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naive arguments about a stable tax policy may be misplaced. Hasset and Metcalf (1999) test tax

effects on investment behaviour, whereas taxes are subject to different stochastic processes: a

stationary and discrete jump process and a random walk. Among other results they find that

different stochastic processes lead to opposite conclusions about investment behavior. Pastor

and Veronesi (2012) derive a general equilibrium model in a Bayesian fashion. The paper is re-

markable in that it provides a new view on the matter using parameter uncertainty. Empirically,

Sialm (2009) finds evidence that effective tax rates on dividends and capital gains are negatively

related to equity valuation, which supports the tax capitalization hypothesis. Poterba and Sum-

mers (1984) outline and test several hypotheses of effects of dividend taxation on investments

and asset prices for the UK. They reject the tax capitalization hypothesis in favor of the tradi-

tional view, in which taxes on dividends are seen as an additional tax on corporate capital in-

come. They also state that the different views may well coexist since for different firms different

payout and investment policies may apply. They see the tax capitalization view as most appli-

calbe to mature firms, which fund investments mostly out of retained earnings.

3.2 The Model

The basic model follows the one in Jermann (1998), which was extended by Santoro and Wei

(2011) with certain and flat tax rates on corporate profits and dividends. I also introduce a pub-

lic good that enters the utility function and a separable way as in Sialm (2006). My main focus

is on dividend taxation and not on corporate taxes, since the latter ones are already analyzed in

Croce et al. (2012).

Utility and budget constraints. The representative investor is infinitely-lived and maxi-

mizes expected utility, E0[u(·)], with respect to consumption Ct and portfolio weights xt, at time

zero:

max
{Ct}∞t=0{xt}∞t=0

E0

[ ∞∑
t=0

βt[u(Ct, Ct−1) + v(Gt)

]
. (3.1)

Here Gt represents the quantity of the public good at time t, and v(·) is the utility function for

this good. The households budget constraint for t = 0, 1..,∞ reads

Ct = p′t(xt−1 − xt) +Dτ ′
t xt−1 + wtLt + (1− ω)Qt, (3.2)

Furthermore, pt = (pSt pBt )′ is a vector of asset prices, with pSt the price of the equity asset

and pBt the price of a bond that pays out one unit of the consumption good in the next period.

Dτ
t = (DS

t (1 − τt) 1)′ is a vector of after-tax payouts of the equity asset, in which DS
t are divi-

dends on the equity asset, and τt is the tax rate on dividends. The bond is not taxed. Similarly,

the vector of portfolio weights is xt = (xSt xBt )′. Bonds are in zero net supply. Equity is in pos-

itive net supply so that the sum of all weights of the equity asset is one. I assume, as in Santoro

and Wei (2011), that the firm does not issue further equity but finances investments out of re-
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tained earnings. As mentioned in the introduction, this assumption makes most sense for mature

firms. The investor works Lt units per period and receives a wage rate wt for one unit of labor

provided. The term Qt stands for tax revenues and (1 − ω)Qt for transfer payments, in which

0 ≤ ω ≤ 1, is the flat and deterministic share of the whole tax revenues that is invested in the

public good.

As in Sialm (2006), I assume that the government has a zero deficit at all times so that Gt =

ωQt.

First order conditions for the representative investor. I write the Lagrangian as

L = E0

[ ∞∑
t=0

βt
(
u(Ct, Ct−1) + v(Gt) + Λt

(
p′t(xt−1 − xt) +Dτ ′

t xt−1 + wtLt + (1− ω)Qt − Ct
))]

,

(3.3)

in which Λt is a Lagrange multiplier. Heer and Maussner (2009, pp. 312-317) provide a deriva-

tion for the case without taxes. Santoro and Wei (2011) show some results with a certain divi-

dend tax rate.

The derivatives with respect to Ct, x
S
t , and xBt conditional on the information at time t are, re-

spectively,

0 = ut,1 + βEt[ut,2]− Λt, (3.4)

0 = −pSt Λt + Et

[
βΛt+1

(
DS
t+1(1− τt+1) + pSt+1

)]
(3.5)

0 = −pBt Λt + Et

[
βΛt+1

]
. (3.6)

I denote ut,1 and ut,2 the derivatives with respect to the first argument of the function at time t

and the second argument at time t, respectively. For example, ut,1 is the derivative of u(·) with

respect to Ct. I suppress arguments of functions when they are not needed for clarity.

The representative firm. The firm produces output Yt using capital Kt and labor Lt and

a production technology represented by a production function, which is homogeneous of degree

one,

Yt = ZtF (Kt, A
tLt). (3.7)

Output is subject to productivity shocks Zt. Furthermore, At = (1+a)t is a deterministic growth

rate. Per assumption investments It are equal to retained earnings. Therefore, dividends are

DS
t = Yt − wtLt − It. (3.8)
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The capital stock evolves according to

Kt+1 = φ(Kt, It) + (1− δ)Kt, δ ∈ (0, 1], (3.9)

where δ is the depreciation rate of capital and the function φ(Kt, It) accounts for adjustment

costs. Any produce cannot costlessly converted into installed capital, and this function accounts

for that fact. The firm maximizes its value through the optimal choice of investment and capital:

max
{It,Kt+1}∞t=0

∞∑
t=0

E0

[
βt

Λt
Λ0

(ZtF (Kt, A
tLt)− wtLt − It)(1− τt)

]
. (3.10)

With that maximization problem I also follow Santoro and Wei (2011) in that the firm maxi-

mizes the present value of after-tax dividends. The argument in favor of this assumption is that

to maximize shareholder value the firm must also consider personal taxes. I write the problem as

a Lagrangian subject to the firms budget constraint (3.9):

L = E0

{ ∞∑
t=0

βt
Λt
Λ0

[
(1− τt)

[
ZtF (Kt, A

tLt)− wtLt − It
]

+ qt
[
φ(Kt, It) + (1− δ)Kt −Kt+1

]]}
.

(3.11)

The derivative with respect to capital Kt+1 leads to

E0

{
βt+1 Λt+1

Λ0

[
(1− τt+1)Zt+1Ft+1,1 + qt+1

[
φt+1,1 + 1− δ

]]
+ βt

Λt
Λ0
qt(−1)

}
= 0. (3.12)

From the viewpoint of time t and with some cancellations and rearrangements, I obtain an ex-

pression with respect to qt:

qt = Et

{
β

Λt+1

Λt

[
(1− τt+1)Zt+1Ft+1,1 + qt+1

[
φt+1,1 + 1− δ

]]}
. (3.13)

Eventually, the derivative with respect to investments It at time t yields

qt =
1− τt
φt,2

. (3.14)

Substituting equation (3.14) into (3.13) leads to the firm’s first order condition:

1− τt
φt,2

= Et

{
β

Λt+1

Λt
(1− τt+1)

[
Zt+1Ft+1,1 +

φt+1,1 + 1− δ
φt+1,2

]}
. (3.15)

The derivative with respect to labor leads to

wt = ZtFt,2A
t, (3.16)

i.e., the wage rate is equal to the marginal product of labor.
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Market equilibrium. Many of the results can be found in Sialm (2006). However, the con-

sumption budget constraint (3.2) can be rewritten using the firm’s dividend payment from Equa-

tion (3.8) and the fact that xt−1 − xt = 0 in the aggregate. Since labor or leisure does not en-

ter the households utility, it is optimal for households to provide as much labor as possible, i.e.,

Lt = 1. No equity is issued or bought back, so that aggregate tax revenues are equal to tax pay-

ments:

Qt = τtD
S
t . (3.17)

In the aggregate consumption is equal to

Ct = (1− ωτt)DS
t + wt

= (1− ωτt)(Yt − wt − It) + wt.
(3.18)

Government spending on the public good is

Gt = ωτtD
S
t = ωτt(Yt − wt − It). (3.19)

The remainder of the tax revenue is transfer payments. Thus, all of the produce is either con-

sumed, invested in capital or invested in the public good:

Yt = Ct + It +Gt. (3.20)

Using the prior two equations and Equation (3.16), I can restate investments in equilibrium as

It = Yt −
Ct − ωτtZtFt,2At

1− ωτt
. (3.21)

Substituting Equations (3.18) and (3.19) into Equation (3.20), investments can also be written

as

It = Yt − (DS
t + wt), (3.22)

in which DS
t + wt is the pre-tax income of the representative investor.

First results. In contrast to Santoro and Wei (2011) I extend the model with an uncertain tax

rate on dividends. For their Proposition 1 Santoro and Wei (2011) use a constant dividend tax

rate and find that it does not have an effect on investment decisions since the tax terms cancel

out. In this case, the equality of the marginal cost and marginal benefit of investment is not de-

pendent on the dividend tax rate. With respect to an uncertain tax rate on dividends, I propose

the following:

Proposition 3.1. In equilibrium and with full tax transfers (ω = 0), an uncertain tax rate
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on dividends has no effects on the firm’s investment decisions as long as the dividend tax rate

is uncorrelated with the remaining variables on the right side of equation (3.15) and as long as

the (conditional) expected value of the dividend tax rate is equal to the current tax rate: τt =

Et[τt+1].

Proposition 3.2. In equilibrium but without full tax transfers (0 < ω ≤ 1), a tax rate on

dividends has an effect on the firm’s investment decisions even when it is certain and constant.

Proof. Dividing Equation (3.15) by 1 − τt it becomes clear that the firm’s decisions dependent

on 1−τt+1

1−τt . With τt+1 uncorrelated with all other rhs variables and with τt = Et[τt+1] Equation

(3.15) becomes

1

φt,2
= Et

{
β

Λt+1

Λt

[
Ft+1,1 +

φt+1,1 + 1− δ
φt+1,2

]}
1− Et[τt+1]

1− τt
, (3.23)

where (1 − τt) and (1 − Et[τt+1]) cancel out for τt = Et[τt+1], so that taxes do not play a role.

Apart from the optimality condition I also have to consider the equilibrium conditions that are

derived from the budget constraint. Equations (3.18) to (3.21) shows that for ω 6= 0 the tax rate

has an effect on the budget constraints, i.e., it has an effect on the feedback relations between

investment and consumption, whereas for ω = 0 the tax rate disappears from the budget con-

straints.

In other cases, i.e., with tax rates correlated with other variables or a conditional expectation

of the tax rate different from the current tax rate or both, tax effects do not cancel out of the

firm’s first order conditions, so that the tax rate regularly has an effect on the firm’s investment

decisions.

3.3 Choice of Processes and Functional Forms

I model the tax rate τt as a process that includes an AR(1) component:

τt = µτ + τ∗t

τ∗t = ρτ
∗
τ∗t−1 + σuut, ut ∼ N(0, 1).

(3.24)

I use µτ as the mean of the tax rate, ρτ
∗

as the persistence parameter of the AR(1) part of the

process, and σu as the volatility parameter of the shocks ut. Theoretically, this specification

comes along with the problem that tax rates can be greater than one and less than zero. How-

ever, with a small variance and a mean not close to zero or one, as it will be used herein, this is

not a practical problem. As explained further in the Appendix 3.10.1, for normal distributions

good numerical approximations exist that very much shorten computation time.

I use a Cobb-Douglas production function of the form

F (Kt, A
tLt) = Kα

t (AtLt)
1−α α ∈ (0, 1). (3.25)
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Very similar to the function in Santoro and Wei (2011) and Jermann (1998), I use the following

specification for adjustment costs:

φ(Kt, It) =

(
(a+ δ)η

1− η

(
It
Kt

)1−η

− η(a+ δ)

1− η

)
Kt, (3.26)

in which η 6= 1 is the curvature parameter of the function. The derivatives with respect to Kt

and It are, respectively:

φt,1 =

(
(a+ δ)η

1− η

(
It
Kt

)1−η

− η(a+ δ)

1− η

)
−
(

It
(a+ δ)Kt

)−η (
It
Kt

)
, (3.27)

φt,2 =

(
It

(a+ δ)Kt

)−η
. (3.28)

The logarithm of factor productivity ln(Zt) = zt follows the AR(1) process:

zt = ρzzt−1 + σεεt, εt ∼ N(0, 1). (3.29)

I assume that the shocks to productivity and to the tax rate are uncorrelated and bivariate nor-

mal. Utility is given by

u(Ct) =
(Ct − bCt−1)1−γ

1− γ
, (3.30)

where b is a parameter that determines the habit with respect to prior consumption. The deriva-

tives of the production function with respect to capital and labor are, respectively,

Ft,1(Kt, A
tLt) = αKα−1

t (AtLt)
1−α

Ft,2(Kt, A
tLt)A

t = (1− α)Kα
t (AtLt)

−αAt. (3.31)

The derivative of the utility function with respect to consumption Ct is

ut,1(Ct, Ct−1) = (Ct − bCt−1)−γ .

The langrange multiplier Λt becomes

Λt = (Ct − bCt−1)−γ − βbEt[(Ct+1 − bCt)−γ ]. (3.32)
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I expand the first order condition (3.23) to

(
It

(a+ δ)Kt

)η
= Et

{
β

Λt+1

Λt

1− τt+1

1− τt

[
αZt+1K

α−1
t+1 (AtLt+1)1−α+(

(a+δ)η

1−η

(
It+1

Kt+1

)1−η
− η(a+δ)

1−η

)
−
(

It+1

(a+δ)Kt+1

)−η (
It+1

Kt+1

)
+ 1− δ(

It+1

(a+δ)Kt+1

)−η ]}
.

(3.33)

I extract the investment capital ratio from the last fraction and rewrite the equation to

qt = Et

{
β

Λt+1

Λt

[
(1− τt+1)

αYt+1 − It+1

Kt+1
+ qt+1

(
φ(Kt+1, It+1)

Kt+1
+ 1− δ

)]}
. (3.34)

Since the production function is homogeneous of degree one, Euler’s theorem holds: Yt =

ZtF (Kt, A
tLt) = ZtKtFt,1(Kt, A

tLt) + ZtA
tLtFt,2(Kt, A

tLt). I use this result and Equations

(3.8) and (3.16) to obtain DS
t = Yt − ZtAtLtFt,2(Kt, A

tLt)− It = ZtKtFt,1 − It = αYt − It. I use

this result in Equation (3.34). Following Heer and Maussner (2009, pp. 314-317) and Rouwen-

horst (1995, pp. 299-303), I derive the relation of the price of the equity asset to the captial

stock. I multiply the equation by Kt+1 and use the fact that Kt+2 = φ(Kt+1, It+1) + (1− δ)Kt+1

from Equation (3.9) to write

Kt+1qt = Et

{
β

Λt+1

Λt

[
(1− τt+1)DS

t+1 + qt+1Kt+2

]}
. (3.35)

Setting pst = Kt+1qt = Kt+1
1−τt
φt,2

, I obtain a simple expression for the equity price19, which can

be used to compute asset returns and expected returns.

3.4 Transformation to Stationary Values and the Deterministic Case

Following Heer and Maussner (2009, pp. 39-40), I transform the business cycle variables into

stationary variables. I denote stationary values in lower case letters. I define ct = Ct/A
t, λt =

Λt(A
t)γ and β̃ = βA1−γ . I use those definitions and take out (At)γ from both sides of Equation

(3.32) and divide by it so that it turns to:

λt = (ct −
b

A
ct−1)−γ − β̃ b

A
Et[(ct+1 −

b

A
ct)
−γ ]. (3.36)

Defining kt = Kt/A
t and dividing Equation (3.9) by At leads to the new formulation of the capi-

tal evolution function

Akt+1 = φ(kt, it) + (1− δ)kt. (3.37)

19Compare also Heer and Maussner (2009, pp. 314-317), Restoy and Rockinger (1994) and Cochrane (1991).
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I obtain this result since the adjustment cost equation is also homogeneous of degree one. This

implies φ(Kt/A
t, It/A

t) = φ(Kt, It)/A
t.

I use the equilibrium condition for investments (3.21) and restate it with stationary investment

i = It/A
t. Thus, I divide Equation (3.21) by At to obtain:

it = yt −
ct − ωτtFt,2(kt, Lt)

1− ωτt
. (3.38)

Since Ft,2(Kt, A
tLt) from Equation (3.16) is homogeneous of degree zero, Ft,2(Kt, A

tLt) =

Ft,2(Kt/At, Lt) = Ft,2(kt, Lt) holds. The variable qt from Equation (3.14) can be expressed as

a function homogeneous of degree zero in its arguments so that using kt and it instead of Kt and

It changes nothing.

Equation (3.34) in stationary values reads

qt = Et

{
β

1

Aγ
λt+1

λt

[
(1− τt+1)

αyt+1 − it+1

kt+1
+ qt+1

(
φ(kt+1, it+1)

kt+1
+ 1− δ

)]}
. (3.39)

Multiplying the equation by kt+1, using β̃ = βA1−γ and since Akt+2 = φ(kt+1, it+1) + (1− δ)kt+1

I restate

kt+1qt = Et

{
β̃

A

λt+1

λt

[
(1− τt+1)dSt+1 + qt+1Akt+2

]}
. (3.40)

I multiply by A to obtain

Akt+1qt = Et

{
β̃
λt+1

λt

[
(1− τt+1)dSt+1 + qt+1Akt+2

]}
. (3.41)

Dividing by Akt+1qt I obtain gross returns, where the deterministic growth rate is taken out:

(1− τt+1)dSt+1 + qt+1Akt+2

Akt+1qt
=

(1− τt+1)Dt+1/A
t+1 + pSt+1/A

t+1

pSt /A
t

=
RSτt+1

A
. (3.42)

In this equation RSτt+1 is the total single-period after tax return

RSτt+1 =
Ds
t+1(1− τt+1) + pSt+1

pSt
. (3.43)

Pre-tax returns on the equity asset are defined as

RSt+1 =
Ds
t+1 + pSt+1

pSt
. (3.44)

The (total) return can be split up into the dividend yield
Dst+1

pSt
and the capital gain

pSt+1

pSt
. The

return on a single-period bond is

RBt =
Aλt

Et[β̃λt+1]
, (3.45)
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which is the price of a certain cash flow of one unit arriving at t+ 1.

As in King et al. (1988) the only two changes when the stationary values are used are with re-

spect to the impatiance factor and the capital accumulation equation.

With the stationary values I compute the stationary solutions for the deterministic case. I de-

note the solutions using the same letters as before but without time subscripts. Let Xt be any

variable such as capital, investments etc., then X = Xt = Xt+1 = ... for the deterministic sta-

tionary case. Furthermore, productivity is equal to one, i.e., Zt = 1, and the tax rate is set equal

to µτ . From Equation (3.37) follows that in the deterministic stationary state k(a + δ) = φ(k, i).

This holds for steady state investments i = k(a + δ). That leads to q = (1 − µτ ). Using that in

Equation (3.41) together with dS = αkα − k(a+ δ) and rearranging for k leads to

k =

(
αβ̃

A− β̃(1− δ)

) 1
1−α

. (3.46)

The dividend tax plays no role for the value of the deterministic stationary capital. Using Equa-

tion (3.18) with stationary values and the stationary solution for capital, I derive stationary con-

sumption

c = (1− ωµτ )(αkα − k(a+ δ)) + (1− α)kα. (3.47)

As long as ω = 0, i.e., as long as all of the taxes are transfer payments, the tax rate also has

no effect on the steady state of consumption. However with ω greater zero the steady state con-

sumption decreases. To complete the picture, steady state output is

y = kα, (3.48)

for which I divide Equation (3.25) by At, and I use the fact that Lt = 1.

3.5 Quantitative Analysis

3.5.1 Method and Parameterization

I use a second order approximation of the policy functions, and I run simulations to obtain av-

erages of business cycle variables and asset returns. Appendix 3.10.1 describes the numerical

methods and why they were chosen more in detail. I point out, that I do not use the assumption

of joint log normality of the stochastic discount factor and asset returns as in Jermann (1998). I

drop this assumption and follow mostly Heer and Maussner (2009). With equal parameters this

leads to higher risk premiums as pointed out by Heer and Maussner (2012).

The benchmark parameters are given in Table 3. The parameters unrelated to taxes are from

Heer and Maussner (2009, p. 322). For tax rates on dividends, I use average marginal tax rates.

Due to tax rates being not flat and due to the optimization at the margin, the marginal tax
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rates are appropriate here20. For average marginal tax rates on dividends, I use the data pro-

vided by NBER TAXSIM from 1979 to 2013. For tax rates from 1913 to 1978, I use the data

from Sialm (2009)21. I am confident to use time series from two sources since during the overlap

period they are very close, with correlation coefficients of over 0.9. The mean of the tax rate is

0.32. I use this value in the quantitative analysis as well. To obtain the AR(1) process of τ∗, I

take out the mean µτ and estimate an AR(1) process for the remaining series. I obtain a coef-

ficient ρτ
∗

of 0.93 and a standard deviation for the shocks σu of 0.03.22 The tax rate data is at

annual frequency. I follow Croce et al. (2012) and disaggregate the tax rate data to a quarterly

frequency. This way I can keep the non-tax parameters at quarterly frequency, which makes

them better comparable to other analyses within the literature, which most of the time do not

differ that much in basic parameterizations. This implies that σu = 0.008 and ρτ
∗

= 0.9823.

For ρτ
∗

I choose a value of 0.9. This is a bit lower than the implied value of 0.98, but still a high

persistence. I decrease persistence a bit to reduce the probability that the simulations produce

tax rates below zero or above one.

I analyze the standard RBC model with η = 0 and b = 0, since this was also used in Sialm

(2006). Furthermore, I use the adjustment cost parameter from Jermann (1998) with η = 1/0.23

and different habit parameters b. I also use different specifications of the tax rate process to

analyse the sensitivity to those parameters. Later, I analyze the sensitivity to different param-

eters such as growth or risk aversion.

Before I present and interpret the numerical results I will outline the basic mechanisms of the

habit model.

3.5.2 The Basic Mechanisms in the Habit Model with Adjustment Costs

Table 4 shows the results of the simulations for different model specifcations. To address the re-

sults more conveniently, rows are numbered from (1) to (20) and the columns from (a) to (j).

The table shows ratios of volatilities of real values (column (a) and (b)) and asset return mo-

ments in percent in the columns (c) to (j). The parameterizations are divided into groups, and

the groups differ with respect to the tax rate process. The first parameterization in each group

has no taxes, the second includes a certain tax rate, and the following ones use different degrees

of volatilities of shocks and autocorrelation of the AR(1) part of the tax rate pocess. All values

are quarterly values. When necessary, I will additionally provide graphs of impulse repsonses to

make sense of some of the results from the table.

As Jermann (1998) notes, stronger habits, i.e., an increase in the parameter b leads to a decrease

20For the use of marginal tax rates see for example Sialm (2009) in an empirical paper or Brennan (1970) in a
theoretical asset pricing context.

21The data and the data appendix can be found under https://www.aeaweb.org/articles?id=10.1257/aer.99.

4.1356. During the overlap of the data from Sialm (2009) and the TAXSIM data, the time series are very close.
22The parameters µτ , ρτ

∗
, and σu are rounded to the second decimal.

23An AR(1) at quarterly frequency implies (ρτ
∗
(quart))4 = ρτ

∗
(ann). For the variance of the shocks the relation

is σu(quart)(1 + ρτ
∗
(quart) + (ρτ

∗
(quart))2 + (ρτ

∗
(quart))3) = σu(annually).
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Table 3: Benchmark parameters

Parameter Notation Value

Deterministic growth rate a 0

Rate of depreciation δ 0.011

Output elasticity of capital α 0.27

Time discount factor β̃ 0.994

Utility curvature parameter γ 2

Persistence (productivity) ρz 0.9

Standard deviation of prod. shocks σε 0.0072

Mean of the tax rate µτ 0.32

Persistence (AR part of tax rate process) ρτ
∗

0.9

Standard deviation of tax rate shocks σu 0.008

The parameters that are unrelated with the dividend tax rate are from Heer and Maussner (2009, p. 322). Tax rate
parameters are based on the data in Sialm (2009) and TAXSIM. The persistence of the AR(1) part of the tax rate
process is decreased to 0.9 from a higher implied value of around 0.98. All values are at quarterly frequency.

in consumption volatility. People do not want to deviate from their habitual consumption, so

that consumption becomes smoother. Agents very much smooth consumption because devia-

tions from consumption have strong effects on marginal utility in the habit model. When invest-

ment is not endogenous, this is enough to produce a sizeable equity premium. However, with

endogenous investment agents use the investment channel to flatten any shocks introduced by

productivity shocks, which, in turn, are immediately reflected in output changes. This can best

be observed comparing column (a) of the first two groups of parameterizations in the additional

table, Table 7, in the appendix. One can close the retreat to the investment channel in making

investment costly. This is done through adjustment costs of capital. Since those adjustments

are costly the volatility of investments decreases. Output cannot be converted into capital one

to one anymore. This can be observed by comparing column (b) of the last two groups of pa-

rameterizations in Table 7, in the appendix. Table 7 also shows that adjustment costs tend to

increase consumption volatility, which, together with habits, influences marginal utility strongly.

For habits the investment-output volatility ratio is decreased when the habit parameter is in-

creased.

The expected return equation and a simple example additionally help to pin down why the eq-

uity premium is small for the standard RBC model. I use Equation (3.6), divide it by the price

pSt to obtain returns and rearrange it to

Et[R
S
t+1] =

1

Et[mt+1]

(
1− Covt

(
mt+1, R

S
t+1

))
= RBt

(
1− σt (mt+1)σt(R

S
t+1)Corrt

(
mt+1, R

S
t+1

))
, (3.49)
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in which I use mt+1 = βΛt+1

Λt
for the stochastic discount factor (SDF). The SDF and the return

on equity determine the conditional equtiy premium. This covariance can be decomposed into

the standard deviations σt(·) of its parts and their correlation coefficient Corrt(·). To obtain a

higher equity premium one can try to strongly increase the volatility of the stochastic discount

factor, i.e., to increase σt (mt+1). This is seen as the central mechanism to resolve the equity

premium puzzle (Cochrane, 2005, p. 455). Cochrane (2005, p. 459) states further that the dis-

count factor volatility can come either from the volatility of its conditional expected value, i.e.,

from variations in Et [mt+1], or from the variation in the unexpected part of the stochastic dis-

count factor: V ar(m) = V ar(Et[m]) + V ar(m − Et[m]).24 However, the power model and the

habit model with adjustment costs both increase SDF volatility though increasing the variability

of its conditional expectation. Apart from a convexity effect the variance of the bond rate in col-

umn (f) indicates the variance of the conditional expected value of the SDF. In all of the tables

herein a comparison of column (f) and (g) or (j) show that a higher variability of the SDF or the

bond rate goes together with a higher risk premium. The same can be observed in the Table 1 in

Jermann (1998). Thus, the habit model increases SDF volatility and it makes investments costly

so that the investment channel stops to be a good way to smoothen consumption again. A size-

able equity premium can be generated and the bond rate is relatively low. However, the risk-free

rate puzzle with respect to its volatility cannot be resolved by this model

I continue with the case of full tax transfers, i.e., ω = 0, and then treat the case in which not

all of the taxes are paid out as transfer payments. I will use numerical examples as well as the

equilibrium conditions to pin down the tax effects.

3.5.3 The Case with Full Tax Transfers

After those general remarks I come back to Table 4. I start with the group of the standard RBC

model, i.e., the parameterizations that feature power utility (no habits and no adjustment costs).

Paramerization (par.) (1) includes no taxes and par. (2) a constant tax rate. Expectedly, and

as confirmed in Jermann (1998) and Santoro and Wei (2011), the equity premium (column (g))

in this group of parameterizations is virtually zero. For par. (2) the (pre-tax) equity premium

increases to 0.28% per quarter. However, the after-tax equity premium in (j) is the same as the

equity premium in the no-tax model. Taxes are capitalized in returns, so that after-tax the ex-

pected return is the same as the expected return without taxes. This can be observed in all of

the different groups of parameterizations. The ratios of standard deviations in (a) and (b) are

also the same for the no-tax and the certain tax model of any group. This reflects that invest-

ments are not affected by the presence of a constant tax rate on dividends. Par. (3) introduces a

(high) volatility of 1.6% per quarter for the tax rate shocks, but no autocorrelation. The results

in (a) and (b) increase markedly. Both consumption growth and investment growth become

24The equation for the variance decomposition can be found in (Cochrane, 2005, p.459).
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Table 4: Results for business cycle variables and asset returns for the case with full tax transfers

Group N. Tax parameters σ∆c

σ∆y

σ∆i

σ∆y
E[rS ] σrS E[rB ] σrB E[rS − rB ] E[rS,τ ] σrS,τ E[rS,τ −rB ]

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Stand. RBC (1) µτ = 0, σu = 0, ρτ
∗

= 0 0.15 5.10 0.60 0.03 0.60 0.03 0.00 NA NA NA

η = 0, b = 0 (2) µτ = 0.32, σu = 0, ρτ
∗

= 0 0.15 5.10 0.89 0.02 0.60 0.03 0.28 0.60 0.03 0.00

(3) µτ = 0.32, σu = 0.016, ρτ
∗

= 0 2.25 11.88 0.94 3.37 0.60 2.36 0.34 0.66 3.35 0.05

(4) µτ = 0.32, σu = 0.008, ρτ
∗

= 0 1.13 7.38 0.90 1.69 0.60 1.18 0.30 0.62 1.68 0.01

(5) µτ = 0.32, σu = 0.008, ρτ
∗

= 0.9 0.70 6.06 0.89 1.22 0.60 0.27 0.29 0.61 1.21 0.01

Low habit, (6) µτ = 0, σu = 0, ρτ
∗

= 0 1.09 0.56 0.62 1.83 0.59 0.49 0.03 NA NA NA

high adj. (7) µτ = 0.32, σu = 0, ρτ
∗

= 0 1.09 0.56 0.90 1.83 0.59 0.48 0.32 0.62 1.83 0.03

b = 0.1, (8) µτ = 0.32, σu = 0.016, ρτ
∗

= 0 1.11 1.07 0.90 1.83 0.59 0.56 0.32 0.62 1.87 0.03

η = 1/0.23 (9) µτ = 0.32, σu = 0.008, ρτ
∗

= 0 1.10 0.72 0.90 1.84 0.59 0.50 0.32 0.62 1.84 0.03

(10) µτ = 0.32, σu = 0.008, ρτ
∗

= 0.9 1.09 0.64 0.90 1.84 0.59 0.48 0.32 0.62 1.84 0.03

Med. habit, (11) µτ = 0, σu = 0, ρτ
∗

= 0 0.95 1.41 0.71 4.57 0.55 2.32 0.16 NA NA NA

high adj. (12) µτ = 0.32, σu = 0, ρτ
∗

= 0 0.95 1.41 0.99 4.59 0.55 2.32 0.44 0.71 4.58 0.16

b = 0.5, (13) µτ = 0.32, σu = 0.016, ρτ
∗

= 0 0.95 1.57 1.00 4.77 0.55 2.51 0.45 0.72 4.77 0.16

η = 1/0.23 (14) µτ = 0.32, σu = 0.008, ρτ
∗

= 0 0.95 1.45 0.99 4.63 0.55 2.38 0.44 0.71 4.62 0.16

(15) µτ = 0.32, σu = 0.008, ρτ
∗

= 0.9 0.95 1.44 0.99 4.61 0.55 2.32 0.44 0.71 4.60 0.16

High habit, (16) µτ = 0, σu = 0, ρτ
∗

= 0 0.58 3.54 1.26 11.58 0.24 5.45 1.02 NA NA NA

high adj. (17) µτ = 0.32, σu = 0, ρτ
∗

= 0 0.58 3.54 1.54 11.55 0.24 5.83 1.30 1.26 11.54 1.02

b = 0.8, (18) µτ = 0.32, σu = 0.016, ρτ
∗

= 0 0.58 3.54 1.58 11.88 0.25 5.83 1.33 1.29 11.87 1.05

η = 1/0.23 (19) µτ = 0.32, σu = 0.008, ρτ
∗

= 0 0.58 3.54 1.55 11.63 0.24 5.57 1.31 1.26 11.62 1.02

(20) µτ = 0.32, σu = 0.008, ρτ
∗

= 0.9 0.58 3.54 1.54 11.55 0.24 5.50 1.30 1.26 11.54 1.02

All values are at quarterly frequency. I denote σ∆c the standard deviation of consumption growth, σ∆y the standard deviation of output growth, and σ∆i the standard deviation of
investment growth. Expected returns and standard deviations are given in percent. Furthermore, E[rS ] and σrS are the unconditional expectation and the standard deviation, respectively,
of the single-period return on equity. The superscript B indicates the same for a single-period bond returns. The equity premium is the unconditional mean E[rS − rB ]. The last three
columns show mean equity returns, standard deviation and the equity premium for after-tax returns. All values are obtained from 40000 simluations.
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much more volatile versus output growth than without the volatility of the tax rate shocks. Ex-

pected returns on equity increase by five basis points. The bond rate does not change so that

the increase in the expected return on equity also increases the equity premium one for one.

Volatilities of returns increase strongly. Thus, the representative agent reacts to tax rate shocks

even though taxes are fully transferred back. However, the representative agent stands for a

single agent, who cannot influence the lump sum tax transfers so that the decisions are made

with respect to the after-tax income. With par. (4), which is different to par. (3) only in the

lower volatility, the results decrease again. In par. (5) the tax rate is strongly persistent but the

volatility of the tax rate shocks is the same as in par. (4). The persistence decreases the effect

of the tax rate volatility on the different results. The after-tax equity premium remains close to

zero.

The impulse responses in Figure 7 and the equilibrium conditions, especially Equation (3.33),

help to explain the tax effects. Figure 7 panel (a) and (b) show the impulse responses of par.

(4) and (5), respectively, to a 1% productivity shock (lhs of each panel) and a 1% tax rate shock

(rhs of each panel). The figures show deviations in percent from deterministic stationary values,

i.e., something like yt/y−1 for output and ct/c−1 for consumption. The responses to productiv-

ity shocks are equal in both cases. The positive productivity shock increases output, consump-

tion and investment. Dividend yields are decreased through lower pre-tax dividends, which, in

turn, are decreased through higher investment. Capital gains increase due to the productivity

shock, which has a positive impact on investment and capital.

The responses to a 1% tax rate shock are different. Output reactions must be zero in the pe-

riod when the shock arrives, since capital is determined before the tax rate changes. Even after

the first period the reactions of output to a tax rate shock are very small compared to the re-

actions on the 1% productivity shock. Notice that in panel (a) the tax rate shock increases the

tax rate in period 1 but the tax rate goes back to its prior level in the second period. Reactions

to consumption and investments are very pronounced in both panels. A positive tax rate shock

decreases consumption and increases investment. This effect is already described in Poterba and

Summers (1984). They state that firms would avoid paying out dividends when dividend taxes

are increased. Instead they invest the funds even though the projects may be of low productivity

(Poterba and Summers, 1984, p. 18). This can also be derived from equilibrium conditions. For

your convenience I rewrite Equation (3.33) with a = 0 and Lt+1 = 1 and some simplifications as

(
It
δKt

)η
= Et

{
β

Λt+1

Λt

1− τt+1

1− τt

[
αZt+1K

α−1
t+1 +

It+1

Kt+1

η

1− η
+

(
It+1

δKt+1

)η (
1− δ 1

1− η

)]}
.

(3.50)

A tax rate shock, which is not persistent, at t increases τt and therefore increases the ratio

1−τt+1

1−τt through the decrease of the denominator. Since the shock is not persistent agents ex-

pect the tax rate to be back to normal in the next period. The increase in the tax rate ratio
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increases the rhs of Equation (3.50) and brings it out of equilibrium. Output at t is given so

that the agent can act through an increase or decrease of investment, which would decrease or

increase consumption at t. To bring Equation (3.50) back to equality investments It have to be

increased, which increases the lhs. The decrease in consumption through the increase in invest-

ments additionally increases the ratio of marginal utilities on the rhs since the denominator its

increased. Without a habit motive, consumption and investment are back to normal in the next

period as can be observed in Figure 7 panel (a). With a persistent tax shock agents know that

the tax rate in the next period τt+1 will probably still be high. Thus, agents expect the ratio

1−τt+1

1−τt to increase only slightly. Therefore, any adjustements of the optimality condition through

investments and consumption are lower but also persistent. That leads to lower volatility of con-

sumption and investment than for not persistent shocks. This can be observed in Figure 7, com-

paring panel (a) with par. (4) than panel (b) with par. (5).

The same pattern can be observed in the other groups of models. One exception can be found

in par. (29) and (30) in Table 7, where the ratios in (a) and (b) increase with persistence. In

this case there are no adjustment costs but the habit parameter is high. Habits lead to persis-

tent consumption and investment responses also for the temporary tax shock. With additional

persistence of the tax rate, consumption smoothing dictates that consumption must be even far-

ther away from its stationary state and that for a longer time. This leads to a stronger initial

response of consumption and investments. Adding adjustment costs counters this effect again

in that they decrease responses of investment to tax rate shocks. This way investment reactions

to tax rate shocks become very small compared to responses to productivity shocks. For exam-

ple in par. (19) and (20) of Table 3 there is no change at all of the ratios in (a) and (b). The

respective impulse responses in Figure 8 show that responses of consumption and investment

are stronger for tax rate persistence, but they are small compared to responses to productivity

shocks of the same magnitude. Tax effects have a much smaller impact on the volatility ratios

in (a) and (b) and the volatilities in (c), (f) and (i) in all of the other groups of parameteriza-

tions. Table 7 in the appendix shows that both, habits and adjustment cost contribute to this

effect. The ratios in (a) and (b) show more variability for the first and for the third group than

for the second and the forth. Increasing the parameter b or η lead both to less variability in the

volatility ratios (a) and (b) within a group. As already mentioned, tax shocks that increase the

tax rate induce firms to invest more and pay less dividends and vice versa. When people care

about volatility of consumption, as with habits, firms react less over the investment channel so

that dividends and therefore also consumption are less affected.

The impulse responses also show that the dividend yield reactions are only very small as com-

pared to capital gain reactions. That contributes to that fact that pre- and after-tax returns

have only minute differences in their volatilities (columns (d) and (i)), since they are mainly

driven by the capital gain. This can also be observed for any other parameterization. Tax shocks

cause dividend yields to decrease in the first period. The sudden increase of investment decreases
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(a) Par. (4) (µτ = 0.32, σu = 0.008, ρτ
∗
= 0)
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Figure 7: Impulse responses for the standard RBC model (η = 0, b = 0)

The impulse responses show the percentage deviations for productivity, the tax rate, ouput, consumption, and investment from the deterministic stationary state in percent. For pre- and
after-tax dividend yields and the single-period capital gain the graphs show the difference to the deterministic stationary value in percent. The abscissa shows quarters.
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(a) Par. (19) (µτ = 0.32, σu = 0.008, ρτ
∗
= 0)
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∗
= 0.9)

Figure 8: Impulse responses for high habits and high adjustment costs (η = 1/0.23, b = 0.8)

The impulse responses show the percentage deviations for productivity, the tax rate, ouput, consumption, and investment from the deterministic stationary state in percent. For pre- and
after-tax dividend yields and the single-period capital gain the graphs show the difference to the deterministic stationary value in percent. The abscissa shows quarters.
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dividends. Capital gains also decrease in the first period due to a decrease in the equity price

after the tax rate increase. In the second period the tax rate is back to its original level so that

prices are also equal to the ones prior to the tax rate shock. Therefore, dividend yields and cap-

ital gains show a reverse reaction in period 2 and then take on their steady state levels again.

With adjustment costs investments become expensive so that again tax shocks lead to a weaker

response through investments and consumption. The conversion of investments into capital be-

comes more expensive so that investments are still increased but by a much lower amount. At

the same time the decrease in consumption after a tax shock that increases the tax rate is less

with adjustment cost.

With higher habits the representative agent avoids tax shock induced changes in after-tax divi-

dends. Again, investment volatility must decrease as well.

The risk premium is higher for the models with a high habit parameter b. The high habit group

produces substantial risk premiums of more than 1.3% per quarter. The introduction of tax rate

volatility increases expected equity returns in some cases or they are not notably affected. The

risk free-rate shows close to no responsiveness at all to tax rate volatility or even to the intro-

duction of a certain tax rate. Increases of the expected return on equity and the equity premium

are small for all groups. For the high habit group the pre-tax risk premium for par. (17) with

a certain tax rate is 1.30%. For the models with an uncertain tax rate the premiums vary from

1.30% to 1.33%, i.e., zero to three basis points higher. For the standard RBC model the (pre-

tax) equity premium increases up to four basis points, the after-tax premium up to five basis

points. With habits or adjustment costs only small adjustments of investments are necessary to

bring the first order conditions back to equality after a tax rate shock. This small adjustment

does not produce much additional volatility of the SDF and, therefore, does not increase the eq-

uity premium substantially.

Eventually, the tax capitalization effect is much more important to explain the (pre-tax) equity

premium than the volatility of the tax rate itself. Economically, the effect of tax rate volatility

on the equity premium is small for all of the parameterizations.

3.5.4 The Case without Full Tax Transfers

I regard two groups of parameterizations, the standard RBC and the high habit group. Table 5

shows the results for the two groups. There is an additional column showing the values of the

parameter ω, the share of tax payments invested in the public good. For ease of comparabil-

ity, I restate the results for some parameterizations from the prior case, i.e., for ω = 0. I am

mainly interested in the effect of the variation in ω. The table shows that the ratio of consump-

tion growth and output growth volatility increases slightly with increasing ω. The ratio of in-

vestment growth and output growth volatility increases substantially.

In the standard RBC model ω has no perceivable effect on expected returns and volatilities.

From the budget constraints we know that ω has an effect on consumption and investment. This
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Table 5: Results for business cycle variables and asset returns for the case without full tax transfers (sensitivity to ω)

Group N. Tax parameters ω σ∆c

σ∆y

σ∆i

σ∆y
E[rS ] σrS E[rB ] σrB E[rS − rB ] E[rS,τ ] σrS,τ E[rS,τ −rB ]

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Stand. RBC (2) µτ = 0.32, σu = 0, ρτ
∗

= 0 0 0.15 5.10 0.89 0.02 0.60 0.03 0.28 0.60 0.03 0.00

η = 0, b = 0 (2i) µτ = 0.32, σu = 0, ρτ
∗

= 0 0.5 0.17 5.69 0.89 0.03 0.60 0.03 0.28 0.60 0.03 0.00

(2ii) µτ = 0.32, σu = 0, ρτ
∗

= 0 1 0.19 6.55 0.89 0.04 0.60 0.03 0.28 0.60 0.04 0.00

(4) µτ = 0.32, σu = 0.008, ρτ
∗

= 0 0 1.13 7.38 0.90 1.69 0.60 1.18 0.30 0.62 1.67 0.01

(4i) µτ = 0.32, σu = 0.008, ρτ
∗

= 0 0.5 1.13 8.06 0.90 1.68 0.60 1.18 0.30 0.62 1.68 0.01

(4ii) µτ = 0.32, σu = 0.008, ρτ
∗

= 0 1 1.13 9.08 0.90 1.68 0.60 1.18 0.30 0.62 1.67 0.01

(5) µτ = 0.32, σu = 0.008, ρτ
∗

= 0.9 0 0.70 6.06 0.89 1.22 0.60 0.27 0.29 0.61 1.22 0.01

(5i) µτ = 0.32, σu = 0.008, ρτ
∗

= 0.9 0.5 0.70 6.65 0.89 1.22 0.60 0.26 0.29 0.61 1.22 0.01

(5ii) µτ = 0.32, σu = 0.008, ρτ
∗

= 0.9 1 0.71 7.52 0.89 1.22 0.60 0.27 0.29 0.61 1.22 0.01

High habit, (17) µτ = 0.32, σu = 0, ρτ
∗

= 0 0 0.58 3.54 1.54 11.55 0.24 5.46 1.30 1.26 11.54 1.02

high adj. (17i) µτ = 0.32, σu = 0, ρτ
∗

= 0 0.5 0.60 3.84 1.65 12.54 0.20 6.13 1.46 1.37 12.53 1.17

b = 0.8, (17ii) µτ = 0.32, σu = 0, ρτ
∗

= 0 1 0.62 4.26 1.83 13.95 0.13 7.01 1.70 1.55 13.93 1.41

η = 1/0.23 (19) µτ = 0.32, σu = 0.008, ρτ
∗

= 0 0 0.58 3.54 1.55 11.63 0.24 5.57 1.31 1.26 11.62 1.02

(19i) µτ = 0.32, σu = 0.008, ρτ
∗

= 0 0.5 0.60 3.86 1.69 12.86 0.30 6.39 1.49 1.41 12.85 1.21

(19ii) µτ = 0.32, σu = 0.008, ρτ
∗

= 0 1 0.63 4.33 1.92 14.65 0.15 7.71 1.77 1.64 14.64 1.49

(20) µτ = 0.32, σu = 0.008, ρτ
∗

= 0.9 0 0.59 3.54 1.54 11.55 0.24 5.50 1.30 1.26 11.54 1.02

(20i) µτ = 0.32, σu = 0.008, ρτ
∗

= 0.9 0.5 0.60 3.85 1.67 12.70 0.16 6.06 1.52 1.39 12.69 1.23

(20ii) µτ = 0.32, σu = 0.008, ρτ
∗

= 0.9 1 0.63 4.28 1.86 14.18 0.12 7.08 1.74 1.58 14.17 1.45

The parameter ω indicates the share of taxes that is invested in the public good, i.e. 1 − ω is the share of tax payments that is paid out as transfer payments. For better comparability, I
also show some of the cases with ω = 0, which correspend to parameterizations from Table 4. All values are at quarterly frequency. I denote σ∆c the standard deviation of consumption
growth, σ∆y the standard deviation of output growth, and σ∆i the standard deviation of investment growth. Expected returns and standard deviations are given in percent. Furthermore,
E[rS ] and σrS are the unconditional expectation and the standard deviation, respectively, of the single-period return on equity. The superscript B indicates the same for a single-period
bond returns. The equity premium is the unconditional mean E[rS − rB ]. The last three columns show mean equity returns, standard deviation and the equity premium for after-tax
returns. All values are obtained from 40000 simluations.
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can be seen in the increase in the variability of investments. However, investments can still be

used to smoothen consumption and the stochastic discount factor. Therefore, the equity pre-

mium remains largely unaffected. However, for the habit model all ratios and moments of re-

turns increase in ω in an economically significant way. For example, from par. (17) with ω = 0

to (17ii) with ω = 1 the pre-tax equity premium increases by 40 basis points from 1.30% to

1.70%. For a volatile tax rate the increase is about the same magnitude. Since tax rate volatility

does not seem to have a first order effect, I only look at the impulse responses to a productiv-

ity shock. Figure 9 shows that with ω = 1 (panel (b)) investments and capital gains react much

stronger than with ω = 0 (panel (a)), whereas little volatlity is added to consumption.

For this effect of changes in ω on the equity premium to happen an equity premium is neces-

sary in the first place. Thus, it is again a combination of habits and adjustment costs that leads

to the higher equity premium when ω is increased. An unreported experiment shows that for

low habits changing ω from zero to one does not have a substantial effect. Since a substantial

amount of consumption is lost to the public good the investment channel has even more work

to do to smoothen consumption. With adjustment costs this channel cannot be fully utilized

without incurring additional costs and utility loss. Thus, this serves as another way to trigger

volatility of the SDF. Column (d) with the volatility of the bond rate is a indirect indicator for

the additional volatility of the SDF.

Eventually, increases in the equity premium are substantial when taxes cannot be used for reg-

ular consumption and when habits and adjustment costs are present. This effect is big as long

as the fraction of transfer payments of the whole tax revenues is small and investments in the

public good are high.

3.6 Extensions and Limitations of the Analysis

I analyze the impact of several parameters that were left unchanged in the prior analyses. I give

a short comparison of the effects of a volatile tax rate on dividends to effects of a volatile tax

rate on corporate profits. I also discuss the limitations of the model as it is used herein.

3.7 Growth

For simplicity, I have assumed a zero growth rate: a = 0. Increasing a, one can obtain higher

asset returns. One can also generate higher equity premiums without sending the risk-free rate

below zero (Heer and Maussner, 2009, p. 323). I do not present a table on the results, since I

cannot find a different pattern or different magnitudes of effects caused by the introduction of a

volatile tax rate. I use the high habit parameterization and introduce a quarterly growth rate of

0.5%. For the no-tax case this leads to a risk premium of 0.70%. With the introduction of taxes

and volatile taxes nothing changes with respect to the already observed patterns or magnitudes.

The after-tax equity premium with a volatile tax rate is 0.73% for σu = 0.016, which is about

three basis points higher than the equity premium with certain taxes. For σu = 0.008, the risk
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Figure 9: Impulse responses for high habits and high adjustment costs (η = 1/0.23, b = 0.8, µτ =
0.32, σu = 0, ρτ

∗
= 0)

The impulse responses show the percentage deviations for productivity, the tax rate, ouput, consumption, and
investment from the deterministic stationary state in percent. For pre- and after-tax dividend yields and the single-
period capital gain the graphs show the difference to the deterministic stationary value in percent. The abscissa
shows quarters.

premium does not change notably.

3.8 Risk Aversion

Table 6 shows the sensitivity with respect to the risk aversion parameter γ for high habits and

high adjustment costs. The table shows that higher risk aversion pushes down consumption

volatility. More risk averse agents prefer less volatile consumption streams. To achieve that in-

vestments become more volatile. Expected returns of the equity asset increase and the ones for

the bond decrease, so that the risk premiums increase. With higher risk aversion tax rate volatil-

ity seems to add some more basis points to the risk premium. For γ = 3 par. (18gi) generates a
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(pre-tax) risk premium of 1.62%, which is three basis points higher than the one with a certain

tax rate (par. (17gi)) of 1.59%. For γ = 0.5 this difference is only one basis point.

3.8.1 Risk Aversion

Table 6 shows the sensitivity with respect to the risk aversion parameter γ for high habits and

high adjustment costs. The table shows that higher risk aversion pushes down consumption

volatility. More risk averse agents prefer less volatile consumption streams. To achieve that in-

vestments become more volatile. Expected returns of the equity asset increase and the ones for

the bond decrease, so that the risk premiums increase. With higher risk aversion tax rate volatil-

ity seems to add some more basis points to the risk premium. For γ = 3 par. (18gi) generates a

(pre-tax) risk premium of 1.62%, which is three basis points higher than the one with a certain

tax rate (par. (17gi)) of 1.59%. For γ = 0.5 this difference is only one basis point.

3.8.2 Corporate Taxes

The corporate tax rate can also be analyzed in this framework. The first order conditions and

the steady state values need to be adjusted a bit (compare for example Santoro and Wei (2011)).

Santoro and Wei (2011) find that the effect of a certain corporate tax rate on business cyclce

variables and asset returns is due to changes in steady state values induced by the corporate tax

rate. I will not go to deep into the details of the effects of a corporate tax rate because this is

out of the scope of this work. However, I will point at some differences to the analysis of the un-

certain dividend tax rate. One is that with corporate taxes the (mean) tax rate shows up in the

steady state value for capital (compare Equation (16) in Santoro and Wei (2011)), whereas the

(mean) tax rate for dividends does not affect steady state value for capital (compare Equation

(3.46)). With corporate taxes, the Lagrangian from Equation (3.11) turns to

L = E0

{ ∞∑
t=0

βt
Λt
Λ0

[
(1− τt)

[
ZtF (Kt, A

tLt)− wtLt
]
− It + qt

[
φ(Kt, It) + (1− δ)Kt −Kt+1

]]}
.

(3.51)

Since taxes are subtracted before investments are made, the derivative with respect to invest-

ments does not involve a tax term. The final first order condition of the firm turns to

1

φt,2
= Et

{
β

Λt+1

Λt

[
(1− τt+1)Zt+1Ft+1,1 +

φt+1,1 + 1− δ
φt+1,2

]}
. (3.52)

The result can also be found in Santoro and Wei (2011) Equation (15) for a certain tax rate on

corporate profits. Notice that the tax rate at time t does not show up in any equilibrium or first

order condition. Only the future tax rate at t + 1 matters. It follows that for any effects of tax

rate volatility the characteristics of the stochastic part of the tax rate process, i.e., the autcorre-

lation of the autoregressive part of the tax rate process and covariance of tax rate shocks with
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Table 6: Results for business cycle variables and asset returns for the case with full tax transfers (sensitivity to risk aversion)

Group N. Tax parameters σ∆c

σ∆y

σ∆i

σ∆y
E[rS ] σrS E[rB ] σrB E[rS − rB ] E[rS,τ ] σrS,τ E[rS,τ −rB ]

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

High habit, (16g) µτ = 0.32, σu = 0, ρτ
∗

= 0 0.86 2.06 0.82 6.66 0.54 3.92 0.29 NA NA NA

high adj. (17g) µτ = 0.32, σu = 0, ρτ
∗

= 0 0.86 2.06 1.11 6.69 0.54 3.91 0.57 0.82 6.69 0.29

b = 0.8, (18g) µτ = 0.32, σu = 0.016, ρτ
∗

= 0 0.87 2.12 1.12 6.92 0.54 4.16 0.58 0.84 6.91 0.30

η = 1/0.23 (19g) µτ = 0.32, σu = 0.008, ρτ
∗

= 0 0.87 2.07 1.11 6.74 0.54 3.98 0.57 0.83 6.73 0.29

γ = 0.5 (20g) µτ = 0.32, σu = 0.008, ρτ
∗

= 0.9 0.86 2.08 1.11 6.71 0.54 3.91 0.57 0.83 6.71 0.29

High habit, (16) µτ = 0, σu = 0, ρτ
∗

= 0 0.58 3.54 1.26 11.58 0.24 5.45 1.02 NA NA NA

high adj. (17) µτ = 0.32, σu = 0, ρτ
∗

= 0 0.58 3.54 1.54 11.55 0.24 5.46 1.30 1.26 11.54 1.02

b = 0.8, (18) µτ = 0.32, σu = 0.016, ρτ
∗

= 0 0.58 3.54 1.58 11.88 0.25 5.83 1.33 1.29 11.87 1.05

η = 1/0.23 (19) µτ = 0.32, σu = 0.008, ρτ
∗

= 0 0.58 3.54 1.55 11.63 0.24 5.57 1.31 1.26 11.66 1.02

γ = 2 (20) µτ = 0.32, σu = 0.008, ρτ
∗

= 0.9 0.59 3.54 1.54 11.55 0.24 5.50 1.30 1.26 11.54 1.02

High habit, (16gi) µτ = 0.32, σu = 0, ρτ
∗

= 0 0.50 3.92 1.40 12.79 0.10 5.59 1.30 NA NA NA

high adj. (17gi) µτ = 0.32, σu = 0, ρτ
∗

= 0 0.50 3.92 1.69 12.83 0.10 5.57 1.59 1.41 12.82 1.30

b = 0.8, (18gi) µτ = 0.32, σu = 0.016, ρτ
∗

= 0 0.50 3.92 1.73 13.18 0.11 5.97 1.62 1.45 13.17 1.34

η = 1/0.23 (19gi) µτ = 0.32, σu = 0.008, ρτ
∗

= 0 0.50 3.93 1.70 12.93 0.10 5.66 1.60 1.42 12.92 1.32

γ = 3 (20gi) µτ = 0.32, σu = 0.008, ρτ
∗

= 0.9 0.50 3.92 1.69 12.84 0.10 5.59 1.59 1.40 12.83 1.30

All values are at quarterly frequency. I denote σ∆c the standard deviation of consumption growth, σ∆y the standard deviation of output growth, and σ∆i the standard deviation of
investment growth. Expected returns and standard deviations are given in percent. Furthermore, E[rS ] and σrS are the unconditional expectation and the standard deviation, respectively,
of the single-period return on equity. The superscript B indicates the same for a single-period bond returns. The equity premium is the unconditional mean E[rS − rB ]. The last three
columns show mean equity returns, standard deviation and the equity premium for after-tax returns. All values are obtained from 40000 simluations.
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productivity shocks, are important drivers. Furthermore, the workings of an uncertain corporate

tax rate have already been analyzed by Croce et al. (2012). They use recursive preferences and

several additional complexities such as interest deductability of taxes, influences of taxes on pro-

ductivity, and government debt. They only regard a persistent tax rate. With impulse repsonses

they show, that a tax shock that increases the tax rate decreases consumption, increases invest-

ments, and decreases ex-post returns on equity. This is exactly the opposite to a tax shock on

dividends. Figure 10 confirms those reactions for the model used herein, in which I changed the

dividend tax rate for the tax rate on corporate profits. The impulse response uses the standard

parameterization as well as b = 0.8, η = 1/0.23 and ω = 0. One can observe that the effects

of the one percent tax rate shock on output, consumption, investment, dividend yields and capi-

tal gain are very small compared to a productivity shock. Thus, the additional effect of tax rate

volatility on expected returns and volatilities can also expected to be small.

3.8.3 Limitations

As every model, the one presented here is limited by its assumptions, which abstract it from re-

ality. However, this abstraction is necessary to be able isolate and to understand causes and ef-

fects. Heer and Maussner (2009, p. 323) mention that the fixed labor supply is a major assump-

tion to cause a risk premium. With variable labor, the representative agent would again have a

channel to compensate shocks apart from the investment channel. Constraints to the variabil-

ity of labor supply as in Boldrin et al. (2001) are necessary to establish a risk premium again.

Furthermore, the government either redistributes funds or invests a fixed fraction of the tax rev-

enue. Actions of the government can be endogenized and the possibility of government debt can

be introduced. With government debt the need for (future) tax revenues becomes more pressing

to manage the government debt service. For example Croce et al. (2012) assume a more com-

plex set of fiscal policies. The approach taken here, with an exogenous tax rate is more in line

with the view that interest groups influence tax rates in one or the other way as mentioned in

Sialm (2006) and Bizer and Judd (1989). This influence would probably make up only a part of

the variability of tax rates. Croce et al. (2012) also regard the impact of the tax rate on produc-

tivity. At the same time it would be possible to introduce a cyclicality effect into the tax rate.

Thus, there are different possible drivers of tax rate uncertainty. As Santoro and Wei (2011)

I assume that the firm maximizes the after-tax value of dividends, and shapes its investment

policy accordingly. This is related to numerous practical problems, so that a maximization of

the pre-tax value maybe closer to reality. In this case the tax rate terms would not show up in

the FOC for the firm so that investments would not be influenced. However, shareholders still

can only consume the after-tax dividends, so that changes in the tax rate matter for them and

matter for the valution of the firm. Eventually, the uncovered theoretical effects need to be ad-

dressed in econometric tests.
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Figure 10: Impulse responses for high habits and high adjustment costs (η = 1/0.23, b =
0.8, µτ = 0.32, σu = 0.008, ρτ

∗
= 0.9) to a 1% shock on the tax rate on corporate profits

The impulse responses show the percentage deviations for productivity, the tax rate, ouput, consumption, and
investment from the deterministic stationary state in percent. For pre- and after-tax dividend yields and the single-
period capital gain the graphs show the difference to the deterministic stationary value in percent. The abscissa
shows quarters.

3.9 Conclusion

I analyze the impact of an uncertain tax rate on dividends on business cycle variables and as-

set returns. For the standard RBC model without habits and without adjustment costs, I find

that tax rate volatility substantially increases volatilies of business cycle variables, such as con-

sumption and investment growth. However, this effect disappears with a high habit parameter

and high adjustment costs. Tax rate volatility has only very limited potential to increase the eq-

uity premium. Even with an unreasonably high volatility of tax rate shocks and for any param-

eterization, the increase in the equity premium is never more than a few basis points. Effects of

tax rate capitalization in the pre-tax equity premium are much stronger than effects of tax rate

volatility. With a certain tax rate, the representative agent earns an after-tax equity premium
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that is as high as the equity premium in a no-tax world. To earn that premium the agent re-

quires a substantially higher pre-tax equity premium. For a certain tax rate of 32% used herein

the capitalization effect increases the pre-tax equity premium by about 28 basis points.

When tax rates are not fully transferred back, steady state consumption is decreased. Invest-

ment growth becomes more volatile versus output growth the lesser the amount that is trans-

ferred. In the standard RBC model there is no effect at all on asset returns. However, for high

habits and high adjustment costs expected returns on equity increase, the risk-free rate decreases

and volatilities increase with less transfer payments. The equity premium increases as well, and

depending on the share of taxes not transferred the increases can be substantial with more than

40 basis points for some parameterizations and a decrease in transfer payments from 100% to

zero.

I conduct several sensitivity analyses, which do not reveal any changes to the observed patterns.

Volatility of the corporate tax rate is also not likely to have a major impact on asset pricing.

Sources of tax rate volatility can be manifold. I suggest to identify those sources through empiri-

cal test.
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3.10 Appendix to Chapter 3

3.10.1 Some Remarks on the Numerical Procedure

I use a quadratic approximation of the policy function of the model as described in Heer and

Maussner (2009, pp. 106-131). I adapt the algorithms provided in the book and the code pro-

vided on https://www.wiwi.uni-augsburg.de/de/vwl/maussner/dge_buch/dge_book_2ed/

downloads_2nd/ in R programming language. The usefulness and the limitations of a second

order approximation are described in Schmitt-Grohé and Uribe (2004).

State variables are kt, st,Λt, zt, and τ∗t , whereas st = ct−1 captures the lagged consumption and

is used to reduce the variables in the equilibrium conditions to variables at t and t+ 1. The vari-

ables kt and st are predetermined state variables, i.e., they are already known at the beginning

of period t, whereas Λt is a non-predetermined variable. Exogenous variables are the natural log-

arithm of productivity zt = ln(Zt) and the demeaned tax rate τ∗t . I approximate the conditional

expectation Et[Λt+1] that is necessary to obtain the risk-free rate using a six point Gauss Her-

mite Quadrature approximation as described in Heer and Maussner (2009, p. 600). Therefore, I

use the fact that all of the error terms are normally distributed.

I use the policy functions to compute 40,000 simulations. Repeating the simulations shows that

the means and standard deviations are stable and do not change in any economically significant

way. I compute means and standard deviations of real variables and of asset returns and provide

them in the respective tables above.

I choose a second order approximation because of relative speed versus other methods and its

suficient precision for the purpose of this paper. I tested the model with the parameterization

used in (Heer and Maussner, 2009, p. 322). For the parameterizations in Table 6.4 in (Heer and

Maussner, 2009, p. 322) I obtain values that are zero to three basis points off. The biggest dif-

ferences arise for the very nonlinear model with a high parameter b. The values computed in the

table in Heer and Maussner (2009, p. 322) are obtained using a projection method as opposed to

the quadratic approximation used herein.

Using the parameters for the computations in Table 3 of the Appendix in Jermann (1998) I can

match all the ratios of the standard deviations of the real values except for the last parameteri-

zation, where I obtain a value for the ratio of the standard deviation of consumption growth and

output growth that is about 0.16 greater and a value that is about 0.27 lower for the ratio of

standard deviations of investment and output growth. For the second and forth parameterization

I obtain much higher values for expected returns and risk premiums25. This is due to the differ-

ent method applied by Jermann (1998) in computing asset returns. More specificall, Jermann

(1998) describes his approach as using a loglinear or, in the appendix, a nonlinear approach to

determine the real values of the model. In a second step he computes moments of asset returns

25For the first and third parameterization there is substantiallly no risk premium, which is in line with my obser-
vations.

64 3 Asset Pricing under Tax Rate Uncertainty in a Real Business Cycle Model



using analytical results that rest on the assumption that the stochastic discount factor and asset

returns are jointly log-normally distributed. Heer and Maussner (2012) show in numerical ex-

periments that this assumption leads to risk premiums that are about one third less than using

non-linear approximations of the Euler equations. Since I do not rely on the assumption of joint

log-normality, their finding explains the higher differences.

3.10.2 Additional Table

The additional table shows sensitivities to habit and adjustment cost parameters. It is displayed

on the following page.
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Table 7: Results for business cycle variables and asset returns for the case with full tax transfers (sensitivities to habits and adjustment costs)

Group N. Tax parameters σ∆c

σ∆y

σ∆i

σ∆y
E[rS ] σrS E[rB ] σrB E[rS − rB ] E[rS,τ ] σrS,τ E[rS,τ −rB ]

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Low habit, (21) µτ = 0, σu = 0, ρτ
∗

= 0 0.14 5.71 0.60 0.03 0.60 0.03 0.00 NA NA NA

no adj. cost (22) µτ = 0.32, σu = 0, ρτ
∗

= 0 0.14 5.71 0.89 0.03 0.60 0.03 0.28 0.60 0.03 0.00

η = 0, b = 0.1 (23) µτ = 0.32, σu = 0.016, ρτ
∗

= 0 1.75 9.80 0.94 3.38 0.60 2.37 0.34 0.66 3.37 0.06

(24) µτ = 0.32, σu = 0.008, ρτ
∗

= 0 0.88 6.64 0.90 1.68 0.60 1.18 0.30 0.62 1.67 0.01

(25) µτ = 0.32, σu = 0.008, ρτ
∗

= 0.9 0.62 5.94 0.89 1.22 0.60 0.27 0.29 0.61 1.21 0.01

High habit, (26) µτ = 0, σu = 0, ρτ
∗

= 0 0.06 5.66 0.60 0.03 0.60 0.03 0.00 NA NA NA

no adj. cost (27) µτ = 0.32, σu = 0, ρτ
∗

= 0 0.06 5.66 0.89 0.03 0.60 0.03 0.28 0.60 0.03 0.00

η = 0, b = 0.8 (28) µτ = 0.32, σu = 0.016, ρτ
∗

= 0 0.09 5.67 0.94 3.36 0.60 2.37 0.34 0.66 3.37 0.06

(29) µτ = 0.32, σu = 0.008, ρτ
∗

= 0 0.07 5.67 0.90 1.68 0.60 1.18 0.30 0.62 1.68 0.01

(30) µτ = 0.32, σu = 0.008, ρτ
∗

= 0.9 0.15 5.71 0.89 1.21 0.60 0.27 0.30 0.61 1.21 0.01

Low adj. cost, (31) µτ = 0, σu = 0, ρτ
∗

= 0 1.01 0.96 0.61 1.43 0.59 0.34 0.02 NA NA NA

no habit (32) µτ = 0.32, σu = 0, ρτ
∗

= 0 1.01 0.96 0.90 1.44 0.59 0.33 0.30 0.61 1.44 0.02

η = 2, b = 0 (33) µτ = 0.32, σu = 0.016, ρτ
∗

= 0 1.08 2.07 0.90 1.56 0.59 0.53 0.31 0.62 1.56 0.02

(34) µτ = 0.32, σu = 0.008, ρτ
∗

= 0 1.03 1.33 0.90 1.47 0.59 0.39 0.30 0.61 1.47 0.02

(35) µτ = 0.32, σu = 0.008, ρτ
∗

= 0.9 1.02 1.14 0.90 1.47 0.59 0.33 0.30 0.61 1.47 0.02

High adj. cost, (36) µτ = 0, σu = 0, ρτ
∗

= 0 1.10 0.53 0.62 1.60 0.59 0.36 0.02 NA NA NA

no habit (37) µτ = 0.32, σu = 0, ρτ
∗

= 0 1.10 0.53 0.90 1.60 0.59 0.36 0.31 0.62 1.60 0.02

η = 4, b = 0 (38) µτ = 0.32, σu = 0.016, ρτ
∗

= 0 1.12 1.14 0.90 1.64 0.59 0.43 0.31 0.62 1.63 0.03

(39) µτ = 0.32, σu = 0.008, ρτ
∗

= 0 1.10 0.74 0.90 1.61 0.59 0.38 0.31 0.62 1.61 0.02

(40) µτ = 0.32, σu = 0.008, ρτ
∗

= 0.9 1.10 0.63 0.90 1.62 0.59 0.36 0.31 0.62 1.61 0.02

All values are at quarterly frequency. I denote σ∆c the standard deviation of consumption growth, σ∆y the standard deviation of output growth, and σ∆i the standard deviation of
investment growth. Expected returns and standard deviations are given in percent. Furthermore, E[rS ] and σrS are the unconditional expectation and the standard deviation, respectively,
of the single-period return on equity. The superscript B indicates the same for a single-period bond returns. The equity premium is the unconditional mean E[rS − rB ]. The last three
columns show mean equity returns, standard deviation and the equity premium for after-tax returns. All values are obtained from 40000 simulations.
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4 Conclusion

The results of my analyses were stated explicitly several times so that I will not repeat them

here. I use this part to give a more general view on the limitations of the two parts of my re-

search and possible implications for future research.

4.1 Limitation of the Thesis

The two presented papers show two different drivers of tax rate uncertainty. One driver is out-

put growth together with a cyclical tax policy. The other one is a process of exogenous tax rate

shocks, which may arise from the varying power of different interest groups. Thus, the analyses

are limited to those two forms of tax rate uncertainty. There may be other drivers such as gov-

ernment debt. A higher debt level might lead to pressure to increase tax rates to be able to pay

interest and principal to the debtholders.

Not only government debt but also the degree of leverage of the firm can lead to additional ef-

fects. Together with taxes on corporate profits, outstanding debt leads to tax savings on interest

payments. Leverage increases the expected return on equity that, in turn, has an increasing ef-

fect on the equity premium.

Thus, the papers do not take into account alternative drivers of tax rate volatility and alterna-

tive drivers of the equity premium. I do not claim that those limitations are complete. One can

think of many changes such as another utility function or the inclusion of labor. However, the

limitations mentioned are closest to the topic. They also give scope for further research. Apart

from formal representative agent RBC models, I can also identify other interesting research ar-

eas, some of which I will address in the following.

4.2 Possible Areas for Future Research

The possibility that interest groups are responsible for changes in tax rates is stated in Bizer and

Judd (1989) and Sialm (2006). As an area for further research, I think it is important to find

out to which extend interest groups influence the process of setting tax rates. The presence of

interest groups poses many new question related to equity, justice and also to economic efficiency

since resources are used up unproductively in this rent-seeking process.

Portfolio theory is intimately related to asset pricing. However, representative agent models are

not useful to state something about an optimal portfolio in a general equilibrium context. Par-

tial equilibrium models that consider taxes and tax rate movements can be helpful for investors

in a normative way. Models in the style of Campbell and Viceira (2003) may be a possible way

to go. Heterogeneous agent models may be able to explain portfolio holdings in a general equi-

librium model. For asset pricing under tax rate uncertainty investment horizons are important.

For a long-term investor tax rates, which change at an annual frequency, are very important.

The short-term investor may already have sold all portfolios holdings before any changes of the
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tax rate take place. A long-term investor, who takes tax rate movements into account, may hold

a different portfolio from someone who disregards tax rate changes. All of those considerations

may play an important role when taxes are included in portfolio problems.

To find out whether tax rate movements are really taken into account is an econometric task.

The challenge is here to make sense of the aggregate data that is mostly only available. For ex-

ample for the U.S. there are different tax brackets for different income classes (Sialm (2006)), a

fact that already complicates the analyses.

Eventually, taxes are often forms of redistributing income. Welfare considerations, which often

come along with taxes, can also be extended to a tax rate that is not constant over time. Bizer

and Judd (1989) made some comments on that issue, but they can only be considered a starting

point.
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ˆ2) ) ˆ 0 . 5 ) /2

gam1<−(mgam 1−1)∗−1

gam2<−(mgam 2−1)∗−1

p r in t (gam1)

p r in t (gam2)

gamn<−3

gam<−matrix ( c ( 0 . 5 , 2 , 3 ) , nrow=5, nco l =1)

phimin<−−2

phimax<−+2

int <−0.1

N<−(phimax−phimin ) / i n t

Psi S<−matrix (0 , nrow=gamn , nco l=N+1)

Psi S0<−matrix (0 , nrow=gamn , nco l=N+1)

P s i S d i f f<−matrix (0 , nrow=gamn , nco l=N+1)

ER<−matrix (0 , nrow=gamn , nco l=N+1)

Dy<−matrix (0 , nrow=gamn , nco l=N+1)

Dypt<−matrix (0 , nrow=gamn , nco l=N+1)
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Cg<−matrix (0 , nrow=gamn , nco l=N+1)

Dydif f<−matrix (0 , nrow=gamn , nco l=N+1)

Dyptdi f f<−matrix (0 , nrow=gamn , nco l=N+1)

Cgdi f f<−matrix (0 , nrow=gamn , nco l=N+1)

ERdiff<−matrix (0 , nrow=gamn , nco l=N+1)

ERP<−matrix (0 , nrow=gamn , nco l=N+1)

ERP0<−matrix (0 , nrow=gamn , nco l=N+1)

ERPdiff<−matrix (0 , nrow=gamn , nco l=N+1)

Rbn<−matrix (0 , nrow=gamn , nco l=N+1)

Rb<−matrix (0 , nrow=gamn , nco l=N+1)

zeros<−rep (0 ,N+1)

phi<−vec to r ( l ength=N+1)

f o r ( j in 1 : gamn) {

phi [1]<−phimin

f o r ( i in 1 : (N+1) ) {

EG<−exp (mu g+0.5∗ sigma ˆ2)

ERn<−exp ( d e l t a+gam [ j , 1 ] ∗mu g+(2∗gam [ j ,1]−gam [ j , 1 ] ˆ 2 ) ∗0 .5∗ sigma ˆ2)

Rbn [ j , i ]<−exp ( d e l t a+gam [ j , 1 ] ∗mu g−gam [ j , 1 ] ˆ 2 ∗ 0 . 5 ∗ sigma ˆ2)

Psi Sn<−EG/(ERn−EG)

Ps i S [ j , i ]<−Psi Sn ∗exp ( mu taust ) ∗exp ( phi [ i ] ˆ 2∗ (gam [ j ,1]ˆ2−gam [ j , 1 ] )

∗ sigmaˆ2−phi [ i ]∗(1−gam [ j , 1 ] ) ˆ2∗ sigma ˆ2)

Ps i S0 [ j , i ]<−Psi Sn ∗exp ( mu taust )

P s i S d i f f [ j , i ]<−Psi S [ j , i ] / Ps i S0 [ j , i ]−1

Dy [ j , i ]<−exp ( (gam [ j , 1 ] ∗ phi [ i ]ˆ2−2∗gam [ j , 1 ] ∗ phi [ i ]+gam [ j , 1 ] ˆ 2∗ phi [ i

] ) ∗ sigma ˆ2) ∗(ERn−EG)

Cg [ j , i ]<−exp ( (gam [ j , 1 ] ˆ 2∗ phi [ i ]ˆ2−gam [ j , 1 ] ∗ phi [ i ] ) ∗ sigma ˆ2) ∗EG

Dydi f f [ j , i ]<−Dy[ j , i ]−(ERn−EG)

Cgd i f f [ j , i ]<−Cg [ j , i ]−EG

Dypt [ j , i ]<−exp(−mu taust ) ∗exp ( (gam [ j , 1 ] ∗ phi [ i ]ˆ2+ phi [ i ] ∗ ( gam [ j

,1 ]−1) ˆ2) ∗ sigma ˆ2) ∗(ERn−EG)

ER[ j , i ]<−Dy[ j , i ]+Cg [ j , i ]

ERdif f [ j , i ]<−ER[ j , i ]−ERn
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Rb[ j , i ]<−Rbn [ j , i ]∗ exp ( phi [ i ]∗gam [ j , 1 ] ˆ 2∗ sigma ˆ2)

ERP[ j , i ]<−Dypt [ j , i ]+Cg [ j , i ]−Rb[ j , i ]

ERP0[ j , i ]<−exp(−mu taust ) ∗(ERn−EG)+EG−Rbn [ j , i ]

ERPdiff [ j , i ]<−ERP[ j , i ] − ERP0[ j , i ]

i f ( i<=N) {phi [ i +1]<−phi [ i ]+ i n t }

}

}

dev . o f f ( )

#par (mar=c (4 , 4 , 2 , 2 ) )

par ( mfrow=c (1 , 1 ) )

#Pr i ce d e v i a t i o n s

ypos<−seq ( f l o o r ( min ( P s i S d i f f ) ) , c e i l i n g (max( P s i S d i f f ) ) , by=0.02)

ymax<−max( P s i S d i f f )

ymin<−min ( P s i S d i f f )

p l o t ( phi [ 1 : (N+1) ] , P s i S d i f f [ 1 , ] , type=” l ” , pch=20, cex =0.5 , c o l=”black ” ,

lwd=2,mgp=c ( 2 . 3 , 0 , 0 ) , x lab=”Phi ” , ylab=”Exp . p r i c e d i f f . in %”, l t y =1,

ylim=c ( ymin , ymax) , yaxt=”n” , xaxt=”n” , bty=”n”)

a x i s (2 , at=ypos , l a b e l s=s p r i n t f (”%1.0 f ” , ypos ∗100) , pos=−2, l a s =2)

a x i s (1 , pos=0)

l i n e s ( phi [ 1 : (N+1) ] , P s i S d i f f [ 2 , ] , type=” l ” , c o l=”black ” , lwd=2, l t y =2)

l i n e s ( phi [ 1 : (N+1) ] , P s i S d i f f [ 3 , ] , type=” l ” , c o l=”black ” , lwd=2, l t y =3)

# expected a f t e r−tax return d i f f e r e n c e s

ypos<−seq ( f l o o r ( min ( ERdif f ) ) , c e i l i n g (max( ERdif f ) ) , by=0.02)

ymax<−max( ERdif f )

ymin<−min ( ERdif f )

p l o t ( phi [ 1 : (N+1) ] , ERdif f [ 1 , ] , type=” l ” , pch=20, cex =0.5 , c o l=”black ” , lwd

=2,mgp=c ( 2 . 3 , 0 , 0 ) , x lab=”Phi ” , ylab=”Exp . re turn d i f f . in %”, l t y =1,

ylim=c ( ymin , ymax) , yaxt=”n” , xaxt=”n” , bty=”n”)

a x i s (2 , at=ypos , l a b e l s=s p r i n t f (”%1.0 f ” , ypos ∗100) , pos=−2, l a s =2)

a x i s (1 , pos=0)
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l i n e s ( phi [ 1 : (N+1) ] , ERdif f [ 2 , ] , type=” l ” , c o l=”black ” , lwd=2, l t y =2)

l i n e s ( phi [ 1 : (N+1) ] , ERdif f [ 3 , ] , type=” l ” , c o l=”black ” , lwd=2, l t y =3)

#legend (” t o p l e f t ” , c (” Phi=1”, ”Phi=0” ,”Phi=−1”) , l t y=c (2 , 1 , 3 ) , t ex t . c o l

= ” black ” , cex =0.8 ,y . i n t e r s p = 0 . 5 , x . i n t e r s p =0.2)

# equ i ty premium d i f f e r e n c e s

ypos<−seq ( f l o o r ( min ( ERPdiff ) ) , c e i l i n g (max( ERPdiff ) ) , by=0.02)

ymax<−max( ERPdiff )

ymin<−min ( ERPdiff )

p l o t ( phi [ 1 : (N+1) ] , ERPdiff [ 1 , ] , type=” l ” , pch=20, cex =0.5 , c o l=”black ” ,

lwd=2,mgp=c ( 2 . 3 , 0 , 0 ) , x lab=”Phi ” , ylab=”Equity premium d i f f . in %”,

l t y =1, ylim=c ( ymin , ymax) , yaxt=”n” , xaxt=”n” , bty=”n”)

a x i s (2 , at=ypos , l a b e l s=s p r i n t f (”%1.0 f ” , ypos ∗100) , pos=−2, l a s =2)

a x i s (1 , pos=0)

l i n e s ( phi [ 1 : (N+1) ] , ERPdiff [ 2 , ] , type=” l ” , c o l=”black ” , lwd=2, l t y =2)

l i n e s ( phi [ 1 : (N+1) ] , ERPdiff [ 3 , ] , type=” l ” , c o l=”black ” , lwd=2, l t y =3)

# div y i e l d

ypos<−seq ( f l o o r ( min ( c ( Dydi f f ) ) ) , c e i l i n g (max( c ( Dydi f f ) ) ) , by=0.0005)

ymax<−max( c ( Dydi f f ) )

ymin<−min ( c ( Dydi f f ) )

p l o t ( phi [ 1 : (N+1) ] , Dydi f f [ 3 , ] , type=” l ” , pch=20, cex =0.5 , c o l=”black ” , lwd

=2,mgp=c ( 2 . 5 , 0 , 0 ) , x lab=”Phi ” , ylab=”Exp . Div . y i e l d d i f f . in %”, l t y

=1, ylim=c ( ymin , ymax) , yaxt=”n” , xaxt=”n” , bty=”n”)

a x i s (2 , at=ypos , l a b e l s=s p r i n t f (”%1.2 f ” , ypos ∗100) , pos=−2, l a s =2)

a x i s (1 , pos=0)

# cap gain

ypos<−seq ( f l o o r ( min ( c ( Cgd i f f ) ) ) , c e i l i n g (max( c ( Cgd i f f ) ) ) , by=0.01)

ymax<−max( c ( Cgd i f f ) )

ymin<−min ( c ( Cgd i f f ) )

p l o t ( phi [ 1 : (N+1) ] , Cgd i f f [ 3 , ] , type=” l ” , pch=20, cex =0.5 , c o l=”black ” , lwd

=2,mgp=c ( 2 . 3 , 0 , 0 ) , x lab=”Phi ” , ylab=”Exp . cap . ga in d i f f . in %”, l t y
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=1, ylim=c ( ymin , ymax) , yaxt=”n” , xaxt=”n” , bty=”n”)

a x i s (2 , at=ypos , l a b e l s=s p r i n t f (”%1.0 f ” , ypos ∗100) , pos=−1, l a s =2)

a x i s (1 , pos=0)

# bond s t u f f

M<−5

int <−0.1

N<−M/ i n t

gam<−2.5

Rb hi<−vec to r ( l ength=N)

Rb lo<−vec to r ( l ength=N)

Rb<−vec to r ( l ength=N)

ph i h i<−1

ph i l o<−−1

ep<−0

time<−vec to r ( l ength=N)

time [1]<− i n t

f o r ( i in 1 :N) {

Rb hi [ i ]<−exp ( d e l t a+gam∗mu g−gamˆ2∗0.5∗ sigma ˆ2) ∗exp(−gamˆ2∗( ph i h i −2∗

p h i h i ) ∗0 .5∗ sigmaˆ2+gam∗ p h i h i ∗ep ) ˆ(1/ i )−1

Rb lo [ i ]<−exp ( d e l t a+gam∗mu g−gamˆ2∗0.5∗ sigma ˆ2) ∗exp(−gamˆ2∗( ph i l o −2∗

p h i l o ) ∗0 .5∗ sigmaˆ2+gam∗ p h i l o ∗ep ) ˆ(1/ i )−1

Rb [ i ]<−exp ( d e l t a+gam∗mu g−gamˆ2∗0.5∗ sigma ˆ2)−1

i f ( i<N) { time [ i +1]<−time [ i ]+ i n t }

}

# y i e l d curve

ypos<−seq ( f l o o r ( min ( Rb hi , Rb lo ,Rb) −0.01) , c e i l i n g (max( Rb hi , Rb lo ,Rb)

+0.01) , by=0.005)

ymax<−max( Rb hi , Rb lo ,Rb) +0.01

ymin<−min ( Rb hi , Rb lo ,Rb)−0.01

p l o t ( time ,Rb, type=” l ” , pch=20, cex =0.5 , c o l=”black ” , lwd=2,mgp=c (3 , 0 , 0 ) ,

x lab=”Maturity in years ” , ylab=”Yie ld in %”, l t y =1, ylim=c ( ymin , ymax) ,

yaxt=”n” , xaxt=”n” , bty=”n”)

a x i s (2 , at=ypos , l a b e l s=s p r i n t f (”%1.1 f ” , 100∗ ypos ) , pos=0, l a s =2)

a x i s (1 , pos=ymin )

l i n e s ( time , Rb hi , type=” l ” , c o l=”black ” , lwd=2, l t y =2)

l i n e s ( time , Rb lo , type=” l ” , c o l=”black ” , lwd=2, l t y =3)
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A.3 Code for the Graphs for the Case with Full Transfers and with Options

# Graphs f o r the case o f no t r a n s f e r s , i n c l u d i n g opt ion

# Marko Krause

# January 2017

rm( l i s t=l s ( ) )

mu g<−0.018 #0.017

sigma<−0.046 #0.023

beta<−0.95

de l ta<−−l og ( beta )

mu taust<−−0.449

#convergence

mgam 1<−(−mu g /(0 . 5∗ sigma ˆ2) +((mu g /(0 . 5∗ sigma ˆ2) ) ˆ2+4∗ d e l t a / (0 . 5∗ sigma

ˆ2) ) ˆ 0 . 5 ) /2

mgam 2<−(−mu g /(0 . 5∗ sigma ˆ2)−((mu g /(0 . 5∗ sigma ˆ2) ) ˆ2+4∗ d e l t a / (0 . 5∗ sigma

ˆ2) ) ˆ 0 . 5 ) /2

gam1<−(mgam 1−1)∗−1

gam2<−(mgam 2−1)∗−1

p r in t (gam1)

p r in t (gam2)

gamn<−3

gam<−matrix ( c (0 , 3 , 4 ) , nrow=5, nco l =1)

phimin<−−6

phimax<−+6

int <−0.2

N<−(phimax−phimin ) / i n t

Psi S<−matrix (0 , nrow=gamn , nco l=N+1)

Psi S0<−matrix (0 , nrow=gamn , nco l=N+1)

P s i S d i f f<−matrix (0 , nrow=gamn , nco l=N+1)

Psi Sno<−matrix (0 , nrow=gamn , nco l=N+1)

P s i S n o d i f f<−matrix (0 , nrow=gamn , nco l=N+1)

zeros<−rep (0 ,N+1)

phi<−vec to r ( l ength=N+1)
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M<−100000

eps i l on<−rnorm (M, 0 , sigma )

f o r ( j in 1 : gamn) {

phi [1]<−phimin

f o r ( i in 1 : (N+1) ) {

EG<−exp (mu g+0.5∗ sigma ˆ2)

ERn<−exp ( d e l t a+gam [ j , 1 ] ∗mu g+(2∗gam [ j ,1]−gam [ j , 1 ] ˆ 2 ) ∗0 .5∗ sigma ˆ2)

Psi Sn<−EG/(ERn−EG) # mean(max(0 , exp ( mu taust −0.5∗ p h i h i ˆ2∗ sigmaˆ2−

p h i h i ∗ e p s i l o n )−1) )

vec<−exp(−d e l t a ) ∗exp (mu g+e p s i l o n ) ˆ(1−gam [ j , 1 ] ) ∗pmax(0 , exp ( mu taust

−0.5∗ phi [ i ] ˆ2∗ sigmaˆ2−phi [ i ]∗ e p s i l o n )−1)

opt<−mean( vec ) ∗(ERn/(ERn−EG) )

Ps i S0 [ j , i ]<−Psi Sn ∗exp ( mu taust )

Ps i S [ j , i ]<−Psi Sn ∗exp ( mu taust+phi [ i ] ∗ ( gam [ j ,1 ]−1) ∗ sigma ˆ2)−opt

Psi Sno [ j , i ]<−Psi S [ j , i ]+opt

P s i S d i f f [ j , i ]<−Psi S [ j , i ] / Ps i S0 [ j , i ]−1

P s i S n o d i f f [ j , i ]<−Psi Sno [ j , i ] / Ps i S0 [ j , i ]−1

i f ( i<=N) {phi [ i +1]<−phi [ i ]+ i n t }

}

}

dev . o f f ( )

#par (mar=c (4 , 4 , 2 , 2 ) )

par ( mfrow=c (1 , 1 ) )

#Pr i ce d e v i a t i o n s

ypos<−seq ( f l o o r ( min ( c ( P s i S d i f f , P s i S n o d i f f ) ) ) , c e i l i n g (max( c ( P s i S d i f f ,

P s i S n o d i f f ) ) ) , by=0.01)

ymax<−max( c ( P s i S d i f f , P s i S n o d i f f ) )

ymin<−min ( c ( P s i S d i f f , P s i S n o d i f f ) )

p l o t ( phi [ 1 : (N+1) ] , P s i S n o d i f f [ 1 , ] , type=” l ” , pch=20, cex =0.5 , c o l=”black

” , lwd=2,mgp=c ( 2 . 3 , 0 , 0 ) , x lab=”Phi ” , ylab=”Pr i ce d i f f . in %”, l t y =1,

ylim=c ( ymin , ymax) , yaxt=”n” , xaxt=”n” , bty=”n”)

a x i s (2 , at=ypos , l a b e l s=s p r i n t f (”%1.0 f ” , ypos ∗100) , pos=−6, l a s =2)

a x i s (1 , pos=0)
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l i n e s ( phi [ 1 : (N+1) ] , P s i S n o d i f f [ 2 , ] , type=” l ” , c o l=”black ” , lwd=2, l t y =2)

l i n e s ( phi [ 1 : (N+1) ] , P s i S n o d i f f [ 3 , ] , type=” l ” , c o l=”black ” , lwd=2, l t y =3)

l i n e s ( phi [ 1 : (N+1) ] , P s i S d i f f [ 1 , ] , type=” l ” , c o l=”darkgrey ” , lwd=2, l t y =1)

l i n e s ( phi [ 1 : (N+1) ] , P s i S d i f f [ 2 , ] , type=” l ” , c o l=”darkgrey ” , lwd=2, l t y =2)

l i n e s ( phi [ 1 : (N+1) ] , P s i S d i f f [ 3 , ] , type=” l ” , c o l=”darkgrey ” , lwd=3, l t y =3)
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B R code for Chapter 3

# Quad apprxomation , habit , adjustment cos t s , s toch tax ra t e o f

d iv idends

# Created by Marko Krause

# Mostly adapted from Heer & Maussner (2009) , Dynamic General

Equi l ibr ium Model l ing

# January 2017

# rm( l i s t=l s ( ) )

# l i b r a r y ( matr ixca l c ) # f o r vec and vech

# l i b r a r y ( numDeriv ) # f o r Hess ian Jacobian

# l i b r a r y ( Matrix ) # f o r Kronecker

# l i b r a r y ( ge igen ) # f o r g e n e r a l i z e d Schur

# l i b r a r y (MASS) # f o r b i v a r i a t e normal d i s t r i b u t i o n

# l i b r a r y ( beepr ) # beep s i g n a l

# index f u n c t i o n s

ix1<−f unc t i on ( i , j , k ) {

ix1<−(i −1)∗nxˆ2+( j−1)∗nx+k

return ( ix1 )

}

iy1<−f unc t i on ( i , j , k ) {

iy1<−nxˆ3+ix1 ( i , j , k )

re turn ( iy1 )

}

ix2<−f unc t i on ( i , j , k ) {

ix2<−(i −1)∗( nz∗nx )+(j−1)∗nz+k

return ( ix2 )

}

iy2<−f unc t i on ( i , j , k ) {

iy2<−nxˆ2∗nz+ix2 ( i , j , k )

re turn ( iy2 )

}

ix3<−f unc t i on ( i , j , k ) {
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ix3<−(i −1)∗nzˆ2+( j−1)∗nz+k

return ( ix3 )

}

iy3<−f unc t i on ( i , j , k ) {

iy3<−nx∗nzˆ2+ix3 ( i , j , k )

re turn ( iy3 )

}

Geta<−f unc t i on ( i , j , Lyz , Omat) {

n<−nco l ( Lyz )

fx=0

f o r ( s in 1 : n) {

f o r ( q in 1 : n) {

fx<−fx+Lyz [ i , q ]∗ Lyz [ j , s ] ∗ ( t (Omat [ q , ] )%∗%Omat [ s , ] ) # r seems to

save ext rac t ed rows a l s o as columns

}

}

re turn ( fx )

}

Getab<−f unc t i on ( i , j , Lyz , Omat) {

n<−nco l ( Lyz )

fx=0

f o r ( s in 1 : n) {

fx<−fx+Lyz [ i , s ] ∗ ( t (Omat [ s , ] )%∗%Omat [ j , ] )

}

re turn ( fx )

}

# p o l i c y f u n c t i o n s

fcthk<−f unc t i on (kb , sb , zb , taub , s i g ) {

vec<−matrix ( c (kb , sb , zb , taub , s i g ) , nrow=5, nco l =1)

fcthk<−kst+t ( vec [ 1 : nx ] )%∗%Lxx [1 , ]+ t ( vec [ ( nx+1) : ( nx+nz ) ] )%∗%Lxz [1 , ]+

secord ∗0 . 5∗ ( t ( vec )%∗%xcube [ [1 ] ]%∗% vec )

re turn ( f c thk )

}

f c th s<−f unc t i on (kb , sb , zb , taub , s i g ) {
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vec<−matrix ( c (kb , sb , zb , taub , s i g ) , nrow=5, nco l =1)

f c th s<−s+t ( vec [ 1 : nx ] )%∗%Lxx [2 , ]+ t ( vec [ ( nx+1) : ( nx+nz ) ] )%∗%Lxz [2 , ]+

secord ∗0 . 5∗ ( t ( vec )%∗%xcube [ [2 ] ]%∗% vec )

re turn ( f c t h s )

}

fcthLAM<−f unc t i on (kb , sb , zb , taub , s i g ) {

vec<−matrix ( c (kb , sb , zb , taub , s i g ) , nrow=5, nco l =1)

fcthLAM<−LAM+t ( vec [ 1 : nx ] )%∗%Lyx [1 , ]+ t ( vec [ ( nx+1) : ( nx+nz ) ] )%∗%Lyz [1 , ]+

secord ∗0 . 5∗ ( t ( vec )%∗%ycube [ [1 ] ]%∗% vec )

re turn ( fcthLAM)

}

f c thc<−f unc t i on (kb , sb , zb , taub , s i g ) {

vec<−matrix ( c (kb , sb , zb , taub , s i g ) , nrow=5, nco l =1)

fc thc<−c+t ( vec [ 1 : nx ] )%∗%Lyx [2 , ]+ t ( vec [ ( nx+1) : ( nx+nz ) ] )%∗%Lyz [2 , ]+

secord ∗0 . 5∗ ( t ( vec )%∗%ycube [ [2 ] ]%∗% vec )

re turn ( f c t h c )

}

# equ i l i b r ium c o n d i t i o n s

f c t q<−f unc t i on ( kt , i t ) {

f c t q <−( i t /( kt∗apd ) ) ˆ eta

re turn ( f c t q )

}

f c t .1<− f unc t i on ( x ) {

kt<−x [ 1 ]

st<−x [ 2 ]

LAMt<−x [ 3 ]

ct<−x [ 4 ]

Zt<−x [ 5 ]

taust t<−x [ 6 ]

k1t<−x [ 7 ]

s1t<−x [ 8 ]

LAM1t<−x [ 9 ]

c1t<−x [ 1 0 ]

Z1t<−x [ 1 1 ]
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taust1t<−x [ 1 2 ]

yt<−exp ( Zt ) ∗kt ˆ alpha

i t<−yt−(ct−omega∗( c tau+t a u s t t ) ∗onemal∗exp ( Zt ) ∗kt ˆ alpha ) /(1−omega∗(

c tau+t a u s t t ) ) # from eq c o n d i t i o n s

phit<−(a1 ∗( i t / kt ) ˆonemeta−a2 ) ∗kt

f c t .1<−phi t+onemdel∗kt−k1t∗A

return ( f c t . 1 )

}

f c t .2<− f unc t i on ( x ) {

kt<−x [ 1 ]

st<−x [ 2 ]

LAMt<−x [ 3 ]

ct<−x [ 4 ]

Zt<−x [ 5 ]

taust t<−x [ 6 ]

k1t<−x [ 7 ]

s1t<−x [ 8 ]

LAM1t<−x [ 9 ]

c1t<−x [ 1 0 ]

Z1t<−x [ 1 1 ]

taust1t<−x [ 1 2 ]

yt<−exp ( Zt ) ∗kt ˆ alpha

y1t<−exp ( Z1t ) ∗k1t ˆ alpha

i t<−yt−(ct−omega∗( c tau+t a u s t t ) ∗onemal∗exp ( Zt ) ∗kt ˆ alpha ) /(1−omega∗(

c tau+t a u s t t ) ) # from eq c o n d i t i o n s

i1 t<−y1t−(c1t−omega∗( c tau+taus t1 t ) ∗onemal∗exp ( Z1t ) ∗k1t ˆ alpha ) /(1−

omega∗( c tau+taus t1 t ) )

phit<−(a1 ∗( i t / kt ) ˆonemeta−a2 ) ∗kt

phi1t<−(a1 ∗( i 1 t / k1t ) ˆonemeta−a2 ) ∗k1t

q1t<−(1−(c tau+taus t1 t ) ) ∗( i 1 t /( apd∗k1t ) ) ˆ( eta )

qt<−(1−(c tau+t a u s t t ) ) ∗( i t /( apd∗kt ) ) ˆ( eta )

f c t .2<−LAMt−LAM1t∗ b e t a t i /A∗((1−( c tau+taus t1 t ) ) ∗( alpha ∗y1t−i 1 t ) / k1t+

q1t ∗( ph i1t / k1t+onemdel ) ) / qt

re turn ( f c t . 2 )

}

f c t .3<− f unc t i on ( x ) {

ct<−x [ 4 ]

s1t<−x [ 8 ]
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f c t .3<−s1t−ct

re turn ( f c t . 3 )

}

f c t .4<− f unc t i on ( x ) {

kt<−x [ 1 ]

st<−x [ 2 ]

LAMt<−x [ 3 ]

ct<−x [ 4 ]

Zt<−x [ 5 ]

taust t<−x [ 6 ]

k1t<−x [ 7 ]

s1t<−x [ 8 ]

LAM1t<−x [ 9 ]

c1t<−x [ 1 0 ]

Z1t<−x [ 1 1 ]

taust1t<−x [ 1 2 ]

f c t .4<−LAMt−(( ct−s t ∗b/A)ˆ(−gamma)−b∗ b e t a t i /A∗( c1t−ct ∗b/A)ˆ(−gamma) )

re turn ( f c t . 4 )

}

sys<−f unc t i on ( x ) {

fx<−matrix ( nrow=4, nco l =1)

fx [1]<− f c t . 1 ( x )

fx [2]<− f c t . 2 ( x )

fx [3]<− f c t . 3 ( x )

fx [4]<− f c t . 4 ( x )

re turn ( fx )

}

# parameters

alpha<−0.27

be ta t i <−0.994

de l ta <−0.011

rho<−0.9

sigma<−1 # s c a l i n g parameter

s i g z <−0.0072
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# tax ra t e parameters

c tau <−0.32

s ig tau <−0.016#0.008

rhotau<−0#0.9

#r i s k aver ion

gamma<−3

b<−0.8

eta <−1/0.23

Rmat<−matrix ( c ( rho , 0 , 0 , rhotau ) , nrow=2, nco l =2)

Omat<−matrix ( c ( s i g z , 0 , 0 , s i g t a u ) , nrow=2, nco l =2)

Omat2<−matrix ( c ( s i g z ˆ2 ,0 ,0 , s i g t a u ˆ2) , nrow=2, nco l =2)

a<−(1+0.00)ˆ4−1

A<−1+a

omega<−0 # i f ze ro nothing i s i nve s t ed in pub l i c good and a l l i s

t r a n s f e r r e d

nsim<−1

Tmax<−40000

nanf lag=0

h a l t f l a g=FALSE

secord<−1 # i f ze ro on lz f i r s t order approximation i s used

# Gauss Hermite d e f i n i t i o n s

ghx<−matrix ( c (−2.35060497367 , −1.33584907401 , −0.436077411928 ,

0 .436077411928 , 1 .33584907401 , 2 .35060497367) , nrow=6, nco l =1)

ghw<−matrix ( c (0 .00453000990551 , 0 .157067320323 , 0 .724629595224 ,

0 .724629595224 , 0 .157067320323 , 0 .00453000990551) , nrow=6, nco l =1)

#s t a t i c terms

a1<−((a+d e l t a ) ˆ eta ) /(1− eta )

a2<−eta ∗( a+d e l t a ) /(1− eta )

apd<−a+d e l t a
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onemal<−1−alpha

onemdel<−1−d e l t a

onemeta<−1−eta

ksa<−vec to r ( l ength=Tmax)

csa<−vec to r ( l ength=Tmax)

i sa<−vec to r ( l ength=Tmax)

Zsa<−vec to r ( l ength=Tmax)

ysa<−vec to r ( l ength=Tmax)

wsa<−vec to r ( l ength=Tmax)

ssa<−vec to r ( l ength=Tmax)

f sa<−vec to r ( l ength=Tmax)

tausa<−vec to r ( l ength=Tmax)

taustsa<−vec to r ( l ength=Tmax)

Zbarsa<−vec to r ( l ength=Tmax)

msa<−vec to r ( l ength=Tmax)

LAMsa<−vec to r ( l ength=Tmax)

ELAMsa<−vec to r ( l ength=Tmax)

psa<−vec to r ( l ength=Tmax)

dsa<−vec to r ( l ength=Tmax)

Rsa<−vec to r ( l ength=Tmax)

Rsatau<−vec to r ( l ength=Tmax)

Rfsa<−vec to r ( l ength=Tmax)

dysa<−vec to r ( l ength=Tmax)

dytausa<−vec to r ( l ength=Tmax)

cgsa<−vec to r ( l ength=Tmax)

Ers<−vec to r ( l ength=nsim )

sdrs<−vec to r ( l ength=nsim )

Erf<−vec to r ( l ength=nsim )

sdr f<−vec to r ( l ength=nsim )

Erstau<−vec to r ( l ength=nsim )

sdrstau<−vec to r ( l ength=nsim )

r f<−vec to r ( l ength=nsim )

dZ<−vec to r ( l ength=Tmax)

di<−vec to r ( l ength=Tmax)

dc<−vec to r ( l ength=Tmax)

dy<−vec to r ( l ength=Tmax)
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dk<−vec to r ( l ength=Tmax)

sddi<−vec to r ( l ength=nsim )

sddc<−vec to r ( l ength=nsim )

sddy<−vec to r ( l ength=nsim )

sddk<−vec to r ( l ength=nsim )

# s t a t i o n a r y s o l u t i o n s

kst<−(alpha ∗ b e t a t i /(A−b e t a t i ∗(1− d e l t a ) ) ) ˆ(1/(1− alpha ) )

c<−(1−omega∗ c tau ) ∗( alpha ∗ kst ˆalpha−(a+d e l t a ) ∗ kst )+(1−alpha ) ∗ kst ˆ alpha

y<−kst ˆ alpha

i s t<−kst ∗( a+d e l t a )

Z<−0

s<−c

LAM<−(1−b∗ b e t a t i /A) ∗((1−b/A) ∗c )ˆ(−gamma)

taust<−0

dyst<−(alpha ∗ kst ˆalpha− i s t ) /((1− c tau ) ∗ kst )

dytaust<−dyst∗(1− c tau )

cgst<−A

# s i z e s

nx<−2

ny<−2

nu<−0

nz<−2

# obta in numerica l d e r i v a t i v e s at s t a t i o n a r y s o l u t i o n

xvec<−rbind ( kst , s )

yvec<−rbind (LAM, c )

zvec<−rbind (Z , taus t )

vec<−matrix ( c ( xvec , yvec , zvec , xvec , yvec , zvec ) , nrow=2∗(nx+ny+nz ) , nco l =1)

J<−j a cob ian ( sys , vec )

Cz . zeros<−matrix (0 , nrow=nx+ny , nco l=nz )

Cu . zeros<−matrix (0 , nrow=nx+ny , nco l=nx+ny )

Cxy . zeros<−matrix (0 , nrow=nx+ny , nco l=nx+ny )

Du. zeros<−matrix (0 , nrow=nx+ny , nco l=nx+ny )
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Fu . zeros<−Du. z e ro s

# f i l l out the matr i ce s

Cu<−0

Cxy<−Cxy . z e r o s

Cz<−Cz . z e r o s

Dxy<−J [ , ( nx+ny+nz+1) : ( ( nx+ny )∗2+nz ) ]

Fxy<−J [ , 1 : ( nx+ny ) ]

Du<−Du. z e ro s

Fu<−Fu . z e r o s

Dz<−−J [ , ( 2 ∗ ( nx+ny )+nz+1) : ( 2 ∗ ( nx+ny+nz ) ) ]

Fz<−−J [ , ( nx+ny+1) : ( nx+ny+nz ) ]

i f (Cu==0) {Cu. in f<−Cu. z e ro s } e l s e {Cu. in f<−s o l v e ( cu ) }

W<−−s o l v e (Dxy−Du%∗%Cu. i n f%∗%Cxy)%∗%(Fxy−Fu%∗%Cu. i n f%∗%Cxy)

R<−s o l v e (Dxy−Du%∗%Cu. i n f%∗%Cxy)%∗%((Dz+Du%∗%Cu. i n f%∗%Cz)%∗%Rmat+(Fz+Fu

%∗%Cu. i n f%∗%Cz) )

Schur .W<−gqz (W, diag ( nx+ny ) ,”S”) # Schur decomposit ion A = Q S t (Q)

with ordered e i g e n v a l u e s ( the one l e s s then one in the f i r s t row )

Trans<−s o l v e ( Schur .W$Q) # Tˆ−1

Tm<−Schur .W$Q # T

S<−Schur .W$S

Q<−Trans%∗%R

# obta in b locks

Sxx<−S [ 1 : nx , 1 : nx ]

Sxy<−S [ 1 : nx , ( nx+1) : ( nx+ny ) ]

Syy<−S [ ( nx+1) : ( nx+ny ) , ( nx+1) : ( nx+ny ) ]

Qx<−Q[ 1 : nx , 1 : nz ]

Qy<−Q[ ( nx+1) : ( nx+ny ) , 1 : nz ]

Rx<−R[ 1 : nx , 1 : nz ]

Trxx<−Trans [ 1 : nx , 1 : nx ]

Trxy<−Trans [ 1 : nx , ( nx+1) : ( nx+ny ) ]
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Tryx<−Trans [ ( nx+1) : ( nx+ny ) , 1 : nx ]

Tryy<−Trans [ ( nx+1) : ( nx+ny ) , ( nx+1) : ( nx+ny ) ]

Txx<−Tm[ 1 : nx , 1 : nx ]

Txy<−Tm[ 1 : nx , ( nx+1) : ( nx+ny ) ]

Tyx<−Tm[ ( nx+1) : ( nx+ny ) , 1 : nx ]

Tyy<−Tm[ ( nx+1) : ( nx+ny ) , ( nx+1) : ( nx+ny ) ]

Wxx<−W[ 1 : nx , 1 : nx ]

Wxy<−W[ 1 : nx , ( nx+1) : ( nx+ny ) ]

Wyx<−W[ ( nx+1) : ( nx+ny ) , 1 : nx ]

Wyy<−W[ ( nx+1) : ( nx+ny ) , ( nx+1) : ( nx+ny ) ]

# obta in Phi

vecQy<−matrix (Qy)

vecPhi<−s o l v e ( kronecker ( t (Rmat) , d iag (1 , ny ) )−kronecker ( diag (1 , nz ) , Syy ) )

%∗%vecQy

Phi<−matrix ( vecPhi , nrow=ny , nco l=nz )

#matr i c s f o r p o l i c y func t i on o f yt

Lyx<−−1∗s o l v e ( Tryy )%∗%Tryx

Lyz<−s o l v e ( Tryy )%∗%Phi

# p o l i c y func t i on f o r xt

Lxx<−Txx%∗%Sxx%∗%s o l v e (Txx) # the not transposed T i s used here

Lxz<−Wxy%∗%s o l v e ( Tryy )%∗%Phi+Rx

# p o l i c y func t i on f o r ut

Lux<−Cu. i n f%∗%Cxy%∗%rbind ( diag (1 , nx ) ,Lyx)

Luz<−Cu. i n f%∗%Cxy%∗%rbind ( matrix (0 , nrow=nx , nco l=nz ) , Lyz )+Cu . i n f%∗%Cz
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# quad part

# c r e a t e gene ra l Hess ian matr i ce s

Hg<− l i s t ( ) #array ( dim=c ( nx+ny , 2∗ ( nx+ny+nz ) ,2∗ ( nx+ny+nz ) ) )

Hg[ [1] ]<− hes s i an ( func=f c t . 1 , x=vec , method . args=l i s t ( eps=1e−4, d=0.0001 ,

ze ro . t o l=s q r t ( . Machine$double . eps /7e−7) , r =4, v=2, show . d e t a i l s=

FALSE) )

Hg[[2] ]<− hes s i an ( func=f c t . 2 , x=vec , method . args=l i s t ( eps=1e−4, d=0.0001 ,

ze ro . t o l=s q r t ( . Machine$double . eps /7e−7) , r =4, v=2, show . d e t a i l s=

FALSE) )

Hg[[3] ]<− hes s i an ( func=f c t . 3 , x=vec , method . args=l i s t ( eps=1e−4, d=0.0001 ,

ze ro . t o l=s q r t ( . Machine$double . eps /7e−7) , r =4, v=2, show . d e t a i l s=

FALSE) )

Hg[[4] ]<− hes s i an ( func=f c t . 4 , x=vec , method . args=l i s t ( eps=1e−4, d=0.0001 ,

ze ro . t o l=s q r t ( . Machine$double . eps /7e−7) , r =4, v=2, show . d e t a i l s=

FALSE) )

# numbers f o r indexes f o r example ys means the s t a r t i n g index number

f o r y end ye the ending number , yps i s the s t a r t i n g number f o r y

prime

nx<−nco l (Lxx)

nz<−nco l ( Lxz )

ny<−nrow (Lyx)

# Hxx

na l l <−(nx+ny ) ∗nxˆ2

amat<−matrix (0 , nrow=na l l , nco l=n a l l )

bvec<−matrix (0 , nrow=na l l , nco l =1)

z i<−0

f o r ( j in 1 : nx ) {

f o r ( k in 1 : nx ) {

f o r ( i in 1 : ( nx+ny ) ) {

z i<−z i+1

f o r ( l 1 in 1 : ny ) {

amat [ z i , i y1 ( l1 , j , k )]<−J [ i , nx+l 1 ]

}
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f o r ( l 1 in 1 : nx ) {

amat [ z i , i x1 ( l1 , j , k )]<−J [ i , nx+ny+nz+l 1 ]

}

f o r ( l 1 in 1 : ny ) {

f o r ( l 2 in 1 : nx ) {

amat [ z i , i x1 ( l2 , j , k )]<−amat [ z i , i x1 ( l2 , j , k ) ]+J [ i , 2∗ nx+nz+ny+l 1

]∗Lyx [ l1 , l 2 ]

}

}

f o r ( l 1 in 1 : ny ) {

f o r ( l 2 in 1 : nx ) {

f o r ( l 3 in 1 : nx ) {

amat [ z i , i y1 ( l1 , l2 , l 3 )]<−amat [ z i , i y1 ( l1 , l2 , l 3 ) ]+J [ i , 2∗ nx+nz+

ny+l 1 ]∗Lxx [ l2 , j ]∗Lxx [ l3 , k ]

}

}

}

hvecxj<−matrix ( c (1 , Lyx [ , j ] , Lxx [ , j ] , ( Lyx%∗%Lxx [ , j ] ) ) , nrow=ny+nx+ny

+1, nco l =1)

hvecxk<−matrix ( c (1 , Lyx [ , k ] , Lxx [ , k ] , ( Lyx%∗%Lxx [ , k ] ) ) , nrow=ny+nx+ny

+1, nco l =1)

indz<−c ( j , ( nx+1) : ( nx+ny ) , ( nx+ny+nz+1) : ( 2 ∗ ( nx+ny )+nz ) )

inds<−c (k , ( nx+1) : ( nx+ny ) , ( nx+ny+nz+1) : ( 2 ∗ ( nx+ny )+nz ) )

bvec [ z i ]<−t ( hvecxj )%∗%Hg [ [ i ] ] [ indz , inds ]%∗%hvecxk

}

}

}

xvec1<−−s o l v e ( amat )%∗%bvec

# hx xz and hy xz

na l l <−(nx+ny ) ∗nx∗nz

amat<−matrix (0 , nrow=na l l , nco l=n a l l )

bvec<−matrix (0 , nrow=na l l , nco l =1)

z i<−0

f o r ( j in 1 : nx ) {
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f o r ( k in 1 : nz ) {

f o r ( i in 1 : ( nx+ny ) ) {

z i<−z i+1

f o r ( l 1 in 1 : ny ) {

amat [ z i , i y2 ( l1 , j , k )]<−J [ i , nx+l 1 ]

}

f o r ( l 1 in 1 : nx ) {

amat [ z i , i x2 ( l1 , j , k )]<−J [ i , nx+ny+nz+l 1 ]

}

f o r ( l 1 in 1 : ny ) {

f o r ( l 2 in 1 : nx ) {

amat [ z i , i x2 ( l2 , j , k )]<−amat [ z i , i x2 ( l2 , j , k ) ]+J [ i , 2∗ nx+nz+ny+l 1

]∗Lyx [ l1 , l 2 ]

}

}

f o r ( l 1 in 1 : ny ) {

f o r ( l 2 in 1 : nx ) {

f o r ( l 3 in 1 : nz ) {

amat [ z i , i y2 ( l1 , l2 , l 3 )]<−amat [ z i , i y2 ( l1 , l2 , l 3 ) ]+J [ i , 2∗ nx+nz+

ny+l 1 ]∗Lxx [ l2 , j ]∗Rmat [ l3 , k ]

}

f o r ( l 3 in 1 : nx ) {

bvec [ z i ]<−bvec [ z i ]+J [ i , 2∗ nx+ny+nz+l 1 ]∗ xvec1 [ iy1 ( l1 , l2 , l 3 ) ]∗

Lxx [ l2 , j ]∗ Lxz [ l3 , k ]

}

}

}

hvecxj<−matrix ( c (1 , Lyx [ , j ] , Lxx [ , j ] , ( Lyx%∗%Lxx [ , j ] ) ) , nrow=ny+nx+ny

+1, nco l =1)

hveczk<−matrix ( c ( Lyz [ , k ] , Lxz [ , k ] , ( Lyx%∗%Lxz [ , k]+Lyz%∗%Rmat [ , k ] )

, 1 ,Rmat [ , k ] ) , nrow=ny+nx+ny+1+nz , nco l =1)

indz<−c ( j , ( nx+1) : ( nx+ny ) , ( nx+ny+nz+1) : ( 2 ∗ ( nx+ny )+nz ) )

inds<−c ( ( nx+1) : ( nx+ny ) , ( nx+ny+nz+1) : ( 2 ∗ ( nx+ny )+nz ) , ( nx+ny+k ) , (2∗

nx+2∗ny+nz+1) : ( 2 ∗ ( nx+ny+nz ) ) )

bvec [ z i ]<−bvec [ z i ]+ t ( hvecxj )%∗%Hg [ [ i ] ] [ indz , inds ]%∗%hveczk

}

}

}
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xvec2<−−s o l v e ( amat )%∗%bvec

# hx zz and hy zz

na l l <−(nx+ny ) ∗nzˆ2

amat<−matrix (0 , nrow=na l l , nco l=n a l l )

bvec<−matrix (0 , nrow=na l l , nco l =1)

z i<−0

f o r ( j in 1 : nz ) {

f o r ( k in 1 : nz ) {

f o r ( i in 1 : ( nx+ny ) ) {

z i<−z i+1

f o r ( l 1 in 1 : ny ) {

amat [ z i , i y3 ( l1 , j , k )]<−J [ i , nx+l 1 ]

}

f o r ( l 1 in 1 : nx ) {

amat [ z i , i x3 ( l1 , j , k )]<−J [ i , nx+ny+nz+l 1 ]

}

f o r ( l 1 in 1 : ny ) {

f o r ( l 2 in 1 : nx ) {

amat [ z i , i x3 ( l2 , j , k )]<−amat [ z i , i x3 ( l2 , j , k ) ]+J [ i , 2∗ nx+nz+ny+l 1

]∗Lyx [ l1 , l 2 ]

}

}

f o r ( l 1 in 1 : ny ) {

f o r ( l 2 in 1 : nz ) {

f o r ( l 3 in 1 : nz ) {

amat [ z i , i y3 ( l1 , l2 , l 3 )]<−amat [ z i , i y3 ( l1 , l2 , l 3 ) ]+J [ i , 2∗ nx+nz+

ny+l 1 ]∗Rmat [ l2 , j ]∗Rmat [ l3 , k ]

}

f o r ( l 3 in 1 : nx ) {

bvec [ z i ]<−bvec [ z i ]+J [ i , 2∗ nx+ny+nz+l 1 ]∗Rmat [ l2 , j ]∗ xvec2 [ iy2 (

l1 , l3 , l 2 ) ]∗ Lxz [ l3 , k ] # order o f l s d i f f e r e n t here

}

}

f o r ( l 2 in 1 : nx ) {

f o r ( l 3 in 1 : nx ) {
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bvec [ z i ]<−bvec [ z i ]+J [ i , 2∗ nx+ny+nz+l 1 ]∗ Lxz [ l2 , j ]∗ xvec1 [ iy1 (

l1 , l2 , l 3 ) ]∗ Lxz [ l3 , k ]

}

f o r ( l 3 in 1 : nz ) {

bvec [ z i ]<−bvec [ z i ]+J [ i , 2∗ nx+ny+nz+l 1 ]∗ Lxz [ l2 , j ]∗ xvec2 [ iy2 (

l1 , l2 , l 3 ) ]∗Rmat [ l3 , k ]

}

}

}

hveczj<−matrix ( c ( Lyz [ , j ] , Lxz [ , j ] , ( Lyx%∗%Lxz [ , j ]+Lyz%∗%Rmat [ , j ] )

, 1 ,Rmat [ , j ] ) , nrow=ny+nx+ny+1+nz , nco l =1)

hveczk<−matrix ( c ( Lyz [ , k ] , Lxz [ , k ] , ( Lyx%∗%Lxz [ , k]+Lyz%∗%Rmat [ , k ] )

, 1 ,Rmat [ , k ] ) , nrow=ny+nx+ny+1+nz , nco l =1)

indz<−c ( ( nx+1) : ( nx+ny ) , ( nx+ny+nz+1) : ( 2 ∗ ( nx+ny )+nz ) , ( nx+ny+j ) , (2∗

nx+2∗ny+nz+1) : ( 2 ∗ ( nx+ny+nz ) ) )

inds<−c ( ( nx+1) : ( nx+ny ) , ( nx+ny+nz+1) : ( 2 ∗ ( nx+ny )+nz ) , ( nx+ny+k ) , (2∗

nx+2∗ny+nz+1) : ( 2 ∗ ( nx+ny+nz ) ) )

bvec [ z i ]<−bvec [ z i ]+ t ( hvecz j )%∗%Hg [ [ i ] ] [ indz , inds ]%∗%hveczk

}

}

}

xvec3<−−s o l v e ( amat )%∗%bvec

# Hss

amat<−matrix (0 , nrow=nx+ny , nco l=nx+ny )

bvec<−matrix (0 , nrow=nx+ny , nco l =1)

z i<−0

f o r ( i in 1 : ( nx+ny ) ) {

f o r ( j in 1 : ny ) {

amat [ i , nx+j ]<−J [ i , nx+j ]+J [ i , 2∗ nx+ny+nz+j ]

}

f o r ( j in 1 : nx ) {

amat [ i , j ]<−J [ i , nx+ny+nz+j ]

f o r ( l 1 in 1 : ny ) {

amat [ i , j ]<−amat [ i , j ]+J [ i , 2∗ nx+ny+nz+l 1 ]∗Lyx [ l1 , j ]
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}

}

f o r ( j in 1 : ny ) {

f o r ( l 1 in 1 : nz ) {

f o r ( l 2 in 1 : nz ) {

bvec [ i ]<−bvec [ i ]+J [ i , 2∗ nx+ny+nz+j ]∗ xvec3 [ iy3 ( j , l1 , l 2 ) ] ∗ ( t (Omat [

l1 , ] )%∗%Omat [ l2 , ] )

}

}

}

indz<−c ( (2∗nx+ny+nz+1) : ( 2 ∗ ( nx+ny+nz ) ) )

temp1<−Hg [ [ i ] ] [ indz , indz ]

temp2<−matrix (0 , nrow=ny+nz , nco l=ny+nz )

f o r ( l 1 in 1 : ny ) {

f o r ( l 2 in 1 : ny ) {

temp2 [ l1 , l 2 ]<−Geta ( l1 , l2 , Lyz , Omat)

}

f o r ( l 2 in 1 : nz ) {

temp2 [ l1 , ny+l 2 ]<−Getab ( l1 , l2 , Lyz , Omat)

temp2 [ ny+l2 , l 1 ]<−temp2 [ l1 , ny+l 2 ]

}

}

f o r ( l 1 in 1 : nz ) {

f o r ( l 2 in 1 : nz ) {

temp2 [ ny+l1 , ny+l 2 ]<−t (Omat [ l1 , ] )%∗%Omat [ l2 , ]

}

}

bvec [ i ]<−bvec [ i ]+sum( diag ( temp1%∗%temp2 ) )

}

xvec4<−−s o l v e ( amat )%∗%bvec

# put everyth ing in c o e f f i c i e n t matrix

xcube<− l i s t ( )

ycube<− l i s t ( )

# f o r x

f o r ( i in 1 : nx ) {
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xcube [ [ i ]]<−matrix (0 , nrow=nx+nz+1, nco l=nx+nz+1)

Hxx<−matrix ( xvec1 [ ix1 ( i , 1 , 1 ) : ix1 ( i , nx , nx ) ] , nrow=nx , nco l=nx )

Hxz<−t ( matrix ( xvec2 [ ix2 ( i , 1 , 1 ) : ix2 ( i , nx , nz ) ] , nrow=nz , nco l=nx ) ) #

s t u f f needs to go in row wise

Hzz<−matrix ( xvec3 [ ix3 ( i , 1 , 1 ) : ix3 ( i , nz , nz ) ] , nrow=nz , nco l=nz )

Hss<−xvec4 [ i ]

xcube [ [ i ] ] [ 1 : nx , 1 : nx]<−Hxx

xcube [ [ i ] ] [ 1 : nx , ( nx+1) : ( nx+nz )]<−Hxz

xcube [ [ i ] ] [ ( nx+1) : ( nx+nz ) , 1 : nx]<−t (Hxz)

xcube [ [ i ] ] [ ( nx+1) : ( nx+nz ) , ( nx+1) : ( nx+nz )]<−Hzz

xcube [ [ i ] ] [ nx+nz+1,nx+nz+1]<−Hss

}

# f o r y

f o r ( i in 1 : ny ) {

ycube [ [ i ]]<−matrix (0 , nrow=nx+nz+1, nco l=nx+nz+1)

Hxx<−matrix ( xvec1 [ iy1 ( i , 1 , 1 ) : iy1 ( i , nx , nx ) ] , nrow=nx , nco l=nx )

Hxz<−t ( matrix ( xvec2 [ iy2 ( i , 1 , 1 ) : iy2 ( i , nx , nz ) ] , nrow=nz , nco l=nx ) )# s t u f f

needs to go in row wise

Hzz<−matrix ( xvec3 [ iy3 ( i , 1 , 1 ) : iy3 ( i , nz , nz ) ] , nrow=nz , nco l=nz )

Hss<−xvec4 [ nx+i ]

ycube [ [ i ] ] [ 1 : nx , 1 : nx]<−Hxx

ycube [ [ i ] ] [ 1 : nx , ( nx+1) : ( nx+nz )]<−Hxz

ycube [ [ i ] ] [ ( nx+1) : ( nx+nz ) , 1 : nx]<−t (Hxz)

ycube [ [ i ] ] [ ( nx+1) : ( nx+nz ) , ( nx+1) : ( nx+nz )]<−Hzz

ycube [ [ i ] ] [ nx+nz+1,nx+nz+1]<−Hss

}

#making a time s e r i e s f o r the optimal c a p i t a l path

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

l=1

whi l e ( l<=nsim ) {

ksa [1]<− kst

Zsa [1]<−1

ysa [1]<−y

i s a [1]<− i s t

s sa [1]<− s

tausa [1]<− c tau
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Zbarsa [1]<−0

taus t sa [1]<−0

shocks<−mvrnorm(n = Tmax, c (0 , 0 ) , Omat2 , e m p i r i c a l = TRUE)

err<−shocks [ , 1 ]

urr<−shocks [ , 2 ]

csa [1]<− f c t h c ( ksa [1]− kst , s sa [1]− s , Zbarsa [ 1 ] , t au s t sa [ 1 ] , sigma )

LAMsa[1]<−fcthLAM( ksa [1]− kst , s sa [1]− s , Zbarsa [ 1 ] , t au s t sa [ 1 ] , sigma )

f o r ( t in 2 :Tmax) {

ksa [ t ]<− f c thk ( ksa [ t−1]−kst , s sa [ t−1]−s , Zbarsa [ t −1] , t au s t sa [ t −1] ,

sigma )

s sa [ t ]<− f c t h s ( ksa [ t−1]−kst , s sa [ t−1]−s , Zbarsa [ t −1] , t au s t sa [ t −1] ,

sigma ) # which csa [ t−1]

Zbarsa [ t ]<−(Zbarsa [ t−1])∗ rho+e r r [ t ]

t au s t sa [ t ]<−( t aus t sa [ t−1])∗ rhotau+urr [ t ]

Zsa [ t ]<−exp ( Zbarsa [ t ] )

tausa [ t ]<−( c tau+taus t sa [ t ] )

LAMsa [ t]<−fcthLAM( ksa [ t ]−kst , s sa [ t ]−s , Zbarsa [ t ] , t au s t sa [ t ] , sigma ) #

which csa [ t +1]

csa [ t ]<− f c t h c ( ksa [ t ]−kst , s sa [ t ]−s , Zbarsa [ t ] , t au s t sa [ t ] , sigma )

ysa [ t ]<−Zsa [ t ]∗ ksa [ t ] ˆ alpha

i s a [ t ]<−ysa [ t ]−( csa [ t ]−omega∗( c tau+taus t sa [ t ] ) ∗onemal∗Zsa [ t ]∗ ksa [ t

] ˆ alpha ) /(1−omega∗( c tau+taus t sa [ t ] ) )

psa [ t−1]<−ksa [ t ]∗ f c t q ( ksa [ t −1] , i s a [ t−1])∗(1− tausa [ t−1])

#wsa [ t]<−Zsa [ t ]∗(1− alpha ) ∗ksa [ t ] ˆ ( alpha )

# c o n d i t i o n a l expec ta t i on f o r LAM

ELAMsa[ t−1]<−0

f o r ( j in 1 : 6 ) {

Zbarsa2<−(Zbarsa [ t−1])∗ rho+s q r t (2 ) ∗ s i g z ∗ghx [ j ]

f o r ( i in 1 : 6 ) {

taustsa2<−(t au s t sa [ t−1])∗ rhotau+s q r t (2 ) ∗ s i g t a u ∗ghx [ i ]

LAM2<−fcthLAM( ksa [ t ]−kst , s sa [ t ]−s , Zbarsa2 , taustsa2 , sigma )

ELAMsa[ t−1]<−ELAMsa[ t−1]+LAM2∗ghw [ j ]∗ghw [ i ]

}

}

ELAMsa[ t−1]<−ELAMsa[ t−1]/ p i # 2 dim case

Rfsa [ t−1]<−LAMsa [ t−1]/( b e t a t i /A∗ELAMsa[ t−1])

i f ( t>2){

dsa [ t−1]<−alpha ∗ysa [ t−1]− i s a [ t−1]
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Rsa [ t−1]<−(dsa [ t−1]+psa [ t−1]∗A) /psa [ t−2]

Rsatau [ t−1]<−(dsa [ t−1]∗(1− tausa [ t−1])+psa [ t−1]∗A) /psa [ t−2]

i f ( i s . nan ( Rsa [ t−1]) ) {

nanf lag=nanf lag+1

l=l−1

h a l t f l a g=TRUE

break

}

}

di [ t ]<− i s a [ t ] / i s a [ t−1]

dc [ t ]<−csa [ t ] / csa [ t−1]

dy [ t]<−ysa [ t ] / ysa [ t−1]

dk [ t]<−ksa [ t ] / ksa [ t−1]

}

i f ( h a l t f l a g==FALSE) {

Ers [ l ]<−mean( Rsa [ 2 : ( Tmax−1) ] )−1

Erstau [ l ]<−mean( Rsatau [ 2 : ( Tmax−1) ] )−1

sdr s tau [ l ]<−sd ( Rsatau [ 2 : ( Tmax−1) ] )

sd r s [ l ]<−sd ( Rsa [ 2 : ( Tmax−1) ] )

Erf [ l ]<−mean( Rfsa [ 2 : ( Tmax−1) ] )−1

s d r f [ l ]<−sd ( Rfsa [ 2 : ( Tmax−1) ] )

# annua l i zed va lue s

# bus in e s s c y c l c e s t a t s

sdd i [ l ]<−sd ( d i [ 2 : ( Tmax−1) ] )

sddy [ l ]<−sd ( dy [ 2 : ( Tmax−1) ] )

sddc [ l ]<−sd ( dc [ 2 : ( Tmax−1) ] )

sddk [ l ]<−sd ( dk [ 2 : ( Tmax−1) ] )

}

i f ( l%%50==0){ pr in t ( l ) }

h a l t f l a g=FALSE

l=l+1

}

s p r i n t f (”%.2 f ” , c (mean( Ers ) ∗100 , mean( sd r s ) ∗100 ,mean( Erf ) ∗100 ,mean( s d r f )

∗100 ,mean( Ers−Erf ) ∗100 , nan f lag ) )

s p r i n t f (”%.2 f ” , c (mean( Erstau ) ∗100 , mean( sdr s tau ) ∗100 ,mean( Erf ) ∗100 ,mean

( s d r f ) ∗100 ,mean( Erstau−Erf ) ∗100) )

s p r i n t f (”%.2 f ” , c (mean( sddy ) ∗100 ,mean( sddc ) /mean( sddy ) ,mean( sdd i ) /mean(

sddy ) ,mean( sddk ) ∗100 ,mean( sddc ) ∗100) )
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beep ( )

#s p r i n t f (”%.3 f ” , J )

#s p r i n t f (”%.3 f ” , c ( c , ks t ) )

# impulse r e sponse s f o r p r o d u c t i v i t y shock

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

sigma<−0 # s e t s c a l a r f o r v o l a t i l i t y to zero so that i t does not have

an e f f e c t on s t a t i o n a r y va lue s

Tmax<−20

Zbarsa [1]<−0

Zsa [1]<−exp ( Zbarsa [ 1 ] )

Zbarsa [2]<−( Zbarsa [ 1 ] ) ∗ rho +0.01

Zsa [2]<−exp ( Zbarsa [ 2 ] )

f o r ( t in 2 : (Tmax−1) ) {

Zbarsa [ t+1]<−(Zbarsa [ t ] ) ∗ rho

Zsa [ t+1]<−exp ( Zbarsa [ t +1])

}

ksa [1]<− kst

Zsa [1]<−1

ysa [1]<−y

i s a [1]<− i s t

s sa [1]<− s

tausa [1]<− c tau

taus t sa [1]<−0

csa [1]<− f c t h c ( ksa [1]− kst , s sa [1]− s , Zbarsa [ 1 ] , t au s t sa [ 1 ] , sigma )

LAMsa[1]<−fcthLAM( ksa [1]− kst , s sa [1]− s , Zbarsa [ 1 ] , t au s t sa [ 1 ] , sigma )

f o r ( t in 2 :Tmax) {

ksa [ t ]<− f c thk ( ksa [ t−1]−kst , s sa [ t−1]−s , Zbarsa [ t −1] , t au s t sa [ t −1] ,

sigma )

s sa [ t ]<− f c t h s ( ksa [ t−1]−kst , s sa [ t−1]−s , Zbarsa [ t −1] , t au s t sa [ t −1] ,

sigma ) # which csa [ t−1]

t au s t sa [ t ]<−( t aus t sa [ t−1])∗ rhotau

tausa [ t ]<−( c tau+taus t sa [ t ] )

LAMsa [ t]<−fcthLAM( ksa [ t ]−kst , s sa [ t ]−s , Zbarsa [ t ] , t au s t sa [ t ] , sigma ) #

which csa [ t +1]
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csa [ t ]<− f c t h c ( ksa [ t ]−kst , s sa [ t ]−s , Zbarsa [ t ] , t au s t sa [ t ] , sigma )

ysa [ t ]<−Zsa [ t ]∗ ksa [ t ] ˆ alpha

i s a [ t ]<−ysa [ t ]−( csa [ t ]−omega∗( c tau+taus t sa [ t ] ) ∗onemal∗Zsa [ t ]∗ ksa [ t

] ˆ alpha ) /(1−omega∗( c tau+taus t sa [ t ] ) )

psa [ t−1]<−ksa [ t ]∗ f c t q ( ksa [ t −1] , i s a [ t−1])∗(1− tausa [ t−1])

# c o n d i t i o n a l expec ta t i on f o r LAM

ELAMsa[ t−1]<−0

f o r ( j in 1 : 6 ) {

Zbarsa2<−(Zbarsa [ t−1])∗ rho+s q r t (2 ) ∗ s i g z ∗ghx [ j ]

f o r ( i in 1 : 6 ) {

taustsa2<−(t au s t sa [ t−1])∗ rhotau+s q r t (2 ) ∗ s i g t a u ∗ghx [ i ]

LAM2<−fcthLAM( ksa [ t ]−kst , s sa [ t ]−s , Zbarsa2 , taustsa2 , sigma )

ELAMsa[ t−1]<−ELAMsa[ t−1]+LAM2∗ghw [ j ]∗ghw [ i ]

}

}

ELAMsa[ t−1]<−ELAMsa[ t−1]/ p i # 2 dim case

Rfsa [ t−1]<−LAMsa [ t−1]/( b e t a t i /A∗ELAMsa[ t−1])

i f ( t>2){

dsa [ t−1]<−alpha ∗ysa [ t−1]− i s a [ t−1]

Rsa [ t−1]<−(dsa [ t−1]+psa [ t−1]∗A) /psa [ t−2]

cgsa [ t−1]<−psa [ t−1]∗A/psa [ t−2]− cg s t

dysa [ t−1]<−dsa [ t−1]/ psa [ t−2]−dyst

dytausa [ t−1]<−dsa [ t−1]∗(1− tausa [ t−1]) /psa [ t−2]−dytaust

Rsatau [ t−1]<−(dsa [ t−1]∗(1− tausa [ t−1])+psa [ t−1]∗A) /psa [ t−2]

i f ( i s . nan ( Rsa [ t−1]) ) {

nanf lag=nanf lag+1

l=l−1

h a l t f l a g=TRUE

break

}

}

dZ [ t]<−Zsa [ t ]−1

d i [ t ]<− i s a [ t ] / i s t −1

dc [ t ]<−csa [ t ] / c−1

dy [ t]<−ysa [ t ] / y−1

}

dev . o f f ( )

par ( mai=c ( 0 . 2 , 1 . 1 , 0 . 2 , 0 . 2 ) )
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par ( mfcol=c (7 , 1 ) )

Tp<−10

labsc<−1

# Product iv i ty growth

f l<−f l o o r ( min (dZ [ 1 : ( Tp+1) ]∗1000) ) /1000

ce<−c e i l i n g (max(dZ [ 1 : ( Tp+1) ]∗1000) ) /1000

ypos<−seq ( f l , ce , by=(ce− f l ) /5)

ymax<−max(dZ [ 1 : ( Tp+1) ] )

ymin<−min (dZ [ 1 : ( Tp+1) ] )

p l o t (dZ [ 2 : ( Tp+1) ] , type=” l ” , c o l=”black ” , lwd=1, ylab=”Product iv i ty ” , xlab

=”Period ” , ylim=c ( ymin , ymax) , xaxt=”n” , yaxt=”n” , bty=”n” ,mgp=c (6 , 0 , 0 )

)

a x i s (2 , at=ypos , l a b e l s=s p r i n t f (”%1.0 f ” , 10000∗ ypos ) , pos=0, l a s =2, cex .

a x i s=lab s c )

a x i s (1 , pos=0,xpd=TRUE, at=c ( 0 :Tp) , cex . a x i s=lab s c )

mtext ( exp r e s s i on (” x”∗10ˆ−2) , adj =0, padj =0, outer=FALSE, cex =0.6)

# Output growth

f l<−f l o o r ( min ( dy [ 1 : ( Tp+1) ]∗1000) ) /1000

ce<−c e i l i n g (max( dy [ 1 : ( Tp+1) ]∗1000) ) /1000

ypos<−seq ( f l , ce , by=(ce− f l ) /5)

ymax<−max( dy [ 1 : ( Tp+1) ] )

ymin<−min ( dy [ 1 : ( Tp+1) ] )

p l o t ( dy [ 2 : ( Tp+1) ] , type=” l ” , c o l=”black ” , lwd=1, ylab=”Output ” , xlab=”

Period ” , yl im=c ( ymin , ymax) , xaxt=”n” , yaxt=”n” , bty=”n” ,mgp=c (6 , 0 , 0 ) )

a x i s (2 , at=ypos , l a b e l s=s p r i n t f (”%1.1 f ” , 10000∗ ypos ) , pos=0, l a s =2, cex .

a x i s=lab s c )

a x i s (1 , pos=0,xpd=TRUE, at=c ( 0 :Tp) , cex . a x i s=lab s c )

mtext ( exp r e s s i on (” x”∗10ˆ−2) , adj =0, padj =0, outer=FALSE, cex =0.6)

# Consumption growth

f l<−f l o o r ( min ( dc [ 1 : ( Tp+1) ]∗1000) ) /1000

ce<−c e i l i n g (max( dc [ 1 : ( Tp+1) ]∗1000) ) /1000

ypos<−seq ( f l , ce , by=(ce− f l ) /5)

ymax<−max( dc [ 1 : ( Tp+1) ] )

ymin<−min ( dc [ 1 : ( Tp+1) ] )
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p lo t ( dc [ 2 : ( Tp+1) ] , type=” l ” , c o l=”black ” , lwd=1, ylab=”Consumption ” , xlab

=”Period ” , ylim=c ( ymin , ymax) , xaxt=”n” , yaxt=”n” , bty=”n” ,mgp=c (6 , 0 , 0 )

)

a x i s (2 , at=ypos , l a b e l s=s p r i n t f (”%1.0 f ” , 10000∗ ypos ) , pos=0, l a s =2, cex .

a x i s=lab s c )

a x i s (1 , pos=0,xpd=TRUE, at=c ( 0 :Tp) , cex . a x i s=lab s c )

mtext ( exp r e s s i on (” x”∗10ˆ−2) , adj =0, padj =0, outer=FALSE, cex =0.6)

# Investment growth

f l<−f l o o r ( min ( d i [ 1 : ( Tp+1) ]∗1000) ) /1000

ce<−c e i l i n g (max( d i [ 1 : ( Tp+1) ]∗1000) ) /1000

ypos<−seq ( f l , ce , by=(ce− f l ) /5)

ymax<−max( d i [ 1 : ( Tp+1) ] )

ymin<−min ( d i [ 1 : ( Tp+1) ] )

p l o t ( d i [ 2 : ( Tp+1) ] , type=” l ” , c o l=”black ” , lwd=1, ylab=”Investment ” , xlab=”

Period ” , yl im=c ( ymin , ymax) , xaxt=”n” , yaxt=”n” , bty=”n” ,mgp=c (6 , 0 , 0 ) )

a x i s (2 , at=ypos , l a b e l s=s p r i n t f (”%1.0 f ” , 10000∗ ypos ) , pos=0, l a s =2, cex .

a x i s=lab s c )

a x i s (1 , pos=0,xpd=TRUE, at=c ( 0 :Tp) , cex . a x i s=lab s c )

mtext ( exp r e s s i on (” x”∗10ˆ−2) , adj =0, padj =0, outer=FALSE, cex =0.6)

# Pre−tax div y i e l d

f l<−f l o o r ( min ( dysa [ 1 : ( Tp+1) ]∗10000) ) /10000

ce<−c e i l i n g (max( dysa [ 1 : ( Tp+1) ]∗10000) ) /10000

ypos<−seq ( f l , ce , by=(ce− f l ) /5)

ymax<−max( dysa [ 1 : ( Tp+1) ] )

ymin<−min ( dysa [ 1 : ( Tp+1) ] )

p l o t ( dysa [ 2 : ( Tp+1) ] , type=” l ” , c o l=”black ” , lwd=1, ylab=”Dividend y i e l d ” ,

xlab=”Period ” , ylim=c ( ymin , ymax) , xaxt=”n” , yaxt=”n” , bty=”n” ,mgp=c

(6 , 0 , 0 ) )

a x i s (2 , at=ypos , l a b e l s=s p r i n t f (”%1.1 f ” , 10000∗ ypos ) , pos=0, l a s =2, cex .

a x i s=lab s c )

a x i s (1 , pos=0,xpd=TRUE, at=c ( 0 :Tp) , cex . a x i s=lab s c )

mtext ( exp r e s s i on (” x”∗10ˆ−2) , adj =0, padj =0, outer=FALSE, cex =0.6)
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# After−tax div y i e l d

f l<−f l o o r ( min ( dytausa [ 1 : ( Tp+1) ]∗10000) ) /10000

ce<−c e i l i n g (max( dytausa [ 1 : ( Tp+1) ]∗10000) ) /10000

ypos<−seq ( f l , ce , by=(ce− f l ) /5)

ymax<−max( dytausa [ 1 : ( Tp+1) ] )

ymin<−min ( dytausa [ 1 : ( Tp+1) ] )

p l o t ( dytausa [ 2 : ( Tp+1) ] , type=” l ” , c o l=”black ” , lwd=1, ylab=”After−tax div

. y i e l d ” , xlab=”Period ” , ylim=c ( ymin , ymax) , xaxt=”n” , yaxt=”n” , bty=”n

” ,mgp=c (6 , 0 , 0 ) )

a x i s (2 , at=ypos , l a b e l s=s p r i n t f (”%1.1 f ” , 10000∗ ypos ) , pos=0, l a s =2, cex .

a x i s=lab s c )

a x i s (1 , pos=0,xpd=TRUE, at=c ( 0 :Tp) , cex . a x i s=lab s c )

mtext ( exp r e s s i on (” x”∗10ˆ−2) , adj =0, padj =0, outer=FALSE, cex =0.6)

# Capi ta l ga in

f l<−f l o o r ( min ( cgsa [ 1 : ( Tp+1) ]∗10000) ) /10000

ce<−c e i l i n g (max( cgsa [ 1 : ( Tp+1) ]∗10000) ) /10000

ypos<−seq ( f l , ce , by=(ce− f l ) /5)

ymax<−max( cgsa [ 1 : ( Tp+1) ] )

ymin<−min ( cgsa [ 1 : ( Tp+1) ] )

p l o t ( cgsa [ 2 : ( Tp+1) ] , type=” l ” , c o l=”black ” , lwd=1, ylab=”Capi ta l ga in ” ,

xlab=”Period ” , ylim=c ( ymin , ymax) , xaxt=”n” , yaxt=”n” , bty=”n” ,mgp=c

(6 , 0 , 0 ) )

a x i s (2 , at=ypos , l a b e l s=s p r i n t f (”%1.0 f ” , 10000∗ ypos ) , pos=0, l a s =2, cex .

a x i s=lab s c )

a x i s (1 , pos=0,xpd=TRUE, at=c ( 0 :Tp) , cex . a x i s=lab s c )

mtext ( exp r e s s i on (” x”∗10ˆ−2) , adj =0, padj =0, outer=FALSE, cex =0.6)

# impulse r e sponse s f o r tax ra t e shock

taus t sa [1]<−0

tausa [1]<−( c tau+taus t sa [ 1 ] )

t au s t sa [2]<−( t au s t sa [ 1 ] ) ∗ rhotau +0.01

tausa [2]<−( c tau+taus t sa [ 2 ] )

f o r ( t in 2 : (Tmax−1) ) {

t au s t sa [ t+1]<−( t au s t sa [ t ] ) ∗ rhotau
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tausa [ t+1]<−( c tau+taus t sa [ t +1])

}

Zbarsa [1]<−0

Zsa [1]<−exp ( Zbarsa [ 1 ] )

ksa [1]<− kst

Zsa [1]<−1

ysa [1]<−y

i s a [1]<− i s t

s sa [1]<− s

csa [1]<− f c t h c ( ksa [1]− kst , s sa [1]− s , Zbarsa [ 1 ] , t au s t sa [ 1 ] , sigma )

LAMsa[1]<−fcthLAM( ksa [1]− kst , s sa [1]− s , Zbarsa [ 1 ] , t au s t sa [ 1 ] , sigma )

f o r ( t in 2 :Tmax) {

ksa [ t ]<− f c thk ( ksa [ t−1]−kst , s sa [ t−1]−s , Zbarsa [ t −1] , t au s t sa [ t −1] , sigma )

s sa [ t ]<− f c t h s ( ksa [ t−1]−kst , s sa [ t−1]−s , Zbarsa [ t −1] , t au s t sa [ t −1] , sigma )

# which csa [ t−1]

Zbarsa [ t ]<−(Zbarsa [ t−1])∗ rho

Zsa [ t ]<−exp ( Zbarsa [ t ] )

LAMsa [ t]<−fcthLAM( ksa [ t ]−kst , s sa [ t ]−s , Zbarsa [ t ] , t au s t sa [ t ] , sigma ) #

which csa [ t +1]

csa [ t ]<− f c t h c ( ksa [ t ]−kst , s sa [ t ]−s , Zbarsa [ t ] , t au s t sa [ t ] , sigma )

ysa [ t ]<−Zsa [ t ]∗ ksa [ t ] ˆ alpha

i s a [ t ]<−ysa [ t ]−( csa [ t ]−omega∗( c tau+taus t sa [ t ] ) ∗onemal∗Zsa [ t ]∗ ksa [ t ] ˆ

alpha ) /(1−omega∗( c tau+taus t sa [ t ] ) )

psa [ t−1]<−ksa [ t ]∗ f c t q ( ksa [ t −1] , i s a [ t−1])∗(1− tausa [ t−1])

# c o n d i t i o n a l expec ta t i on f o r LAM

ELAMsa[ t−1]<−0

f o r ( j in 1 : 6 ) {

Zbarsa2<−(Zbarsa [ t−1])∗ rho+s q r t (2 ) ∗ s i g z ∗ghx [ j ]

f o r ( i in 1 : 6 ) {

taustsa2<−(t au s t sa [ t−1])∗ rhotau+s q r t (2 ) ∗ s i g t a u ∗ghx [ i ]

LAM2<−fcthLAM( ksa [ t ]−kst , s sa [ t ]−s , Zbarsa2 , taustsa2 , sigma )

ELAMsa[ t−1]<−ELAMsa[ t−1]+LAM2∗ghw [ j ]∗ghw [ i ]

}

}

ELAMsa[ t−1]<−ELAMsa[ t−1]/ p i # 2 dim case

Rfsa [ t−1]<−LAMsa [ t−1]/( b e t a t i /A∗ELAMsa[ t−1])
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i f ( t>2){

dsa [ t−1]<−alpha ∗ysa [ t−1]− i s a [ t−1]

Rsa [ t−1]<−(dsa [ t−1]+psa [ t−1]∗A) /psa [ t−2]

cgsa [ t−1]<−psa [ t−1]∗A/psa [ t−2]− cg s t

dysa [ t−1]<−dsa [ t−1]/ psa [ t−2]−dyst

dytausa [ t−1]<−dsa [ t−1]∗(1− tausa [ t−1]) /psa [ t−2]−dytaust

Rsatau [ t−1]<−(dsa [ t−1]∗(1− tausa [ t−1])+psa [ t−1]∗A) /psa [ t−2]

i f ( i s . nan ( Rsa [ t−1]) ) {

nanf lag=nanf lag+1

l=l−1

h a l t f l a g=TRUE

break

}

}

dZ [ t]<−Zsa [ t ]−1

d i [ t ]<− i s a [ t ] / i s t −1

dc [ t ]<−csa [ t ] / c−1

dy [ t]<−ysa [ t ] / y−1

}

# Tax ra t e

f l<−f l o o r ( min ( taus t sa [ 1 : ( Tp+1) ]∗1000) ) /1000

ce<−c e i l i n g (max( taus t sa [ 1 : ( Tp+1) ]∗1000) ) /1000

ypos<−seq ( f l , ce , by=(ce− f l ) /5)

ypos<−seq ( f l o o r ( min ( taus t sa [ 1 : ( Tp+1) ] ) ) , c e i l i n g (max( taus t sa [ 1 : ( Tp+1) ] ) )

, by=0.002)

ymax<−max( taus t sa [ 1 : ( Tp+1) ] )

ymin<−min ( taus t sa [ 1 : ( Tp+1) ] )

p l o t ( t au s t sa [ 2 : ( Tp+1) ] , type=” l ” , c o l=”black ” , lwd=1, ylab=”Tax ra t e ” ,

xlab=”Period ” , ylim=c ( ymin , ymax) , xaxt=”n” , yaxt=”n” , bty=”n” ,mgp=c

(6 , 0 , 0 ) )

a x i s (2 , at=ypos , l a b e l s=s p r i n t f (”%1.0 f ” , 10000∗ ypos ) , pos=0, l a s =2, cex .

a x i s=lab s c )

a x i s (1 , pos=0,xpd=TRUE, at=c ( 0 :Tp) , cex . a x i s=lab s c )

mtext ( exp r e s s i on (” x”∗10ˆ−2) , adj =0, padj =0, outer=FALSE, cex =0.6)

# Output growth
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f l<−f l o o r ( min ( dy [ 1 : ( Tp+1) ]∗1000000) ) /1000000

ce<−c e i l i n g (max( dy [ 1 : ( Tp+1) ]∗1000000) ) /1000000

ypos<−seq ( f l , ce , by=(ce− f l ) /5)

ymax<−max( dy [ 1 : ( Tp+1) ] )

ymin<−min ( dy [ 1 : ( Tp+1) ] )

p l o t ( dy [ 2 : ( Tp+1) ] , type=” l ” , c o l=”black ” , lwd=1, ylab=”Output ” , xlab=”

Period ” , yl im=c ( ymin , ymax) , xaxt=”n” , yaxt=”n” , bty=”n” ,mgp=c (6 , 0 , 0 ) )

a x i s (2 , at=ypos , l a b e l s=s p r i n t f (”%1.2 f ” , 10000∗ ypos ) , pos=0, l a s =2, cex .

a x i s=lab s c )

a x i s (1 , pos=0,xpd=TRUE, at=c ( 0 :Tp) , cex . a x i s=lab s c )

mtext ( exp r e s s i on (” x”∗10ˆ−2) , adj =0, padj =0, outer=FALSE, cex =0.6)

# Consumption growth

f l<−f l o o r ( min ( dc [ 1 : ( Tp+1) ]∗10000) ) /10000

ce<−c e i l i n g (max( dc [ 1 : ( Tp+1) ]∗10000) ) /10000

ypos<−seq ( f l , ce , by=(ce− f l ) /5)

ymax<−max( dc [ 1 : ( Tp+1) ] )

ymin<−min ( dc [ 1 : ( Tp+1) ] )

p l o t ( dc [ 2 : ( Tp+1) ] , type=” l ” , c o l=”black ” , lwd=1, ylab=”Consumption ” , xlab

=”Period ” , ylim=c ( ymin , ymax) , xaxt=”n” , yaxt=”n” , bty=”n” ,mgp=c (6 , 0 , 0 )

)

a x i s (2 , at=ypos , l a b e l s=s p r i n t f (”%1.1 f ” , 10000∗ ypos ) , pos=0, l a s =2, cex .

a x i s=lab s c )

a x i s (1 , pos=0,xpd=TRUE, at=c ( 0 :Tp) , cex . a x i s=lab s c )

mtext ( exp r e s s i on (” x”∗10ˆ−2) , adj =0, padj =0, outer=FALSE, cex =0.6)

# Investment growth

f l<−f l o o r ( min ( d i [ 1 : ( Tp+1) ]∗1000) ) /1000

ce<−c e i l i n g (max( d i [ 1 : ( Tp+1) ]∗1000) ) /1000

ypos<−seq ( f l , ce , by=(ce− f l ) /5)

ymax<−max( d i [ 1 : ( Tp+1) ] )

ymin<−min ( d i [ 1 : ( Tp+1) ] )

p l o t ( d i [ 2 : ( Tp+1) ] , type=” l ” , c o l=”black ” , lwd=1, ylab=”Investment ” , xlab=”

Period ” , yl im=c ( ymin , ymax) , xaxt=”n” , yaxt=”n” , bty=”n” ,mgp=c (6 , 0 , 0 ) )

a x i s (2 , at=ypos , l a b e l s=s p r i n t f (”%1.0 f ” , 10000∗ ypos ) , pos=0, l a s =2, cex .
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a x i s=lab s c )

a x i s (1 , pos=0,xpd=TRUE, at=c ( 0 :Tp) , cex . a x i s=lab s c )

mtext ( exp r e s s i on (” x”∗10ˆ−2) , adj =0, padj =0, outer=FALSE, cex =0.6)

# Pre−tax div y i e l d

f l<−f l o o r ( min ( dysa [ 1 : ( Tp+1) ]∗100000) ) /100000

ce<−c e i l i n g (max( dysa [ 1 : ( Tp+1) ]∗100000) ) /100000

ypos<−seq ( f l , ce , by=(ce− f l ) /5)

ymax<−max( dysa [ 1 : ( Tp+1) ] )

ymin<−min ( dysa [ 1 : ( Tp+1) ] )

p l o t ( dysa [ 2 : ( Tp+1) ] , type=” l ” , c o l=”black ” , lwd=1, ylab=”Dividend y i e l d ” ,

xlab=”Period ” , ylim=c ( ymin , ymax) , xaxt=”n” , yaxt=”n” , bty=”n” ,mgp=c

(6 , 0 , 0 ) )

a x i s (2 , at=ypos , l a b e l s=s p r i n t f (”%1.2 f ” , 10000∗ ypos ) , pos=0, l a s =2, cex .

a x i s=lab s c )

a x i s (1 , pos=0,xpd=TRUE, at=c ( 0 :Tp) , cex . a x i s=lab s c )

mtext ( exp r e s s i on (” x”∗10ˆ−2) , adj =0, padj =0, outer=FALSE, cex =0.6)

# After−tax div y i e l d

f l<−f l o o r ( min ( dytausa [ 1 : ( Tp+1) ]∗100000) ) /100000

ce<−c e i l i n g (max( dytausa [ 1 : ( Tp+1) ]∗100000) ) /100000

ypos<−seq ( f l , ce , by=(ce− f l ) /5)

ymax<−max( c ( dytausa [ 1 : ( Tp+1) ] ) )

ymin<−min ( c ( dytausa [ 1 : ( Tp+1) ] ) )

p l o t ( dytausa [ 2 : ( Tp+1) ] , type=” l ” , c o l=”black ” , lwd=1, ylab=”After−tax div

. y i e l d ” , xlab=”Period ” , ylim=c ( ymin , ymax) , xaxt=”n” , yaxt=”n” , bty=”n

” ,mgp=c (6 , 0 , 0 ) )

a x i s (2 , at=ypos , l a b e l s=s p r i n t f (”%1.2 f ” , 10000∗ ypos ) , pos=0, l a s =2, cex .

a x i s=lab s c )

a x i s (1 , pos=0,xpd=TRUE, at=c ( 0 :Tp) , cex . a x i s=lab s c )

mtext ( exp r e s s i on (” x”∗10ˆ−2) , adj =0, padj =0, outer=FALSE, cex =0.6)

# Capi ta l ga in

f l<−f l o o r ( min ( cgsa [ 1 : ( Tp+1) ]∗1000) ) /1000

ce<−c e i l i n g (max( cgsa [ 1 : ( Tp+1) ]∗1000) ) /1000

ypos<−seq ( f l , ce , by=(ce− f l ) /5)
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ymax<−max( cgsa [ 1 : ( Tp+1) ] )

ymin<−min ( cgsa [ 1 : ( Tp+1) ] )

p l o t ( cgsa [ 2 : ( Tp+1) ] , type=” l ” , c o l=”black ” , lwd=1, ylab=”Capi ta l ga in ” ,

xlab=”Period ” , ylim=c ( ymin , ymax) , xaxt=”n” , yaxt=”n” , bty=”n” ,mgp=c

(6 , 0 , 0 ) )

a x i s (2 , at=ypos , l a b e l s=s p r i n t f (”%1.0 f ” , 10000∗ ypos ) , pos=0, l a s =2, cex .

a x i s=lab s c )

a x i s (1 , pos=0,xpd=TRUE, at=c ( 0 :Tp) , cex . a x i s=lab s c )

mtext ( exp r e s s i on (” x”∗10ˆ−2) , adj =0, padj =0, outer=FALSE, cex =0.6)
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