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Abstract

Locating sequences compatible to a protein structural fold is the well-known inverse protein-

folding problem. While significant progress has been made, the success rate of protein design

remains low. As a result, a library of designed sequences or profile of sequences is currently

employed for guiding experimental screening or directed evolution. Sequence profiles can be

computationally predicted by iterative mutations of a random sequence to produce energy-

optimized sequences, or by combining sequences of structurally similar fragments in a template

library. The latter approach is computationally more efficient but yields less accurate profiles than

the former because of lacking tertiary structural information. Here we present a method called

SPIN that predicts Sequence Profiles by Integrated Neural network based on fragment-derived

sequence profiles and structure-derived energy profiles. SPIN improves over the fragment-derived

profile by 6.7% (from 23.6% to 30.3%) in sequence identity between predicted and wild-type

sequences. The method also reduces the number of residues in low complex regions by 15.7% and

has a significant better balance of hydrophilic and hydrophobic residues at protein surfaces. The

accuracy of sequence profiles obtained is comparable to those generated from the protein design

program RosettaDesign 3.5. This highly efficient method for predicting sequence profiles from

structures will be useful as a single-body scoring term for improving scoring functions used in

protein design and fold recognition. It also complements protein design programs in guiding
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experimental design of the sequence library for screening and directed evolution of designed

sequences. The SPIN server is available at http://sparks-lab.org.

Keywords

Protein design; knowledge-based energy function; neural network; sequence profiles; inverse
protein folding problem

1 INTRODUCTION

Designing a protein sequence that would fold into a given structure is the well-known

inverse-protein folding problem. Solving this problem will not only improve our

fundamental understanding of the interactions responsible for protein folding and structure

prediction but also advance our capability of designing novel proteins with existing function

improved or with completely new functionality.

Significant progress in protein design has been made in recent years with a number of

designed sequences successfully validated experimentally in terms of their structures and

their functions 1–11. These designs typically start from random protein sequences and

iteratively optimize an energy score via mutations until the scoring function reaches a

minimum. However, existing scoring functions for protein design are not yet accurate

enough to produce high success rates 12–16. In fact, designed sequences usually do not

contain wild-type sequences as a part of the solution 17,18. Low success rate of single

sequence design has led to current effort in employing multiple computationally predicted

sequences (or sequence profiles) to build a sequence library for large-scale experimental

screening of desirable properties 19–23 or for directed evolution 14,24. Sequence or sequence

profiles obtained from protein design programs require solving a NP-hard combinatorial

optimization problem25. Thus, it is time consuming to produce sequence profiles based on

multiple runs.

In addition to above energy-based methods, sequence profiles can also be predicted by

employing local fragment structures 26. In this approach, fragment structures from a target

structure are compared to the fragment structures from a template library of known protein

structures. Sequences of those template fragment structures with high structural similarity to

target fragments are obtained to produce the sequence profile for the entire target structure

by a sliding-widow approach. Sequence profiles generated from fragment structures and/or

from protein design programs have been found useful for enhancing the ability of

recognizing structural similarity in the absence of sequence similarity (fold recognition) by

matching a sequence profile of a query not only with the sequence profile of a template

sequence but also the sequence profile predicted from a template structure 26–28. More

recently, sequence profiles derived from fragment structures were employed as a single-

body energy term for improving the energy function of protein design 17. Predicting

sequence profiles by fragments only needs to perform pairwise structural alignment between

short fragments and, thus, is computationally much more efficient than solving the

combinatorial optimization problem required by an energy-based design. However,

sequence profiles derived from short fragments are dominated by local structural
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information. That is, they are only useful for capturing the interactions responsible for local

structure formation, but do not account for non-local interactions (interactions between

structural but not sequence neighbors) that are responsible for the stability of tertiary

structure. As a result, fragment-derived profiles are not as useful as the profiles derived from

energy optimization for using in experimental screening or directed evolution.

In this paper, we test the idea of using neural network (NN) to improve fragment-derived

sequence profiles by incorporating a mean-field like non-local interaction. We found that an

energy-based nonlocal feature makes a significant improvement in the quality of sequence

profiles over that from fragment structural alignment in terms of sequence identity to wild-

type sequences, fraction of hydrophilic residues, recovery rate of wild-type residue types,

precision of predicted amino-acid residue types, distribution of amino-acid residue types,

and fraction of low complexity regions. The quality of predicted sequence profiles is

comparable to the profiles generated from the protein design program RosettaDesign 3.529

based on several measures. This NN-derived profile is complementary to existing energy-

based techniques for identifying sequences that are compatible with a desired structural fold.

It should be also useful as a single-body term for improving the fold-recognition scoring

function or protein-design energy function as fragment-based profiles did17,26–28.

2 METHODS

2.1 Data sets

To perform training and test and avoid over-training, we need three datasets: structural

templates, a dataset for training the neural network, and a dataset for independent test. For

the template library, we started from a non-redundant protein set with resolution better than

2.0 Å, pair-wise sequence identity of less than 30% from the PISCES server 30 downloaded

on October 17, 2008. This set contains 4803 protein chains that were further reduced to 2528

chains after removing chains with missing residues or backbone atoms. We further cleaned

the dataset by removing proteins (1) complexed with DNA or RNA, (2) whose sequence

contain un-recognized residue types; and (3) whose secondary structures were not defined

by DSSP 31. This leads to a total of 2282 protein chains that are employed as our templates

for fragment structures (TL2282).

For training and test sets, we started from the new non-redundant protein set with resolution

better than 3.0 Å, pair-wise sequence identity of less than 30% from the PISCES server30 on

April 28, 2013. This set contains 10460 protein chains. We cleaned the dataset using the

same criteria above and removed all chains with >30% sequence identity to the proteins in

the template library (TL2282). This leads to a dataset of 2032 proteins. We randomly

selected 500 proteins for independent test (TS500) and utilized the remaining proteins for

training and ten-fold cross validation (TR1532).

From TS500, we randomly selected 50 small proteins with sequence length between 60–200

and fraction of surface residue between 0.5–0.8 (TS50). This small dataset is used to

compare the sequence profiles generated from our neural-network approach with those

generated from RosettaDesign, one of the most widely used programs for protein design29.

A small dataset is used because it is computationally intensive to produce sequence profiles
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by designing 1000 sequences utilizing RosettaDesign. These 50 proteins (PDB ID plus chain

ID) are 1eteA, 1v7mV, 1y1lA, 3pivA, 1or4A, 2i39A, 4gcnA, 1bvyF, 3on9A, 3vjzA, 3nbkA,

3l4rA, 3gwiA, 4dkcA, 3so6A, 3lqcA, 3gknA, 3nngA, 2j49A, 3fhkA, 2va0A, 3hklA, 2xr6A,

3ii2A, 2cayA, 3t5gB, 3ieyB, 3aqgA, 3q4oA, 2qdlA, 3ejfA, 3gfsA, 1ahsA, 2fvvA, 2a2lA,

3nzmA, 3e8mA, 3k7pA, 3ny7A, 2gu3A, 1pdoA, 1h4aX, 1dx5I, 1i8nA, 2cviA, 3a4rA,

1lpbA, 1mr1C, 2xcjA, and 2xdgA.

To remove all information from wild-type sequences in their structures, amino-acid residue

types in the PDB structural files of all datasets were labeled as ALA (alanine). All native

positions of Cβ atoms were removed and replaced by the positions of pseudo Cβ atoms based

on standard 1.54 Å for the Cα – Cβ bond length, 109.538° for the N – Cα – Cβ bond angle

and 109.468° for the C – N – Cα – Cβ dihedral angle. All protein structures are not energy

minimized prior to removal of original side chains to avoid possible “memory” of side

chains by the energy function used in minimization. The latter could lead to artificially high

sequence identity to wild type sequences.

2.2 Neural network

We employed the same neural-network method developed for sequence-based continuous-

value prediction of backbone torsion angles and residue solvent accessibility 32–34. It

contains a two-hidden-layer neural network. Each of the two hidden layers contains 51

hidden neurons and one bias. We employed a bipolar activation function given by f (x) =

tanh(αx), with α = 0.2. Back propagation with momentum was applied to optimize the

weights. The learning rate and momentum were set to 0.001 and 0.4, respectively.

2.3 Input features

Local features—There are two types of local features. The first one is backbone torsion

angles (ϕ and ψ) at a given sequence position. The second one is the fragment-derived

sequence profile. The method for obtaining the fragment-derived sequence profile was

described in 17. Briefly, 5-residue fragments (from i to i+4; i=1, 2, …, L-4) in a target

structure of sequence length L are structurally compared to all fragments in the same length

located in the structural template library (TL2282). The sequences of most structurally

similar fragments (in RMSD) are utilized to calculate probability of a residue type at each

sequence position (sequence profile). For each sequence position, this profile has a

dimension of twenty for 20 residue types.

Energy-based non-local features—We introduced an energy-based non-local feature

as follows. For a given sequence position, we built the full side-chain based on the rotamers

of each amino-acid residue type, one rotamer at a time while assuming that the residue type

at all other positions is alanine. The total interaction energies of the residue of 20 residue

types in all rotameric states with all other alanine residues are calculated separately. We

record only the lowest total energy in all rotameric states of each residue type at a given

sequence position plus the energies of six most frequent rotamers (or less if a residue type

has less than six rotamers). The total number of features is 114 (=7×13+4×4+3×1+2×2)

because four residue types have only three rotamers, Proline has two, and Glycine and

Alanine have one conformation]. Here, the bbdep02 rotamer library 35 and a knowledge-
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based energy function based on the distance-scaled finite-ideal gas reference state

(DFIRE) 36,37 were employed.

Sliding window and normalization of input values—In addition to the features from

the current position (i), we also include the features from two sequence neighbors (i−1 and i

+1). That is, a window size of 3 is employed. We utilized this window size because a larger

window size did not improve our prediction. The values of all input features were linearly

transformed to [−1, 1]. The total number of input features is 136×3 (136=2+20+114).

2.4 Output

The output layer contains 20 nodes with each node representing one amino-acid residue

type. In other words, the neural network outputs 20 probability values for 20 amino acid

residue types for each sequence position. We trained the neural network to make two types

of predictions. The first one is to predict wild-type sequences where each sequence is

represented by a 20×L matrix. That is, each sequence position has a 20-dimension vector for

20 amino-acid residue types. The value is 1 if a particular residue type is located at the

sequence position and −1 for all other dimensions. The second one is to predict position-

specific substitution matrix (PSSM) generated by PSIBLAST38. This prediction takes into

account the fact that more than one sequence can have the same structure. In this case, a

20×L matrix generated from PSIBLAST38 is used as the target for training and prediction.

2.5 Ten-fold cross validation and independent test

To examine the accuracy of prediction, we performed 10-fold cross validation on TR1532.

The dataset is randomly divided into 10 equal parts. Nine were used for training and the

remaining was for testing. This process was repeated 10 times, once for each of the 10 parts.

To prevent over-training, a random over-fit protection set with 5% of the training set is

excluded from training and is used as a small test set for determining the stop criterion for

neural-network weight optimization. We did 10 fold cross-validations for five times with

different random seeds. The consensus of predicted amino-acid types of 5 independent runs

is employed to calculate the sequence identity to wild-type sequences. For independent test,

TR1532 was employed for training and TS500 was for test only.

2.6 Performance evaluation

The objective function in the neural network is to minimize the difference between predicted

and actual values (20-dimension 1 and −1 vector or PSSM). The performance, on the other

hand, is assessed by several different measures. One is the sequence identity between

predicted sequence and the wild-type sequence, which is equal to the number of correctly

predicted residue types divided by the total number of residues. We also calculated precision

and recovery rate of each residue type where precision is the fraction of correctly predicted

residues for a given residue type in the number of predicted residues of that type. Recovery

rate is the fraction of correctly predicted residues of a given residue type in the number of

wild-type residues of that type.

Another measure of performance is mean square error. In order to calculate the mean square

error between PSSM and a predicted profile, the predicted profile (fragment and single-
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sequence NN-based approaches, or RosettaDesign) was transformed to a pseudo PSSM by

log(Pij), where Pij is the probability for given residue type i in position j. Both pseudo PSSM

and PSSM are normalized from 0 to 1. The mean square error is obtained by calculating the

difference between PSSM and the best linear fit of the pseudo PSSM to the PSSM.

2.7 RosettaDesign

RosettaDesign 3.5 was downloaded from https://www.rosettacommons.org/software/.

Proteins are designed based on a fixed backbone structure with the command

“fixbb.linuxgccrelease -s example.pdb -resfile example.resfile -ex1 -ex2 -nstruct 100 -

database ROSETTA_DATABASE -linmem_ig 10 -extrachi_cutoff 0 -

ignore_unrecognized_res -no_opth false -skip_set_reasonable_fold_tree -no_his_his_paire -

score:weights score12prime.wts”. 1000 sequences were designed by optimizing all residues

simultaneously for each protein in order to obtain a sequence profile. All positions are set as

ALLAA in example.resfile. All structures are not minimized prior to optimization for

design.

3 RESULTS

3.1 Sequence prediction

One way to measure the accuracy of design is to estimate the sequence identity between

designed sequence and the original wild-type sequence. The fragment-based approach yields

an average sequence identity of 23.6% for TR1532, which is consistent with 24% obtained

by using other databases 17. For the neural-network (NN) based approach, we can predict the

“best” sequence based on the residue type that has the highest predicted value at each

sequence position. We found that neural-network based prediction made a 7.1%

improvement from 23.6% to 30.7% over the fragment-based approach. We can also evaluate

the improvement based on top 2 predicted residue types. A correct prediction is made if one

of the top 2 predictions matches to the wild-type sequence. The improvement is 8% from

36.3% by the fragment-based approach to 44.3% by the neural-network-based approach. For

the independent test (TS500), the improvement is essentially identical at 7.1% (23.6% to

30.7%) for top 1 and 7.7% (36.1% to 43.8%) for top 2 matching, respectively.

To examine the relative importance of different features, we evaluated different

combinations of three features employed here. Because we would like to compare against

the fragment-based approach, we utilized the structure fragment profile as a base feature and

added torsion angles or the energy-based profile for comparison. We found that adding the

energy-based profile improves the sequence identity to wild-type sequences by 6% while

adding the dihedral angles adds 1.4% only. In addition, using the energy-based profile alone

can yield an average sequence identity of 26% to wild type sequences which is 2% higher

than the fragment-based profile. These results highlight the importance of nonlocal

interaction energy function in neural-network learning.

Figure 1 compares average sequence identities as a function of protein lengths (number of

amino acid residues). The bins for protein lengths are [0–100), [100–200), and etc. The last

bin contains all proteins with greater than 700 amino acid residues for TR1532 and greater
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than 600 residues for TS500. The figure reveals a consistent improvement of the neural-

network based prediction over the fragment-based prediction for different sizes of proteins.

Moreover, the result from the independent test is nearly indistinguishable from the ten-fold

cross validation, highlighting the robustness of our training method.

Because it is more difficult to design regions exposed to water, it is useful to examine how

sequence identity will change for proteins with different fractions of surface residues. A

residue is defined as on surface if its solvent accessible surface is greater than or equal to

20% of its reference value. All proteins were divided into 12 bins according to fractions of

surface residues ([0.35–0.4), [0.4, 0.45), [0.45, 0.5), [0.5, 0.55), [0.55, 0.6), [0.6, 0.65),

[0.65, 0.7), [0.7, 0.75),[0.75–0.8), [0.8–0.85), [0.85–0.9) ,[0.9,1]). Because the dataset

TS500 does not have enough data to form the bin [0.9,1], we combined those proteins to the

bin [0.85–0. 9). We started from a fraction of 0.35 because all proteins contain at least 35%

surface residues. Figure 2 displays the average sequence identity as a function of the fraction

of surface residues in a protein. Consistent with other methods 17,18, sequence identities

between predicted and actual sequences are lower for proteins with higher fraction of

surface residues. Again, there is a consistent improvement of 2–10% by the neural-network-

based method over the fragment-based method regardless the value of the fraction of the

surface residues. We further observed the consistency between the ten-fold cross validation

and the independent test.

We calculated the recovery rate and precision for each residue type. As shown in Figure 3A,

the NN-based approach improves over the fragment-based approach in 15 out of 20 residue

types for both precision and recovery rate. We noted that glycine (G) and proline (P) are the

most accurately predicted residue types because of their unique backbone conformations.

Recovery rates for R (Arg), H (His), Q (Glu), C (Cys), M (Met), and W (Trp) for both

approaches are very low. This behavior is likely due to low occurrence of residue types such

as W, M, C, and H in wild-type sequences. Figure 3B compares the occurrence of 20 amino

acid residue types in wild-type sequences with those in predicted sequences. We calculated

the Kullback–Leibler divergence of residue distribution between NN approach and wild-

type and that between fragment-based approach and wild-type sequences. The former is 0.18

and the latter is 0.31. That is, the NN approach yields a distribution much closer to that of

wild-type sequences than the fragment-based approach except for residue E (Glu) where the

NN approach over-predicts it. We found that the NN approach over-predicts E because it

often mis-predicts R and Q as E. 27.8% Q residues were predicted as E, 13.6% as K and

11% as L. 20.8% of R residues were predicted as E, 15.3% as K and 12.2% as L. The

confusion between R and Q (both under-predict) with E and K (both over-predict) are likely

due to the fact that all of them are hydrophilic residues with relatively long side-chains.

Table I further examines sequence identity in different secondary structure and in surface

regions (only independent test results shown as they are essentially same as ten-fold cross

validation). Interestingly, coil regions in protein backbones have the highest identity (30%

by fragment and 35% by neural network), compared to 26% in helical or 25% in sheet

regions. This is largely because of high occurrence of Gly and Pro in coil regions. These two

residue types were most accurately predicted because of their unique backbone

conformations. The most significant improvement of the NN approach over the fragment-
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based approach is in the core region (10.5% increase in sequence identity). Table I also

shows the fraction of hydrophilic residues. It is clear that the NN approach has a

significantly better balance of hydrophilic-hydrophobic residues on the surface of proteins in

particular (34% by the fragment-based approach, 60% by the NN approach and 65% in wild-

type sequences). However, there is no improvement in the core of proteins which have 10%

less hydrophilic residues in predicted sequences than in wild-type sequences. Here

hydrophilic residues refer to D, E, H, K, N, Q, R, S, T, and Y.

Low complexity region (e.g. multiple repeats of same residue type such as VVV) is often

associated with intrinsically disordered regions of proteins. We have employed the program

SEG39 to locate low complexity regions in predicted sequences. As Table I shows, the

fraction of residues in low complexity regions is as high as 50.8% per protein by the

fragment-based approach for the test set TS500. The NN approach cuts it to 34.5%, although

it is still significantly higher than 3% in wild-type sequences.

3.2 PSSM Prediction

So far, we have trained our NN to predict a single sequence despite the fact that there are

more than one sequence that could be fitted for a single structure. Thus, it is of interest to

know if training a NN to predict sequence profile directly, rather than a single sequence,

would lead to an improved result. To do this, we use the Position Specific Substitute Matrix

(PSSM) generated from PSIBLAST38 for training and testing the NN approach. The PSSM

is normalized to −1 to 1. We define a PSSM consensus sequence based on the most frequent

residue from PSSM at each sequence position.

Table II compares sequence identities between consensus sequences from PSSM and

predicted consensus sequences by the fragment-based approach, the NN trained by single

sequence and the NN trained by PSSM. Interestingly, the NN trained by PSSM is similar to

the NN trained by a single sequence when judged by the sequence identity to the PSSM

consensus sequence (26.6% versus 26.1% for TR1532 and 26.3% versus 26.7% for TS500

for top 1). Improvement on the mean square error (MSE) is greater because the NN trained

by PSSM was directly optimized for MSE. The difference in conserved regions between NN

(single sequence) and NN (PSSM) is also small. For example, the sequence identity to the

consensus sequence in the conserved regions (PSSM≥7) is 31.8% by single-sequence trained

NN (single sequence) and 32.4% by PSSM-trained NN.

We compared the fractions of hydrophilic residues in PSSM consensus sequences and in

wild-type sequences and found that they are quite similar (28.4% in PSSM consensus

sequence versus 27.9% in wild-type sequence in protein core and 61.3% in PSSM consensus

sequence versus 64.3% in wild-type sequences in protein surface). However, the PSSM

trained NN predicts significantly more hydrophilic residues (5%) on protein surface and 3%

more in protein core than the single-sequence trained NN. It is unclear why using PSSM for

training neural networks would significantly increase the number of hydrophilic residues on

the surface of proteins.
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3.3 Comparison to profiles generated by RosettaDesign

We compared to RosettaDesign29 for 50 proteins due to costly computational requirement

by using RosettaDesign for producing sequence profiles. As shown in Table III,

RosettaDesign deviates more from wild-type PSSM than NN-based approaches do. Its

sequence identity to wild-type sequence (based on the average sequence identity from 1000

designed sequences) is similar to the NN-based approach. Interestingly, RosettaDesign

employs significantly more hydrophilic residues in core than wild-type sequences while

fragment-based and NN-based approaches consistently under-predict hydrophilic residues in

the core. RosettaDesign, however, has similar number of residues in low complexity regions

as wild-type sequences, as it was optimized for.

4 Discussion

In this paper, we employed neural networks for predicting sequences associated with a given

protein structure. We found that a local fragment-derived sequence profile can be

significantly improved by integrating with an energy-based nonlocal feature through neural

networks. Together with backbone torsion angles, the neural-network based method SPIN

makes 7% improvement over fragment-derived sequence profiles in sequence identity to

wild-type sequences. The accuracy of sequence profiles from SPIN is comparable to

RosettaDesign in term of sequence identity to wild-type sequences and sequence variation.

The MSE between predicted and actual PSSM given by single-sequence trained SPIN is

0.198, compared to 0.223 by RosettaDesign for a dataset of 50 proteins. SPIN and

RosettaDesign also yield similar sequence identities to wild-type sequences (~30%).

The average 30% sequence identity for 50 proteins achieved by RosettaDesign is

significantly lower than 37.0% reported by Leaver-Fay et al40 despite the same scoring

function and procedures were employed. A close examination found that this discrepancy is

caused by structural relaxation prior to sequence design. Structural relaxation of crystal

structures by RosettaDesign prior to design inevitably introduces the bias toward wild-type

sequences and lead to a higher sequence identity. We found that for the 50 proteins,

relaxation prior to design yielded an average sequence identity of 35.6%. Here, we reported

the results from RosettaDesign without pre-relaxation to be consistent with the structures

employed for SPIN.

SPIN can be considered as a mean-field like approach. This is because nonlocal interaction

energy is calculated by assuming that all neighboring residues except the residue of interest

are alanine. We used alanine because it is the smallest amino acid residue except glycine.

Using a residue with a small side chain is necessary to avoid steric clashes. We do not utilize

glycine because lacking a side chain makes it different from most residue types by allowing

a much more flexible backbone conformation. Moreover, alanine has only one

conformation. Thus, there is no need for optimizing its rotameric state. In addition, alanine

is the second most widely employed amino acid residues in proteins (8.1%, only 1% behind

9.5% for leucine). The abundance level in protein structures is important for minimizing the

error caused by approximating all other positions as alanine. It should be mentioned that

using alanine for the energy-based nonlocal profile brings over-predicted alanine (19%) by

fragment-based profile to a population (7%) similar to the actual population (8%).
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The comparable accuracy between SPIN and RosettaDesign suggests that there is room for

further improving an energy-based approach. In fact, thirty percent sequence identity to

wild-type sequence reached by this neural-network method and the difficulty to improve

much beyond 30% for protein design by energy optimization 17,18 suggests a common

bottleneck facing protein design. This 30% sequence identity is in a so-called twilight

zone41 where two protein sequences may or may not have the same structure 17. That is,

going beyond 30% is necessary to significantly improve the success rate of protein design.

Typical energy functions for protein design contain, at minimum, single-body profiles and

two-body pairwise interaction terms. In contrast, SPIN relied on single body energetic terms

only. Thus, SPIN raises the bar for protein design programs that are based on more

sophisticated energetic terms. On the other hand, the results of SPIN can be effectively

employed as a single-body energy term to improve an energy function for design. In our

previous work, we found that incorporation of the fragment-derived profile into the

RosettaDesign energy function 42 can increase the sequence identity by 4–8% 17. Using this

newly improved profile (7% higher sequence identity over the fragment-based approach) as

an energy term may further improve the ability of recovering wild-type sequences.

Another potential application of this structure-derived profile is fold recognition. Several

studies have found that sequence profiles from protein design significantly improve the

ability of recognizing structural similarity in the absence of sequence similarity 26–28. This is

particularly important for recognizing new structure folds that do not have wild-type

sequence information but are generated from multiple loop permutations 43. Application to

fold recognition is feasible because SPIN is computationally efficient. It takes only 343

processor seconds to predict one sequence profile from structures, compared to 833×1000

processor seconds by RosettaDesign for predicting 1000 sequences by Intel(R) Xeon(R)

CPU E5-2670 0 @ 2.60ghz.

There is a recent trend to overcome low success rate of design by using a library of protein

sequences designed by a design program. The library is then utilized for large-scale

experimental screening of desirable properties 19–23 or for directed evolution 14,24. SPIN

provides a complementary approach to protein design programs for building a library of

sequences that are compatible to a given structure with similar accuracy at a much lower

computational cost.

One way to further improve SPIN is to improve its energy-based features. The nonlocal

energy profile was obtained by employing a DFIRE-based statistical energy function. We

employed this energy function because it has been found useful in protein structure and

binding prediction and other applications 44. Other coarse-grained statistical potentials

(backbone only) 45 can also be employed here. Obviously, DFIRE or any other statistical

energy functions were not optimized for this purpose. One might expect that our method can

be further improved if a knowledge-based potential is optimized for single-residue-type

recovery when the rest proteins are approximated as occupied by alanine residues.

One surprising finding is that using PSSM to train neural networks does not lead to any

visible improvement over the single-sequence based training. Essentially the same sequence

identity to PSSM consensus sequences is observed despite that the single-sequence method
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was not trained for predicting PSSM at all. In fact, we found that the top two amino acid

residue types predicted by single-sequence-trained NN are essentially the same as the top

two amino acid residue types by the PSSM-trained NN (87.5% in agreement). This suggests

that a neural network is capable of capturing the profile encoded in a given protein structure

regardless if it was trained or not trained by a profile. In other words, the structure of a

protein has a dominated effect on the evolution of sequences.
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Figure 1.
Average sequence identity between predicted and wild-type sequences as a function of

protein length (ten-fold cross validation on TR1532, open symbols and independent test on

TS500, filled symbols) by the fragment-based (dashed lines) and neural-network based

approaches (solid lines).
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Figure 2.
Average sequence identity between predicted and wild-type sequences as a function of the

fraction of surface residues (ten-fold cross validation on TR1532, open symbols and

independent test on TS500, filled symbols) by the fragment-based (dashed lines) and the

neural-network (NN) based approaches (solid lines).
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Figure 3.
(A) Recovery rate and precision for each amino acid residue type by fragment-based and

neural-network-based approaches as labeled. (B) Frequencies of 20 types of amino acid

residues by fragment-based and NN-based approaches are compared to those from wild-type

sequences as labeled.
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Table II

Performance of various methods measured according to sequence identity to wild-type sequences, consensus

sequences from PSSM (either top 1 match or either of the top 2 match) and mean-square error (MSE) to

PSSM on the dataset of TR1532 or TS500 (the number in parentheses).

Method
Top 1 (%)

TR1532(TS500)
Top 2 (%)

TR1532(TS500)
MSE

TR1532(TS500)

Fragment-Based 21.5 (21.5) 42.7 (41.8) 0.24 (0.24)

NN (Single) 26.6 (26.3) 51.7 (51.7) 0.21 (0.21)

NN (PSSM) 26.1 (26.7) 50.3 (50.7) 0.18 (0.18)
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Table III

Comparison of predicted sequence profiles with wild type sequence or profile for a dataset of randomly

selected 50 small proteins with sequence length between 60–200 and fraction of surface residue between 0.5–

0.8.

MSEa Seqid(C,S)b %lcc Fh(C,S)d

Fragment-based 0.230 23.4 (24.0, 20.6) 50.4 15.8, 34.6

RosettaDesign 0.223 30.0e (45.2, 23.1) 7.1 33.7, 65.2

NN (Single) 0.198 30.3 (37.6, 25.5) 28.5 18.7, 58.4

NN (PSSM) 0.177 27.3 (33.1 ,23.4) 36.1 16.9, 64.5

Wild-Type 0 100 (100, 100) 3.7 26.5, 66.2

a
The mean square error between predicted and actual PSSM.

b
The average sequence identity between predicted consensus sequence and wild-type sequence for NN methods. The seqid for RosettaDesign is

based on the average seqid of 1000 designed sequences. The numbers in parentheses are sequence identities for core and surface regions of
proteins, respectively.

c
The average fraction of low complexity residues per protein. For RosettaDesign it is based on consensus sequence of 1000 designed sequences.

d
The fraction of predicted hydrophilic residues in consensus sequences in core and surface of proteins, respectively.

e
The average sequence identity from 1000 designed sequences.
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