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High-Fidelity Simulation for Evaluating Robotic Vision Performance

John Skinner, Sourav Garg, Niko Sünderhauf, Peter Corke, Ben Upcroft, Michael Milford

Abstract—
Robotic vision, unlike computer vision, typically involves

processing a stream of images from a camera with time
varying pose operating in an environment with time varying
lighting conditions and moving objects. Repeating robotic vision
experiments under identical conditions is often impossible,
making it difficult to compare different algorithms. For machine
learning applications a critical bottleneck is the limited amount
of real world image data that can be captured and labelled for
both training and testing purposes. In this paper we investigate
the use of a photo-realistic simulation tool to address these
challenges, in three specific domains: robust place recognition,
visual SLAM and object recognition. For the first two problems
we generate images from a complex 3D environment with
systematically varying camera paths, camera viewpoints and
lighting conditions. For the first time we are able to systemati-
cally characterise the performance of these algorithms as paths
and lighting conditions change. In particular, we are able to
systematically generate varying camera viewpoint datasets that
would be difficult or impossible to generate in the real world.
We also compare algorithm results for a camera in a real
environment and a simulated camera in a simulation model
of that real environment. Finally, for the object recognition
domain, we generate labelled image data and characterise the
viewpoint dependency of a current convolution neural network
in performing object recognition. Together these results provide
a multi-domain demonstration of the beneficial properties of
using simulation to characterise and analyse a wide range of
robotic vision algorithms.

I. INTRODUCTION

Robotic vision involves processing a stream of images
from a camera attached to a robot moving through a physical
environment. The pose of the robot’s camera is controlled
and is a function of previous images. The environment
typically has a complex 3D structure with transient distractor
objects of unknown type and motion, as well as time varying
lighting conditions. An important consequence is that no
robot vision experiment can ever be exactly repeated. Nor
can the performance of different algorithms be easily com-
pared, as they are in computer vision research, since they will
be evaluated under different conditions: the robot’s initial
conditions may vary, as may the lighting, environmental
conditions and camera path.

In contrast, progress in computer vision research is driven
by datasets of images which are static, not temporally
related. There is no scope for an algorithm to request a
slightly different view of the scene, as is possible in robotic
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vision. Computer vision research has recently made giant
strides in performance through the use of deep learning,
but this approach is fundamentally limited by the amount
of representative real world image data that can be captured
and labelled for training and testing purposes.

In this paper we propose the use of a state-of-the-art
simulation tool, the Unreal Engine 4 by Epic Games, to
address these challenges. This tool, developed for gaming,
allows the creation of complex 3-dimensional worlds that
are realistically rendered. The view from a camera at any
arbitrary pose can be obtained, enabling us to mimic the
motion of a robot through the environment, and the robot
can have one or many cameras. We can also change the
illumination conditions, adjusting the position of the sun,
the cloud conditions, artificial light sources and atmospheric
conditions such as fog. Because exact ground truth is known,
camera poses and object positions estimated by robotic vision
algorithms can be compared against the simulation state
information.

The key contribution of this paper is studying the efficacy
of this new tool for robotic vision, in particular evaluating
algorithms in a systematic and repeatable manner, and its
potential for generating large amounts of synthetic data for
purposes such as training deep networks. We test our ideas
in three common robotic use cases. The first is robust place
recognition using the SeqSLAM[14] algorithm. We capture a
reference path through the world at a particular time of day
and then evaluate precision-recall performance (which we
summarise as F1 score) for different paths through the world
under a range of varying lighting conditions. The simulation
allows us to change the path and the lighting independently
– something that cannot be done when capturing image se-
quences from the real world. Secondly, for visual SLAM we
evaluate the performance of the state-of-the-art OrbSLAM
system in an environment where the ground truth is known
(the simulation model and camera path) and the camera path
and lighting conditions are varied. Thirdly, we look at object
recognition. We use the simulator to exhaustively render
camera observations of an object at every combination of
pitch and yaw in small increments. We then use this data to
evaluate the viewpoint independence of an exemplary state-
of-the-art convolutional network.

The next section presents prior work in the area and
introduces the tools that we use. Sections III - IV evaluate
our approach for robust place recognition, visual SLAM
and object recognition. Finally Section VI presents our
conclusions and future work.



Fig. 1. The custom street scene used to capture the image datasets that were used for testing the place recognition algorithms. The line of white dots shows
the baseline path followed by the camera when generating the datasets to test Sum of Absolute Differences and SeqSLAM place recognition performance.
The SLAM experiments followed a slightly different path in order to ensure a complete loop of the environment.

II. PRIOR RESEARCH

In this section we review the prior usage of simulation
in robotics research and the two primary domains of place
recognition and visual SLAM we use to investigate the utility
of simulation.

A. Simulation

The use of simulation in robotics is not in of itself a
new idea. Popular robot simulators such as Gazebo [9]
and Player/Stage [6] have existed for many years, and are
commonly used to test robot motion and control. The use of
game engines for robot simulation is also not new, with the
USARsim project based on the Unreal Tournament 3 engine
[2], and other projects using the Unity engine [10]. More
modern, photo-realistic engines such as Unity 5 or Unreal
Engine 4 (the successor to the Unreal Tournament 3 engine)
are yet to be adopted widely by the research community,
despite their significant advantages over previous generation
technology.

Most robotic vision research has used image datasets
captured from the real world. This is no doubt in part due
to a natural skepticism of ”‘simulation”’ results - the key
requirement for simulation in computer vision is that the
simulator is capable of photo-realistic rendering and lighting,
which has historically been out of reach for older platforms,
including the Unreal Tournament 3 engine or Gazebo. Unreal
Engine 4 however has powerful tools for realistic materials
and lighting [8], which make it possible to move a camera
through a simulated environment and produce images similar
to those obtained in the real world.

Unreal Engine 4 has a number of additional advantages
that make it suitable as a simulator platform for computer
vision. It is developed and maintained by Epic Games Inc,
and uses physics and modelling tools from nVidia, which

allow for complex and interactive dynamic environments.
It also allows full access to its source code, allowing a
simulation designer complete control over the simulation. It
is also free for non-commercial uses, including research -
an important property if it is to be widely adopted by the
research community.

B. Place Recognition and Visual SLAM

A place is defined as a distinct 2D or 3D location in an
environment. In robotic vision, visual places are described
using the image features which can be broadly classified
into local and global image descriptors. The most common
and efficient approaches for recognizing a place revisited
by a robot make use of Bag of Words approach with
features, for example, SURF in FAB-MAP [4] and most
recently ORB in ORB-SLAM [15] etc. Some extensions of
such methods also include building vocabulary online in an
incremental fashion or incorporating geometric constraints
between words for better performance. These methodologies
allow a wide baseline matching of places, but they are brittle
towards vast changes in appearance of the environment. On
the other hand, use of global image descriptors like BRIEF-
GIST [22] or patch-normalised downsampled images as in
SeqSLAM [14] allows matching across change in conditions,
but lacks robustness towards viewpoint variations. There are
some place recognition methods which have proven to work
well with both condition and viewpoint variations as in [11],
[13] and [17]. Some of the methods describe places in 3D
using only monocular camera by employing Structure from
Motion (SfM) techniques. This helps in sparse [15], semi-
dense [5], [20] or dense [16] reconstruction of environment
for visual SLAM and other similar applications.
The main challenges in place recognition lie in obtaining
simultaneous robustness towards both change in conditions



and viewpoint of a place. The environments with bland and
texture-less images, motion blur, and effects introduced by
camera properties like rolling shutter, granular noise etc.
make it even more challenging to develop a high performance
place recognition algorithm.
Visual SLAM systems typically comprise of a place recogni-
tion, visual odometry and mapping backend component. The
overall challenges for such systems are related to consis-
tently calculating camera motion between keyframes/frames,
relocalizing camera position when tracking fails, handling
dynamic changes in the environment, performing efficient
loop closures to get rid of scale drift in the map, and efficient
3D map construction.
A robust place recognition or SLAM system needs to be
evaluated against all the challenges mentioned above for
a complete analysis of its performance. Such an in-depth
analysis is often limited by a lack of variety in existing
experimental datasets, or bias towards choosing datasets that
work for the assumptions made by the particular algorithm.
The existence of a high fidelity, fully controllable simulated
environment provides a tool for overcoming these limitations
and biases by performing thorough performance analyses.
There have been some past attempts towards generating
simulated environments for evaluating robotic vision algo-
rithms. Handa et. al. in [7] developed 3D models for living
room and office room, and gathered camera trajectories
for benchmarking RGB-D data based visual odometry, 3D
reconstruction and SLAM algorithms. Peris et. al. in [18]
created a simulated dataset for stereo systems for different
illumination conditions. The work was inspired by the lack
of adequate ground truth, especially the disparity maps
for stereo vision. Similarly, Butler et. al. in [1] rendered
images from an animated movie Sintel to create a dataset
for evaluating optical flow methods. Ravi et. al. in [19] used
a high fidelity marine simulator to test distributed cooperative
3D exploration algorithm for AUVs. Most of the work done
in this regard has been focused on specific applications.

III. ANALYSIS OF PLACE RECOGNITION

To demonstrate the effectiveness of high-fidelity simula-
tion as an analysis tool for robotic vision, we performed an
in depth analysis of the viewpoint and time-of-day invariance
of two different place recognition algorithms, SeqSLAM [14]
and OrbSLAM [15], and the viewpoint sensitivity of a object
recognition system.

A. Simulation Setup: Unreal Engine 4

The simulation tool used in this paper was the Unreal
Engine 4, developed by Epic Games Inc. All of the test
images used were generated from the same street scene,
shown in Figure 1. The 3D models used were either sourced
for free from TurboSquid (www.turbosquid.com), with sig-
nificant manual clean up, or were produced manually. The
landscape was produced using the basic version of World-
Machine (http://www.world-machine.com). All lighting is as
computed by the Unreal Engine, using standard sky and light
assets provided with the engine.

To generate the image data, the camera was moved along
a specified path to produce images at fixed spatial intervals.
The simulator allows us to precisely repeat the same path and
introduce calculated and precise variations upon it. In order
to explore how the performance of place recognition changes
with time of day and viewpoint change, passes along the path
were generated for 5 different times of day in combination
with increasing lateral offsets or camera tilts (Figure 2).

B. Place Recognition: Sum of Absolute Differences

The first set of tests evaluated a simple Sum-of-Absolute-
Differences (SAD) based place recognition approach. While
this is not a state-of-the-art technique in and of itself, it has
formed the foundation of major place recognition algorithms
including RatSLAM [12] and SeqSLAM.

Before matching, each image is down-sampled to 64x64
pixels and reduced to greyscale, as per previous usage. The
matcher used compares each image in a query dataset to each
of those in a reference dataset, and considers the reference
image with the lowest sum of absolute difference to be a
match. The performance measure consists of the percentage
of images for which the matched reference image is taken
from a place close to the query image.

The matcher is tested using 130 different combinations of
time of day and viewpoint changes, so that we can see how
the performance falls off as both increase. The results are
summarised in Figure 3.

Figure 3 shows that SAD-based matching seems to be rel-
atively robust against small lateral offsets, with performance
degrading beyond approximately 1m of lateral shift. There
is similar falloff as time of day approaches sunrise or sunset,
and seems to be relatively symmetrical. The small number
of samples makes this change seem relatively smooth, but
it also seems plausible that it may instead change rapidly
around dawn and sunset when the lighting change has the
most effect. Resolving this is simply a matter of sampling
the distribution further.

Interestingly, matching rate falls off similarly with angle
change irrespective of the direction of change (compare the
lower two plots in Figure 3). Matching performance seems
to follow an exponential decay with angle. It may also be
worth investigating the effects of multiple orientation offsets
combined together to see how they compound. Were it the
aim of this paper, it would be relatively simple to generate
additional required sample passes to properly evaluate; for
space reasons, we leave that to future work.

C. Place Recognition: SeqSLAM

The second place recognition algorithm we investigated
was SeqSLAM, first described by Milford and Wyeth [14].
SeqSLAM is a place recognition algorithm that searches
for loop closures by attempting to match sequences of
similar images. It measures image similarity using sum of
absolute differences as analysed in the previous section, and
then searches for spatially coherent sequences of local best
matches [14].



Fig. 2. A Sample of the variation found in the datasets used for testing. The first row shows lateral offset, from left to right, images are offset are left
3.5m, 2m, 1m, 0.4m, 0.2m, Then the baseline, then offset right 0.2m, 0.4m, 1m, 2m, and 3.5m. The second row shows vertical orientation change, left to
right, images are angled are up 30◦, 15◦, 10◦, 5◦, Then the baseline, then angled down 5◦, 10◦, 15◦, and 30◦. The third row shows horizontal orientation
change, from left to right, images are angled are left 30◦, 15◦, 10◦, 5◦, Then the baseline, then angled right5◦, 10◦, 15◦, and 30◦. Finally, the lowest
row shows samples of time of day variation, from left to right, images are taken at dawn, in the morning, at noon, in the afternoon, and at sunset.

To perform the test, we generated 130 traverses across 5
times of day and 26 different viewpoint variations from the
street scene used in the other tests (Figure 2). We chose the
baseline pass at noon as the reference dataset, and compared
it to all 130 of the other datasets (including itself). For each
dataset we calculated the maximum F1 score, with the results
are summarised in Figure 4.

The first immediately obvious (and unpredicted) result
is the anomalous low performance values for a left 0.2m
offset in the morning and at sunset, and the low performance
across all times of day at a 10◦vertical orientation change.
All of these changes are sudden and extreme, so the initial
inclination is to sample around these points to see if there
is a smooth or sudden decline. This analysis reveals that
SeqSLAM performance degrades suddenly under these types
of environmental changes.

The other feature of note in the performance characteristics
is the way the F1 score tends to plateau for small translational
offsets or orientation changes. When the algorithm performs
well, it seems to do so irrespective of the time of day. Strong
condition invariance has been noted in previous work as
a particular feature of SeqSLAM [14], which these results
confirm. Note however that when the performance falls off
due to lateral viewpoint change, it becomes less condition
invariant, falling off further toward sunset and sunrise.

Using high-fidelity simulation has allowed us to explore
the behaviour of SeqSLAM more comprehensively than ever
before, and has revealed new details of its behaviour. This
process could easily be repeated for an even wider range of
environment permutations, identifying algorithm weak points
and enabling future research improvements.

D. Visual SLAM: ORB-SLAM

The SLAM algorithm tested was ORB-SLAM [15]. ORB-
SLAM is a feature-based monocular SLAM system, that
performs feature-based visual feature tracking, place recog-
nition, mapping and loop closure using ORB features.

To test OrbSLAM, we again generated a variety of im-
age datasets from the same street scene, with 5 different

times of day, a baseline pass and 20 different viewpoint
variations. Due to the mapping element of OrbSLAM, all
datasets were made to start and end in the same place. To
test the performance, each of the datasets was appended
to the noon baseline dataset (acting as a reference pass),
and camera trajectories were generated. These trajectories
were then compared with the ground truth to calculate the
Absolute Trajectory Error after aligning their scale. Results
are summarised in Figure 5.

The observed performance of ORB-SLAM is patchy, with
inconsistent errors with no clear correlation to viewpoint or
condition change. Poor performance is obtained on some of
the baseline datasets with no viewpoint change, such as the
morning pass. On the other hand, the performance of the
algorithm doesn’t seem to depend on viewpoint or time of
day at all, but on other factors not controlled in our data.

E. SeqSLAM parameter tuning

The detailed analysis we have performed can be used to
inform subsequent actions, including parameter tuning. To
demonstrate this, we again tested the performance of Sum of
Absolute Differences on the noon datasets across the range of
lateral offsets shown in Figure 2 with a variety of different
matching offset window parameters. SeqSLAM uses Sum
of Absolute Differences combined with an offset window
parameter that shifts the image pixels to achieve a better
matching image. The results of this test can be seen in Figure
6.

This data suggests that for distances up to 3.5m offset from
the reference location, it is best to use the smaller 4 pixel
window range. The use of an offset window shows clear
improvement in performance, but larger windows introduce
false positive matches.

Benefits of Simulation: The performance curves generat-
ed using simulated datasets for SeqSLAM show a peculiar
behaviour for certain parameter values. This enables us
to focus analysis of the algorithm on these unexpected
performance cases. The corresponding input parameters of
SeqSLAM which might have caused the unexpected inter-



Fig. 3. Match percentage for Sum of Absolute Differences for, from
top to bottom, lateral offset, vertical orientation change (pitch), and lateral
orientation change (yaw). Each offset was tested across several times of day.

mittent performance drop as shown in the Figure 4 could
be the Offset Matching Range and/or Patch Normalization
factor. We further analysed the performance drop for dif-
ferent times of day at 10◦ pitch. Figure 7 shows the SAD
matrix comparison with ground truth, true positives and false
positives marked. The difference matrices show that the poor
performance is being introduced by multiple aliased matches,
suggesting that this particular combination of environmental
parameters increases the aliased nature of the environment.

F. Comparison to real-world

It is important to verify that performance change in
simulation is representative of performance change in the
real world. To test this, we compared performance drop over
lateral viewpoint change using SeqSLAM for data from a
real street and for data generated from a simulation of a
similar street. The real data experiment images are shown in
Figure 8 and the performance results can be seen in Figure

Fig. 4. SeqSLAM performance over, from top to bottom, lateral offset,
vertical orientation change (pitch), and horizontal orientation change (yaw).
Each viewpoint change is captured over 5 times of day to evaluate how
performance changes over both viewpoint and condition change

9.
Unsurprisingly, observed performance is consistently bet-

ter in simulation; we ascribe this to a lack of sufficien-
t realism in the simulation, which was built simply and
quickly. However, the performance follows the same trends
in both environments, falling off smoothly as the offset
difference increases. This demonstrates that performance
results obtained in simulation obey similar trends to data
obtained from even simplistic simulations.

IV. ANALYSIS OF OBJECT RECOGNITION VIEWPOINT
DEPENDENCY

Another area of robotics research that can benefit from
high fidelity simulation is visual object recognition and
detection. Much of the recent progress in this field has
been driven by the computer vision community’s intensive
race to achieve ever improving performance on large im-



Fig. 5. ORB-SLAM average trajectory error over, from top to bottom,
lateral offset, vertical orientation change (pitch), and horizontal orientation
change (yaw). Each viewpoint change is captured for 5 different times of
day.

age recognition datasets like ImageNet [21] that is curated
from large online photo repositories. State-of-the-art deep
learning techniques now rival or surpass human performance
and often approach perfect performance on these test sets.
Rationally, related research fields such as robotics should
be the beneficiary of such significant advances, but with a
few exceptions, deep learning techniques have made little
headway into the robotics field. Perhaps the primary reason
for this disconnect is that robots operating in unpredictable,
real world environments encounter visual imagery with very
different characteristics and biases (or lack of biases) to that
seen in traditional computer vision datasets.

The high-fidelity simulation framework discussed in this
paper allows to render realistic views of arbitrary objects

Fig. 6. Sum of Absolute Difference matching rate as the maximum
offset window is increased. This result helps us choose a maximum offset
appropriate for a given lateral offset

from different viewpoints, under different lighting condition-
s, backgrounds, and occlusions. Such a dataset enables an
in-depth analysis of current object recognition approaches
to understand under which conditions and viewpoints good
performance can be expected, and to inform and improve the
training process to address the discovered challenges.

To demonstrate the potential of such analysis, we perform
a viewpoint dependency test for an exemplary state-of-the-
art convolutional network for object recognition. We use the
simulation framework to generate views of a coffee mug
object by moving the camera around the object on a sphere.
We increment pitch and yaw in 5 degrees steps while keeping
the camera pointed at the object centre. The generated images
were then classified by the vgg s convolutional network
[3]. Fig. 10 illustrates the results and reveals the object-
specific viewpoint dependency: The mug could only be
correctly identified when the handle was clearly visible,
sticking out to the side. Furthermore, even with the handle
visible, the classification failed under insufficient lighting
conditions (e.g. in the area around pitch 175, yaw 100).
Interestingly the mug can be identified correctly if seen from
above, i.e. looking inside the mug (pitch 175 degrees), but
not when observing the mug from below. Such insights can
help improve the training process of object classifiers and the
simulation framework can even be used to generate more
training data from viewpoints or under conditions that are
hard to replicate in reality.

V. DISCUSSION

The most difficult and time consuming aspect of using
high-fidelity simulation is creating the scene in the first
place. Scenes are built of 3D models and textures, which
are time consuming to create and arrange in the scene. The
more realistic the scene requirement, the more labour is
required. The creation of high quality 3D models and scenes
is the speciality of a professional 3D artist, so if a particular
problem requires large or realistic scene it may be necessary
to hire a 3D artist to construct it. It can also be extremely
difficult to maintain a consistent scale throughout the scene.
Examination of our scene in Figure 1 will reveal scale flaws,
note for instance the height of the houses relative to the width
of the road.
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Fig. 7. The SAD matrix for comparison of Noon Baseline dataset with a change in orientation of camera’s pitch. The ground truth is marked in blue
and forms the diagonal of the matrix with true positives overlaid in yellow on the diagonal. The false positives are marked in red. The simulation results
enable us to produce these specific confusion matrices, which clearly show that the abnormal performance is caused by increased environmental aliasing
under these particular conditions, shown by the off diagonal false positive matches.

Fig. 8. Images for five different traversals of a street with different lateral offsets. This real world data (top) is used to compare the trend of performance
change with change in lateral shifts as compared to the simulated data (bottom).

Fig. 9. Comparison of SeqSLAM performance falloff between simulated
and real-world environments as lateral offset increases. As is often the case,
simulated performance is better in an absolute sense, but the trend is the
same in both cases.

However, once a particular simulation has been created,
the payoff is huge as it can be used to generate arbitrary
amounts of image data. Once we constructed the street scene
and set up the required tools, capturing each dataset could be
specified programatically and takes relatively little (human)
time. Indeed, when we initially created the datasets used
to test the place recognition algorithms above, we tested
orientation change at 30◦ and 15◦ only. However, after
observing the way matching performance falls off with angle
in Figure 3, we were able to very easily add tests for 5◦ and
10◦ orientation changes as well. The very fact that we can
exactly repeat a movement through a scene with a precise
orientation change is a powerful advantage of high-fidelity
simulation.

It can in some sense be too easy to capture data. Since
capturing additional data is often simply a matter of adding
a new modifier to a path, increasing a sample range or
decreasing a sample increment, it can be very easy to
generate too much data. For instance, it may be tempting
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Fig. 10. Simulated viewpoint-dependency test for the vgg s convolutional
network [3] on a coffee mug object. Successful recognition (shaded green)
requires the mug handle to be clearly visible and the object to be well-
illuminated.

to sample a street scene such as ours at every offset up to
4m either side in 1m increments, and at each location take
all vertical and horizontal changes up to 30◦ in 5◦ intervals.
This is relatively simple to specify, but when multiplied out,
produces 9 × 13 × 13 = 1521 images per forward step
down the path. The path we used with a step distance of
1m as well requires 612 forward steps, for a total therefore
of 1965132 images. When generating datasets, we averaged
about 6 frames per second, so generating this data would
take approximately 91 hours. Further tweaking any of the
specified numbers could multiply this number even further.

Rather than sampling densely with a large initial dataset,
we recommend initial testing be done relatively sparsely
over the test domain, with the initial results used to choose
a second round of test values. For instance, given the
distribution for vertical orientation change in Figure 3, it
makes more sense to generate new test data at 2.5◦ and
at 7.5◦ than at 25◦. In the future, it should be possible to
automate this iterative testing, automatically choosing new
test datasets based on the results of previous testing.

It is also important to note that the difficulty of a particular



change to the simulation can be non-intuitive. For instance,
it is very easy in the simulation to change the location or
orientation of an object or the camera; or to change the
base colour of a flat-coloured object. For this reason, it
was very easy for us to add additional variations on the
camera path, since this simply changes the camera’s location
and orientation. On the other hand, changing the lighting is
simple manually, but for good quality lighting a lot of data
needs to be recalculated, which takes a lot of time and is not
designed to be triggered programatically. As such, it takes
longer to generate data across different times of day, and it
would be more time-consuming for us to test at an additional
time of day.

VI. CONCLUSIONS AND FUTURE WORK
In this paper we investigated the use of photo-realistic

gaming engine simulation tool to address important chal-
lenges in robotic vision across three example domains of
place recognition, SLAM and object recognition: that ex-
periments cannot be repeated exactly and that algorithms
cannot be quantitatively compared. The simulation allows
us to create high realistic images from an arbitrary camera
or cameras in a complex 3-dimensional world in which
lighting and atmospheric conditions can be fully controlled.
We showed how we can systematically evaluate standard
robotic vision algorithms (robust place recognition and visual
SLAM) in ways which have not been previously possible.
These algorithms are broadly representative of the classes
of image-based and feature-based methods. We also showed
how we can synthetically generate a large number of images
to characterise the performance of deep networks against
viewpoint change.

We have only just begun to scratch the surface of this new
approach to robotic vision. Future work needs to investigate
the effect of different levels of realism in synthetic data
on robot vision algorithms. So far our paths through the
environment are set manually rather than being driven by
a robotic vision algorithm. Integrating the game engine into
the ROS environment would enable us to run a robotic vision
algorithm in a manner analogous to a hardware-in-the-loop
simulator, with its output commanding the camera pose in
the simulator and the rendered image serving as input. We
also plan to extend our testing of simulation as a tool beyond
the three domains presented here.

Creating complex 3D worlds is time consuming and we are
investigating modern 3D reconstruction techniques to create
a first draft of a simulated world. It should also be possible
to procedurally generate many parts of the environment,
establishing rules for the generation of roads, cities, and other
environments allowing variations to be produced quickly.
Finally, many assets need only be created once, and as the
community grows, the cost of setting up and using high
fidelity simulations should progressively decrease.
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[5] Jakob Engel, Thomas Schöps, and Daniel Cremers. Lsd-slam: Large-
scale direct monocular slam. In Computer Vision–ECCV 2014, pages
834–849. Springer, 2014.

[6] Brian P Gerkey, Richard T Vaughan, and Andrew Howard. The
Player / Stage Project : Tools for Multi-Robot and Distributed Sensor
Systems. Proceedings of the International Conference on Advanced
Robotics (ICAR 2003), (Icar):317–323, 2003.

[7] Ankish Handa, Thomas Whelan, John McDonald, and Andrew J Davi-
son. A benchmark for rgb-d visual odometry, 3d reconstruction and
slam. In Robotics and automation (ICRA), 2014 IEEE international
conference on, pages 1524–1531. IEEE, 2014.

[8] Brian Karis and Epic Games. Real shading in unreal engine 4. part of
Physically Based Shading in Theory and Practice, SIGGRAPH, 2013.

[9] N. Koenig and a. Howard. Design and use paradigms for Gazebo,
an open-source multi-robot simulator. 2004 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS) (IEEE Cat.
No.04CH37566), 3:2149–2154, 2004.

[10] William A Mattingly, Dar-jen Chang, Richard Paris, Neil Smith, John
Blevins, and Ming Ouyang. Robot design using unity for computer
games and robotic simulations. In 2012 17th International Conference
on Computer Games (CGAMES), pages 56–59. IEEE, 2012.

[11] Colin McManus, Ben Upcroft, and Paul Newmann. Scene signatures:
Localised and point-less features for localisation. 2014.

[12] Michael Milford and Gordon Wyeth. Persistent navigation and
mapping using a biologically inspired slam system. The International
Journal of Robotics Research, 29(9):1131–1153, 2010.

[13] Michael J Milford and Gordon F Wyeth. Mapping a Suburb With a
Single Camera Using a Biologically Inspired SLAM System. IEEE
Transactions on Robotics, 24(5):1038–1053, 2008.

[14] Michael J. Milford and Gordon F. Wyeth. SeqSLAM: Visual route-
based navigation for sunny summer days and stormy winter nights.
Proceedings - IEEE International Conference on Robotics and Au-
tomation, pages 1643–1649, 2012.

[15] Raul Mur-Artal, JMM Montiel, and Juan D Tardos. Orb-slam:
a versatile and accurate monocular slam system. Robotics, IEEE
Transactions on, 31(5):1147–1163, 2015.

[16] Richard A. Newcombe, Steven J. Lovegrove, and Andrew J. Davison.
DTAM: Dense tracking and mapping in real-time. In 2011 Interna-
tional Conference on Computer Vision, pages 2320–2327. IEEE, nov
2011.

[17] S Niko, Sareh Shirazi, Adam Jacobson, Feras Dayoub, Edward Pep-
perell, Ben Upcroft, and Michael Milford. Place Recognition with
ConvNet Landmarks: Viewpoint-Robust, Condition-Robust, Training-
Free. Robotics Science and Systems, 2015.

[18] Martin Peris, Atsuto Maki, Sara Martull, Yoshihiro Ohkawa, and
Kazuhiro Fukui. Towards a simulation driven stereo vision system.
In Pattern Recognition (ICPR), 2012 21st International Conference
on, pages 1038–1042. IEEE, 2012.

[19] Ravi Rathnam and Andreas Birk. Initial results of cooperative auv
exploration in a high-fidelity simulation using real-world data from
monte da guia, azores. In OCEANS-Bergen, 2013 MTS/IEEE, pages
1–6. IEEE, 2013.

[20] Raul Mur-Artal and Juan D. Tardos. Probabilistic Semi-Dense
Mapping from Highly Accurate Feature-Based Monocular SLAM.
Proceedings of Robotics: Science and Systems, Rome, Italy, 2015.

[21] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev
Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla,
Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. Imagenet large
scale visual recognition challenge. International Journal of Computer
Vision, 2014.

[22] N. Sunderhauf and P. Protzel. BRIEF-Gist - Closing the loop by simple
means. In 2011 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 1234–1241. IEEE, sep 2011.


