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Abstract
Geometric	morphometrics	is	routinely	used	in	ecology	and	evolution	and	morphomet-
ric	datasets	are	increasingly	shared	among	researchers,	allowing	for	more	comprehen-
sive	studies	and	higher	statistical	power	(as	a	consequence	of	increased	sample	size).	
However,	sharing	of	morphometric	data	opens	up	the	question	of	how	much	nonbio-
logically	relevant	variation	(i.e.,	measurement	error)	is	introduced	in	the	resulting	data-
sets	and	how	this	variation	affects	analyses.	We	perform	a	set	of	analyses	based	on	an	
empirical	3D	geometric	morphometric	dataset.	In	particular,	we	quantify	the	amount	
of	error	associated	with	combining	data	from	multiple	devices	and	digitized	by	multi-
ple	operators	and	test	for	the	presence	of	bias.	We	also	extend	these	analyses	to	a	
dataset	obtained	with	a	recently	developed	automated	method,	which	does	not	re-
quire	human-	digitized	landmarks.	Further,	we	analyze	how	measurement	error	affects	
estimates	of	phylogenetic	signal	and	how	its	effect	compares	with	the	effect	of	phylo-
genetic	uncertainty.	We	show	that	measurement	error	can	be	substantial	when	com-
bining	surface	models	produced	by	different	devices	and	even	more	among	landmarks	
digitized	by	different	operators.	We	also	document	the	presence	of	small,	but	signifi-
cant,	amounts	of	nonrandom	error	(i.e.,	bias).	Measurement	error	is	heavily	reduced	by	
excluding	 landmarks	that	are	difficult	 to	digitize.	The	automated	method	we	tested	
had	low	levels	of	error,	if	used	in	combination	with	a	procedure	for	dimensionality	re-
duction.	Estimates	of	phylogenetic	signal	can	be	more	affected	by	measurement	error	
than	by	phylogenetic	uncertainty.	Our	 results	generally	highlight	 the	 importance	of	
landmark	choice	and	the	usefulness	of	estimating	measurement	error.	Further,	meas-
urement	error	may	limit	comparisons	of	estimates	of	phylogenetic	signal	across	stud-
ies	 if	 these	have	been	performed	using	different	devices	or	by	different	operators.	
Finally,	we	also	show	how	widely	held	assumptions	do	not	always	hold	true,	particu-
larly	that	measurement	error	affects	inference	more	at	a	shallower	phylogenetic	scale	
and	that	automated	methods	perform	worse	than	human	digitization.
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1  | INTRODUCTION

Geometric	 morphometrics	 has	 become	 the	 method	 of	 choice	 for	
quantitative	 morphological	 studies	 because	 it	 combines	 statistical	
rigor	 and	 ease	of	visualization	 and	 allows	 for	 a	 separation	of	 shape	
and	 size	 (Adams,	 Rohlf,	 &	 Slice,	 2004,	 2013;	 Zelditch,	 Swiderski,	 &	
Sheets,	2004).	For	 these	 reasons,	 geometric	morphometric	data	are	
frequently	generated	for	a	wide	range	of	organisms	and	their	parts	and	
to	address	a	wide	array	of	evolutionary	questions.	With	increasing	fre-
quency,	geometric	morphometric	datasets	are	also	shared	among	re-
searchers.	Data	are	shared	among	researchers	in	the	same	laboratory	
and	among	researchers	in	different	laboratories	through	private	con-
tact	or	public	repositories.	Data	are	increasingly	shared	through	either	
specialized	 (Copes,	 Lucas,	Thostenson,	Hoekstra,	&	Boyer,	 2016)	 or	
generic	(e.g.,	Dryad,	http://datadryad.org/)	public	repositories.	Indeed,	
a	search	for	“geometric	morphometrics”	in	Dryad	reveals	a	clear	trend	
of	 increase	 in	 the	number	of	deposited	morphometric	datasets	 (Fig.	
S1).	Data	are	typically	shared	in	the	form	of	landmark	coordinates	or	
as	 the	raw	data	on	which	 landmarks	are	digitized—for	example,	pic-
tures	for	2D	analyses	and	surface	models	for	3D	analyses.	The	sharing	
of	morphometric	datasets	has	many	advantages,	including	a	potential	
increase	 in	 statistical	 power	 due	 to	 increased	 sample	 sizes	 and	 the	
ability	to	tackle	broader	questions	with	datasets	which	include	more	
and	more	species.	Indeed,	it	has	recently	been	suggested	that	“crowd-
sourcing”	the	acquisition	of	geometric	morphometric	data	is	a	viable	
option	to	reduce	the	time	researchers	spend	acquiring	data	(Chang	&	
Alfaro,	2016).	However,	sharing	morphometric	datasets	also	creates	
the	situation	in	which	data	obtained	from	multiple	devices	and/or	op-
erators	are	combined.	This,	 in	 turn,	creates	 the	risk	 that	variation	 in	
the	way	data	have	been	acquired	distorts	 subsequent	 analyses	 (i.e.,	
can	 potentially	 increase	measurement	 error).	Although	 no	 empirical	
investigation	 is	 free	 from	measurement	 error,	 its	 extent	 and	 its	 ef-
fect	on	inference	are	largely	unexplored	in	geometric	morphometrics	
(Arnqvist	&	Mårtensson,	1998;	Fruciano,	2016).	In	particular,	random	

measurement	error	increases	variance	and	is	typically	thought	to	con-
found	 biological	 patterns	 by	 decreasing	 the	 “signal-	to-	noise	 ratio”	
(Arnqvist	&	Mårtensson,	1998;	Fruciano,	2016;	Yezerinac,	Lougheed,	
&	Handford,	1992).	A	reasonable—but	largely	untested—consequence	
of	this	is	that	measurement	error	should	affect	analyses	more	seriously	
when	biological	signal	 is	 relatively	weak.	For	 instance,	measurement	
error	might	be	more	serious	in	intraspecific,	as	opposed	to	interspe-
cific	data.	Another	 issue	 is	 that	nonrandom	measurement	error	 (i.e.,	
bias)	 has	 the	 potential	 to	 affect	 the	 computation	 of	means,	 so	 that	
differences	 induced	by	error	are	 incorporated	in	the	analysis	as	true	
differences	 between	 groups	 (Fruciano,	 2016).	 Here,	 we	 investigate	
the	magnitude	of	random	measurement	error	introduced	by	combin-
ing	3D	geometric	morphometric	data	obtained	with	multiple	devices	
and	 digitizing	 operators.	 Further,	 we	 ask	 whether	 combining	 these	
data	introduces	significant	bias	(i.e.,	change	in	means).	We	also	extend	
these	analyses	to	a	procedure	for	the	automated	analysis	of	surfaces	
(Pomidor,	Makedonska,	&	Slice,	2016),	which	does	not	require	human	
digitization	of	 landmarks.	Finally,	we	 investigate	 the	effects	of	mea-
surement	error	on	the	commonly	used	computation	of	phylogenetic	
signal.	In	doing	this,	we	also	evaluate	the	relative	contribution	of	mea-
surement	error	and	phylogenetic	uncertainty	to	variation	in	measured	
phylogenetic	signal.	To	also	gauge	the	effect	of	landmark	choice,	we	
perform	 landmark-	based	analyses	on	 two	sets	of	 landmarks:	a	 “full”	
and	a	“reduced”	set	 in	which	the	most	difficult	to	digitize	landmarks	
have	been	 removed.	By	 showing	how	pervasive	measurement	error	
can	be	and	which	factors	are	its	most	important	contributors,	we	hope	
to	increase	awareness	on	the	implications	of	combining	data	from	dif-
ferent	sources.

2  | MATERIALS AND METHODS

A	schematic	 representation	of	 the	workflow	of	 the	 analyses	 in	 this	
study	is	presented	in	Figure	1.

F IGURE  1 Schematic	representation	
of	the	workflow	of	the	present	study.	
Red	boxes	represent	data	acquisition	and	
preparation.	Light	blue	boxes	represent	
analyses	of	measurement	error	and	
bias.	Dark	blue	boxes	indicate	analyses	
on	the	effect	of	measurement	error	on	
phylogenetic	signal

http://datadryad.org/
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2.1 | Data acquisition and processing

We	obtained	3D	surface	reconstructions	from	skulls	(one	skull	per	spe-
cies)	of	23	macropodoid	marsupials,	 a	 group	 that	 includes	kangaroos	
and	wallabies	(Table	S1).	These	species	were	chosen	based	on	prelimi-
nary	evaluations	of	surface	reconstructions	to	comprise	a	range	of	in-
termediate	sizes	large	enough	to	obtain	good	scans	across	devices	but	
small	enough	that	differences	in	resolution	could	still	be	noticeable.	For	
each	skull,	we	obtained	surface	meshes	using	three	different	devices:	
two	laser	scanners	and	photogrammetry.	The	two	laser	scanners	were	a	
NextEngine	3D	Ultra	HD	and	a	Solutionix	Rexcan	CS+,	a	commonly	used	
laser	scanner	and	a	higher-	end	device,	respectively.	Photogrammetry	is	
a	 technique	which	allows	 surface	models	 to	be	generated	 from	pho-
tographs	 (Falkingham,	 2012)	 and	 which	 is	 getting	 increasing	 atten-
tion	 from	morphometricians	 (Aldridge,	Boyadjiev,	Capone,	DeLeon,	&	
Richtsmeier,	 2005;	Cardini,	 2014;	Muñoz-	Muñoz,	Quinto-	Sánchez,	&	
González-	José,	2016;	Weinberg	et	al.,	2009).	We	obtained	photogram-
metric	models	with	a	combination	of	a	Nikon	D5200	DSLR	camera	and	
the	 software	Agisoft	 Photoscan	 (Agisoft	 LLC,	 St.	 Petersburg,	 Russia).	
Further	details	on	devices,	settings,	and	postprocessing	can	be	found	
in	the	Appendix	S1.	In	general,	as	these	are	very	different	devices	and	
there	 are	 several	 choices	 that	 can	 influence	 the	 surface	models	 ob-
tained,	we	tried	to	make	them	comparable	using	the	time	spent	to	ob-
tain	each	model	(about	one	hour	per	scan)	as	a	criterion.

Using	the	surface	meshes	thus	obtained,	 two	operators	digitized	
independently	with	IDAV	Landmark	Editor	(Wiley	et	al.,	2005)	a	set	of	
31	type	I	landmarks	(sensu	Bookstein,	1991;	Fig.	S2),	inspired	by	a	pre-
vious	study	of	macropod	cranial	variation	(Milne	&	O’Higgins,	2002).	
These	landmarks	were	chosen	following	a	preliminary	examination	of	
surface	scans	where	they	were	clearly	visible	(please,	see	the	Appendix	
S1	for	further	details).	The	choice	of	using	only	type	I	landmarks	(i.e.,	
fixed	landmarks	on	homologous	points)	was	made	to	avoid	the	poten-
tially	confounding	effect	of	using	a	sliding	procedure	(Bookstein,	1997;	
Gunz,	Mitteroecker,	&	Bookstein,	2005)	on	semilandmarks.

For	the	subsequent	analyses,	each	focal	subset	was	subjected	to	
generalized	Procrustes	analyses	 (Rohlf	&	Slice,	1990)	 in	 the	R	pack-
age Morpho	 (Schlager,	2016).	For	 instance,	when	performing	a	com-
parison	between	Solutionix	and	NextEngine	surface	scans	digitized	by	
Operator	1,	we	combined	the	 landmarks	digitized	by	Operator	1	on	
Solutionix	and	NextEngine	scans—and	only	those—and	performed	on	
this	 combined	 focal	 subset	 a	 single	 generalized	Procrustes	 analysis.	
This	analysis	removes	variation	in	translation,	rotation,	and	scale	in	a	
set	of	landmark	configurations.	Using	generalized	Procrustes	analysis	
on	 each	 focal	 subset	 guarantees	 the	 minimum	 possible	 shape	 dis-
tances	among	landmark	configurations.	On	the	contrary,	using	a	single	
generalized	Procrustes	analysis	on	all	 the	combinations	of	operators	
and	devices	combined	prior	to	subsetting,	distances	between	individ-
ual	shapes	might	be	larger.

To	 avoid	 a	 few	 particularly	 difficult	 landmarks	 affecting	 the	 con-
clusions	of	the	study,	the	analyses	were	repeated	excluding	the	seven	
(three	bilateral	landmarks,	one	on	the	midline)	most	problematic	land-
marks.	These	were	chosen	based	on	subjective	reports	from	each	op-
erator	where	 each	 operator	 ranked	 landmarks	 in	 order	 of	 perceived	

difficulty	 and	 then	 a	 consensus	 of	 the	most	 difficult	 landmarks	was	
drawn	(see	Appendix	S1	for	details).	We	will	 refer	to	this	set	of	 land-
marks	as	“reduced.”	Unless	otherwise	specified,	all	analyses	were	per-
formed	on	the	symmetric	component	of	shape	variation	(Klingenberg,	
Barluenga,	 &	Meyer,	 2002;	 Klingenberg	 &	McIntyre,	 1998).	 Prior	 to	
specific	analyses,	preliminary	principal	component	analyses	(PCA)	were	
performed	and	we	produced	scatterplots	of	the	scores	along	the	first	
two	principal	components,	which	were	inspected	for	nonrandom	pat-
terns	of	dispersion.	Similarly,	scatterplots	of	scores	along	the	first	two	
between-	group	 principal	 components	 (species	 used	 as	 group)	 were	
used	 as	 an	 exploratory	 tool	 to	visualize	 grouping	 of	 observations	 by	
species	(as	we	used	only	one	skull	per	species,	all	variation	within	spe-
cies	 is	due	 to	operator	 and	device).	Between-	group	PCA	 (Boulesteix,	
2005)	 is	an	ordination	technique	 increasingly	used	 in	geometric	mor-
phometrics	 (Firmat,	 Schliewen,	 Losseau,	 &	 Alibert,	 2012;	 Franchini,	
Colangelo,	Meyer,	&	Fruciano,	2016;	Franchini	 et	al.,	 2014;	Fruciano,	
Franchini,	Raffini,	Fan,	&	Meyer,	2016;	Fruciano,	Pappalardo,	Tigano,	&	
Ferrito,	2014;	Schmieder,	Benítez,	Borissov,	&	Fruciano,	2015),	as	the	
ordinations	do	not	exaggerate	the	extent	of	separation	between	groups,	
which	is	one	of	the	typical	drawbacks	of	the	commonly	used	scatter-
plots	of	canonical	variate	scores	(Mitteroecker	&	Bookstein,	2011).

2.2 | Levels of measurement error in landmark data

The	relative	amount	of	measurement	error	on	the	datasets	 (full	and	
reduced	configurations	of	landmarks,	including	all	the	operator/device	
combinations	or	only	some	of	them)	was	measured	using	Procrustes	
ANOVA	(Klingenberg	&	McIntyre,	1998;	Klingenberg	et	al.,	2002)	in	
MorphoJ	(Klingenberg,	2011).	This	approach	partitions	the	total	vari-
ation	in	aligned	landmark	coordinates	(i.e.,	Procrustes	residuals)	 into	
terms,	allowing	us	to	gauge	the	impact	of	variation	among	devices	and	
operators	 relative	 to	biological	variation	among	 individuals	 (species)	
and	directional	 and	 fluctuating	 asymmetry.	We	also	used	 the	mean	
squares	obtained	 from	the	Procrustes	ANOVA	 (in	 this	case	only	on	
the	symmetric	component	of	shape	and	using	the	“Individual”	term	as	
unique	predictor)	to	compute	an	analogue	of	the	intraclass	correlation	
coefficient	(also	called	“repeatability”;	Arnqvist	&	Mårtensson,	1998),	
as	described	in	Fruciano	(2016).

2.3 | Testing for bias in landmark data

Whether	landmark	data	contain	significant	bias	(i.e.,	nonrandom	error)	
is	a	question	distinct	from	how	much	variation	is	attributable	to	meas-
urement	error.	Bias	would	be	expected	if	systematic	differences	ex-
isted	between	devices	or	users.	The	question	of	whether	significant	
bias	is	present	can	then	be	rephrased	to	ask	whether	a	certain	treat-
ment	 (e.g.,	 use	of	different	device	or	operator)	 induces	a	 change	 in	
mean.	We	 investigated	 this	question	with	a	series	of	pairwise	com-
parisons	among	surfaces	digitized	by	 the	same	operator	 (to	 test	 for	
bias	due	to	device)	and	surfaces	from	the	same	device	but	digitized	
by	 the	 two	operators	 (to	 test	 for	 bias	 due	 to	operator	 digitization).	
We	 repeated	 this	 analysis	 using	 the	 dataset	with	 all	 the	 landmarks	
and	the	dataset	with	a	reduced	number	of	landmarks.	To	test	the	null	
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hypothesis	of	no	difference	in	mean	shape	across	repeated	measures,	
we	used	a	permutation	test	(1000	random	permutations),	permuting	
within	subjects	(see	Appendix	S1	for	further	information).

2.4 | Use of automated methods of surface analysis

Recently,	 various	 methods	 that	 hold	 promise	 for	 decreasing	 the	
time	necessary	 in	 acquiring	data	have	been	proposed.	 In	particular,	
Pomidor	et	al.	 (2016)	have	proposed	a	new	method	 to	obtain	 from	
surface	scans/models	an	analogue	of	Procrustes	distance	and	perform	
superimpositions	on	a	set	of	surfaces.	This	method	has	been	 imple-
mented	in	the	GPSA	software	(Pomidor	et	al.,	2016),	which	outputs	a	
set	of	principal	coordinate	scores	obtained	through	principal	coordi-
nate	analysis	of	the	set	of	distances	among	surface	models.

Here,	we	use	this	method	on	our	set	of	scans	from	three	differ-
ent	devices.	To	study	how	data	acquired	automatically	from	surfaces	
was	affected	by	variation	due	to	the	device	used,	we	computed	the	
amount	 of	measurement	 error	 (as	 repeatability)	 and	 tested	 for	 bias	
as	described	above	for	 landmark	data.	We	applied	these	analyses	to	
the	full	set	of	principal	coordinate	scores	obtained	from	the	software	
GPSA	and	using	a	subset	of	principal	coordinate	scores,	as	determined	
using	a	dimensionality	reduction	approach.	The	dimensionality	reduc-
tion	was	based	on	the	observed	explained	variance	of	nonzero	princi-
pal	coordinates	and	the	variance	expected	under	a	broken	stick	model	
(see	Appendix	S1	for	details).

2.5 | Measurement error and phylogenetic signal

As	a	statistic	to	quantify	and	test	for	phylogenetic	signal	we	use	Adams’	
KMULT	 (Adams,	2014),	a	 recently	proposed	measure	of	phylogenetic	
signal	 which	 consists	 of	 a	 generalization	 of	 Blomberg’s	 K	 statistic	
(Blomberg,	Garland,	&	Ives,	2003)	to	multivariate	data.	As	a	reference	

phylogeny,	we	inferred	a	dated	phylogeny	based	on	a	33767-	base	pair	
alignment	of	DNA	sequences	for	57	species	(which	we	then	pruned	
to	match	 our	morphometric	 data	 as	 appropriate)	 and	 a	 set	 of	 four	
node	 calibrations	 using	 a	 relaxed	molecular	 clock	 (Drummond,	 Ho,	
Phillips,	&	Rambaut,	2006)	in	BEAST	1.8.3	(Drummond,	Suchard,	Xie,	
&	Rambaut,	2012).	 In	BEAST,	we	performed	 two	 independent	 runs	
of	20	million	generations,	sampled	every	2000	generations,	and	dis-
carded	the	first	20%	as	burn-	in.	Employing	this	widely	used	software	
that	integrates	molecular	dating	over	phylogenetic	uncertainty	with	a	
few	well-	supported	calibrations	reflects	our	effort	to	study	the	effect	
of	measurement	 error	 in	 a	 typical	 phylogenetic	 comparative	 study,	
with	realistic	levels	of	phylogenetic	uncertainty	(see	Appendix	S1	for	
details).

We	investigated	the	interplay	of	measurement	error	and	phylo-
genetic	signal	at	two	different	levels.	At	the	first	level,	we	computed	
KMULT	for	different	subsets	of	our	dataset	using	the	best	supported	
phylogeny	 from	 the	 posterior	 distribution	 (Figure	2,	 Fig.	 S3).	 This	
is	 the	 typical	 approach	 used	 in	 phylogenetic	 comparative	 studies.	
Specifically,	we	computed	KMULT	for	each	unique	combination	of	de-
vice	 and	 operator	 (three	 devices,	 two	 operators,	 for	 a	 total	 of	 six	
unique	combinations)	and	then	computed	the	coefficient	of	variation	
across	the	six	KMULT	estimates.	This	analysis	was	performed	on	both	
the	 full	 dataset	 and	 the	 dataset	 excluding	 problematic	 landmarks.	
The	analysis	was	repeated	for	the	dataset	comprising	all	the	species	
in	the	phylogeny	matching	our	morphometric	dataset	(Figure	2)	and	
for	four	subclades.	This	allows	us	to	verify	the	widespread	assump-
tion	(Arnqvist	&	Mårtensson,	1998;	Fruciano,	2016;	Yezerinac	et	al.,	
1992)	that,	as	the	total	variation	in	a	sample	is	reduced	(e.g.,	moving	
from	 interspecific	 to	 intraspecific	 samples	 or	moving	 to	 shallower	
phylogenetic	scales),	measurement	error	will	have	stronger	effect	on	
inference	 (as	 the	 “signal-	to-	noise	 ratio”	decreases).	 If	 this	 assump-
tion	were	met	 in	our	sample,	we	would	 find	a	 lower	coefficient	of	

F IGURE  2 Phylogenetic	tree	used	in	
analyses	of	phylogenetic	signal,	pruned	to	
match	the	most	comprehensive	dataset	
used.	Clade	A	and	Clade	B	highlight	two	of	
the	subsets	used	(see	text	and	Appendix	
S1)Aepyprymnus rufescens
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variation	in	KMULT	in	datasets	comprising	all	the	species	compared	to	
subsets.	We	extended	this	analysis	by	computing	variation	in	KMULT 
across	device/operator	combinations	for	random	subsets	of	taxa	in	
our	phylogeny.	This	was	done	by	randomly	drawing	a	fixed	number	
of	 taxa	 and	 computing	 on	 these	 taxa	 phylogenetic	 diversity	 (ex-
pressed	as	total	branch	lengths)	with	the	package	caper	(Orme	et	al.,	
2013).	 For	 each	 of	 the	 six	 combinations	 of	 operator	 and	 device,	
these	taxa	were	subjected	to	a	Procrustes	fit	and	the	phylogenetic	
signal	of	each	combination	was	computed	as	KMULT.	Finally,	the	vari-
ation	of	KMULT	across	different	combinations	of	operator	and	device	
was	expressed	as	coefficient	of	variation.	The	above	algorithm	was	
repeated	1000	times	each	for	5,	10,	and	15	taxa	and	both	landmarks	
sets	(full	and	reduced).

In	the	second	level	of	investigation,	we	incorporated	phylogenetic	
uncertainty	by	computing	KMULT	on	each	tree	of	the	posterior	distri-
bution	of	 trees	 (excluding	 the	burn-	in).	While	estimating,	 reporting,	
and	accounting	for	phylogenetic	uncertainty	is	commonplace	in	phy-
logenetics	and	phylogenetic	comparative	studies	 (Felsenstein	1985,	
Huelsenbeck	et	al.	2000),	investigations	applying	phylogenetic	com-
parative	approaches	to	geometric	morphometric	data	typically	use	a	
single	reference	tree,	thereby	disregarding	variation	due	to	phyloge-
netic	uncertainty	and	how	this	would	affect	 inference.	To	ascertain	
the	 levels	of	variation	in	KMULT	due	to	phylogenetic	uncertainty	rel-
ative	 to	variation	 in	KMULT	due	to	measurement	error	 (i.e.,	variation	
among	 devices	 and	 operators),	 we	 performed	 a	 resampling-	based	
version	of	analysis	of	variance	(see	Appendix	S1	for	details).

3  | RESULTS

Scatterplots	of	 the	 scores	 along	 the	 first	 two	principal	 components	
on	the	full	dataset	(Fig.	S4)	show	an	apparent	pattern	of	association	
between	 repeated	measures	of	 the	 same	 specimen	and	 the	 second	
principal	component.	This	pattern	disappears	in	the	dataset	reduced	

to	 easily	 recognizable	 landmarks,	where	 repeated	measurements	of	
the	same	specimens	 tend	 to	cluster	more	 tightly	 (Fig.	S4).	This	pat-
tern	is	confirmed	by	the	scatterplots	of	the	scores	along	the	first	two	
between-	group	principal	components	(Figure	3).	PCA	scatterplots	for	
residuals	from	species	means	show	some	nonrandom	patterns	associ-
ated	with	variation	among	devices	and,	even	more	clearly,	variation	
among	operators	(digitization;	Fig.	S4).

3.1 | Levels of measurement error in landmark data

In	 the	 Procrustes	 ANOVA	 of	 various	 datasets	 and	 their	 subsets	
(Tables	1,	S2),	the	levels	of	measurement	error	are	relatively	low—but	
not	trivial—when	compared	to	the	variation	among	species.	The	mean	
squares	for	the	“Device”	and	“Operator”	terms	are,	respectively,	1.7%	
and	2.1%	of	the	mean	squares	for	the	“Individual”	term	in	the	dataset	
comprising	 all	 observations	 and	 all	 landmarks	 (Table	1).	Device	 and	
operator	explain,	respectively,	5.4%	and	10.2%	of	total	variation	(as	
computed	by	dividing	the	sum	of	squares	for	each	term	by	the	total	
sum	of	squares).	This	is	also	observed	in	subsets	of	the	dataset	includ-
ing	all	the	landmarks	(Table	S2).	Variation	between	the	two	operators	
digitizing	on	the	models	obtained	by	a	single	device	(Table	S2)	accounts	
between	8.09%	 (Solutionix	 scanner)	 and	12.06%	 (NextEngine	 scan-
ner)	of	total	variation	and	the	mean	squares	for	the	term	“Operator”	is	
between	4.58%	and	7.17%	of	the	term	“Individual”	(variation	among	
species).	Variation	between	surface	models	digitized	by	the	same	op-
erator	for	the	dataset	with	all	landmarks	ranges	between	9.22%	and	
11.25%	of	 total	variation	 (Table	S2).	This	 is	 confirmed	by	 the	value	
of	repeatability	for	the	dataset	comprising	all	the	landmarks,	which	is	
0.83	in	the	full	dataset	(Table	1)	and	ranges	between	0.78	and	0.88	in	
the	various	subsets	(Table	S2).

When	compared	to	the	terms	related	to	directional	and	fluctuating	
asymmetry	 (i.e.,	 “Side”	and	 “Individual	x	Side”)	 in	 the	analysis	of	 the	
dataset	comprising	all	 landmarks,	the	terms	“Device”	and	“Operator”	
have	mean	squares	with	similar	order	of	magnitude	and	account	for	

F IGURE  3 Scatterplot	of	the	scores	along	the	first	two	between-	group	principal	components	(species	used	as	group)	for	the	dataset	
comprising	all	the	landmarks	and	a	dataset	in	which	the	most	difficult	landmarks	had	been	removed
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more	 variation	 (Table	1).	 This	 suggests	 that	 analyses	 of	 asymmetry	
could	be	unreliable.

Most	 importantly,	 simply	eliminating	 landmarks	 that	are	difficult	
to	digitize	has	substantial	impact	in	reducing	the	level	of	measurement	
error.	Indeed,	in	the	full	dataset	with	a	reduced	number	of	landmarks,	
the	terms	“Device”	and	“Operator”	account	for	2.07%	and	2.26%	of	
total	variance	and	repeatability	increases	to	0.96	(Table	1).	Similar	pro-
portions	are	obtained	for	subsets,	where	repeatability	is	0.95	or	higher	
(Table	S2).

3.2 | Testing for bias in landmark data

Our	pairwise	comparisons	of	repeated	measurements	showed	a	strik-
ing	contrast	between	comparisons	of	datasets	using	all	landmarks	and	
comparisons	of	datasets	using	a	reduced	set	of	 landmarks	 (Table	2).	
When	using	 the	dataset	with	 all	 landmarks	 and	comparing	 surfaces	

digitized	by	the	same	operator,	only	one	test	(i.e.,	between	landmarks	
digitized	by	Operator	1	on	NextEngine	and	photogrammetry	surfaces)	
is	significant.	All	the	other	comparisons,	both	of	surfaces	of	different	
devices	digitized	by	the	same	operator	and	of	different	operators	digi-
tizing	surfaces	from	the	same	device,	are	not	significant.	On	the	other	
hand,	all	 the	comparisons	using	a	 reduced	set	of	 landmarks	are	sig-
nificant,	except	the	ones	comparing	photogrammetry	and	NextEngine	
surfaces	(for	both	operators;	Table	2).

3.3 | Error and bias in automatically generated 
morphometric data

Plots	 of	 the	 first	 two	principal	 coordinate	 scores	 as	 obtained	by	
GPSA	(Fig.	S5)	reveal	a	clustering	of	repetitions	by	species	but	also	
possible	nonrandom	patterns	of	variation	associated	with	the	de-
vice	used	to	acquire	the	surface	scans.	The	Procrustes	ANOVA	on	

TABLE  1 Procrustes	ANOVAs	of	various	marsupial	cranial	datasets

Effect SS %Var MS df F p Repeatability

Full	dataset,	all	landmarks

Individual	(species) 0.965853 83.19789 0.000954 1012 65.87 <.0001 0.832

Side 0.000724 0.062351 1.81E-	05 40 1.25 .1415

Individual	×	Side 0.012751 1.098381 1.45E-	05 880 0.91 .9638

Device 0.063118 5.436964 1.6E-	05 3956 0.8 1

Operator 0.118464 10.20441 2E-	05 5934

Full	dataset,	reduced	landmarks

Individual	(species) 0.910388 94.37447 0.001182 770 66.54 <.0001 0.961

Side 0.000742 0.076948 2.47E-	05 30 1.39 .0812

Individual	×	Side 0.011728 1.215769 1.78E-	05 660 2.66 <.0001

Device 0.01996 2.069179 6.68E-	06 2990 1.37 <.0001

Operator 0.021836 2.263638 4.87E-	06 4485

SS,	sum	of	squares;	%Var,	percentage	of	variance	accounted	by	the	term	(computed	dividing	the	sum	of	squares	for	the	term	by	the	total	sum	of	squares);	
MS,	mean	squares;	df,	degrees	of	freedom;	F,	F-	statistic;	p,	p-	value	(parametric);	repeatability,	value	of	repeatability	obtained	using	the	formulas	for	the	
intraclass	correlation	coefficient	on	Procrustes	ANOVA	terms	(see	the	text	for	details).

TABLE  2 Significance	of	the	test	of	bias	for	different	subsets	of	our	marsupial	cranial	data.	The	table	reports	p-	value	based	on	a	within-	
subject	permutation	procedure	(1000	random	permutations).	For	comparisons	between	devices,	p-	values	above	the	diagonal	were	obtained	
with	landmark	sets	digitized	by	Operator	1	and	p-	values	below	the	diagonal	with	datasets	digitized	by	Operator	2.	Significant	comparisons	in	
bold

Between devices digitized by the same operator Between operators, same device

Solutionix NextEngine Photogrammetry Solutionix NextEngine Photogrammetry

All	landmarks

Solutionix – 0.11 0.32 0.25 0.12 0.09

NextEngine 0.52 – 0.04

Photogrammetry 0.19 0.17 –

Reduced	set	of	landmarks

Solutionix – <0.001 <0.001 <0.001 <0.001 <0.001

NextEngine <0.001 – 0.17

Photogrammetry <0.001 0.14 –
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the	 full	 set	 of	 principal	 coordinates	 reveals	 substantial	 variation	
due	 to	 device,	 accounting	 for	 about	 28%	 of	 total	 variance,	with	
a	 repeatability	 (as	 equivalent	of	 the	 intraclass	 correlation	 coeffi-
cient)	 of	 0.58	 (Table	3).	However,	when	 using	 only	 the	 first	 five	
principal	coordinates	(chosen	with	a	dimensionality	reduction	pro-
cedure),	variation	due	to	device	accounts	for	 less	than	5	percent	
of	total	variance	and	repeatability	increases	to	0.95.	When	testing	
for	bias,	most	of	the	pairwise	comparisons	of	the	same	skulls	ac-
quired	using	different	devices	are	significant	(i.e.,	there	is	a	varia-
tion	in	mean	shape	due	to	device;	Table	3).	However,	the	distances	
between	 skulls	 obtained	 using	 different	 devices	 are	 perceptibly	
lower	when	using	only	the	first	five	principal	coordinates	(data	not	
shown)	and	are	not	significant	 in	the	case	of	the	comparison	be-
tween	surfaces	acquired	using	the	NextEngine	scanner	and	photo-
grammetry	(Table	3).

3.4 | Measurement error and phylogenetic signal

We	 computed	 KMULT	 based	 on	 a	 single	 reference	 tree	 for	 various	
datasets	(Table	S3)	to	test	the	expectation	of	higher	variation	in	re-
sults	at	a	shallower	phylogenetic	scale.	Our	results	suggest	that	this	
expectation	 is	 not	 always	met.	 Rather,	 the	 coefficient	 of	 variation	
for	 KMULT	 across	 different	 operator/device	 combinations	 is	 almost	
always	lower	when	going	from	a	phylogenetically	more	diverse	data-
set	to	a	dataset	comprising	only	more	similar	species.	When	compar-
ing	for	the	same	set	of	species	the	coefficient	of	variation	between	
the	 full	 set	of	 landmarks	and	 the	 reduced	 set,	 the	 latter	has	 lower	
variation	(Table	S3).	 In	addition	to	this,	KMULT	tends	to	be	higher	in	
the	datasets	with	a	reduced	number	of	landmarks	compared	to	their	
counterparts	comprising	all	landmarks	(Table	S3).	Extending	the	anal-
ysis	 to	 random	subsets	of	 taxa	 fails	 to	 reveal	 any	clear	association	
between	the	variation	in	KMULT	across	operator/device	combinations	

(expressed	 as	 coefficient	 of	 variation	 in	 KMULT)	 and	 phylogenetic	
	diversity	(Figure	4).

Analyzing	 the	 values	 of	 KMULT	 obtained	 using	 the	 full	 posterior	
distribution	of	 trees	 to	 incorporate	phylogenetic	uncertainty	 further	
corroborates	 these	 results.	 In	 fact,	 for	 the	most	 comprehensive	 set	
of	landmarks,	two	distributions	of	KMULT	are	clearly	distinct	from	the	
other	distributions	but	greatly	overlap	when	excluding	the	most	diffi-
cult	landmarks	(Figure	5).	It	is	worth	noticing	that	in	some	cases,	the	
distribution	of	KMULT	changes	not	only	in	mean	but	also	in	shape.	This	
is	most	apparent	when	focusing	on	the	analyses	on	the	various	device/
operator	 combinations	 for	 the	genus	Macropus	when	using	all	 land-
marks	 (Table	 S4).	 In	 these	 subsets,	 the	 standard	 deviation	 of	 KMULT 
ranges	between	0.004	and	0.017.	More	 in	general,	95%	confidence	
intervals	for	KMULT	computed	on	the	posterior	distribution	of	trees	for	
various	subsets	(Table	S4)	are	as	narrow	as	0.015	and	as	wide	as	0.212.	
Otherwise,	computing	KMULT	on	the	posterior	distribution	of	trees	for	
various	subsets	(Table	S4)	shows	patterns	broadly	in	agreement	with	
the	 computations	of	KMULT	based	on	a	 single	 “best”	 tree	 (Table	S3).	
Indeed,	both	the	mean	and	the	median	of	KMULT are generally higher 
when	excluding	the	most	problematic	landmarks.

We	performed	ANOVAs	on	the	value	of	KMULT	for	random	subsa-
mples	of	the	distributions	to	gauge	the	relative	contribution	of	phy-
logenetic	 uncertainty	 and	 measurement	 error	 to	 variation	 in	 KMULT 
estimates.	Our	results	 (Table	S5)	quantitatively	confirm	the	observa-
tions	 on	 distributions	 of	 KMULT.	 In	 fact,	 excluding	 the	most	 difficult	
landmarks	generally	 results	 in	 a	 sharp	 increase	of	 the	proportion	of	
variance	accounted	for	by	the	term	“Tree”	(which	we	interpret	as	vari-
ation	 in	KMULT	 due	 to	 phylogenetic	 uncertainty)	 relative	 to	 the	 pro-
portion	of	variance	accounted	 for	by	 the	other	 terms	 (which	 reflect	
variation	in	KMULT	due	to	measurement	error).	However,	while	in	some	
cases	the	“Tree”	term	explains	the	clear	majority	of	variance	in	KMULT,	

TABLE  3 Results	of	analyses	of	measurement	error	on	data	automatically	acquired	using	GPSA	with	and	without	dimensionality	reduction

df SS MS Rsq F Z p Repeatability

Procrustes	ANOVA,	full	set	of	nonzero	principal	coordinates

Species 23 11394.1 495.4 0.72365 5.1235 2.1345 .001 0.58

Residuals 45 4351.1 96.69

Total 68 15745.3

Procrustes	ANOVA,	first	five	principal	coordinates

Species 23 7061.6 307.024 0.96809 59.364 2.8411 .001 0.95

Residuals 45 232.7 5.172

Total 68 7294.3

Solutionix NextEngine Photogrammetry

p-	values	for	the	pairwise	tests	of	bias

Solutionix – <0.001 <0.001

NextEngine 0.02 – 0.006

Photogrammetry <0.001 0.172 –

df,	degrees	of	freedom;	SS,	sum	of	squares;	MS,	mean	squares;	Rsq,	r	squared;	p,	p-	value;	in	the	pairwise	test	for	bias,	above	the	diagonal	test	based	on	the	
full	set	of	nonzero	principal	coordinates	and	below	the	diagonal	test	based	on	the	first	five	principal	coordinates.
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in	most	cases	variation	in	KMULT	due	to	other	terms	(i.e.,	due	to	mea-
surement	error)	is	nontrivial	(Table	S5).

4  | DISCUSSION

Here	we	have	analyzed	measurement	error	in	3D	geometric	morpho-
metrics,	with	a	focus	on	the	situation	of	combining	data	obtained	from	
different	 devices	 or	 operators.	We	have	 explored	 three	main	 areas:	
(1)	the	existence	and	the	extent	of	both	random	measurement	error	
and	bias	in	landmark-	based	geometric	morphometrics,	(2)	the	extent	
of	measurement	 error	 and	 bias	 in	 automatically	 generated	 geomet-
ric	 morphometric	 data,	 and	 (3)	 the	 sensitivity	 of	 a	 commonly	 used	

measure	 of	 phylogenetic	 signal	 to	 realistic	 levels	 of	 measurement	
error.	A	descriptive	summary	of	the	results	can	be	found	in	Table	4.

4.1 | Levels of measurement error in landmark data

Our	 results	 highlight	 the	 importance	 of	 landmark	 choice.	 Excluding	
from	the	analyses	a	few	landmarks	that	the	operators	found	harder	to	
digitize	generally	resulted	in	an	impressive	reduction	of	measurement	
error.	This	result	 is,	 in	part,	expected,	but	 it	points	out	an	important	
issue.	The	difficulty	in	digitizing	landmarks	could	depend	on	the	indi-
vidual	operator	and	on	the	samples,	so	relying	heavily	on	published	or	
existing	landmark	sets	can	produce	unwanted	levels	of	measurement	
error	if	the	new	operator	finds	the	landmarks	difficult	to	digitize.

F IGURE  4 Plots	of	the	coefficient	of	variation	of	KMULT	(across	unique	device/operator/landmark	set	combinations)	against	phylogenetic	
diversity	for	randomly	drawn	taxa	(5,	10,	15)
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It	 is	also	interesting	to	notice	that	in	our	analyses,	a	much	larger	
amount	of	variance	was	explained	by	the	operator	compared	to	 the	
device.	If	this	pattern	were	common,	this	would	mean	that—when	pro-
vided	with	the	choice—it	 is	better	to	combine	existing	surface	scans	

and	have	a	single	operator	to	digitize	landmarks	than	combining	exist-
ing	sets	of	landmarks,	even	if	obtained	from	the	same	device.	However,	
a	recent	study	on	a	small	intraspecific	sample	of	wolf	skulls	comparing	
surface	 scans	 and	 photogrammetric	 surfaces	 (Evin	 et	al.,	 2016)	 has	

F IGURE  5 Distribution	of	the	value	of	KMULT	for	subsets	(unique	device/operator/landmark	set	combinations)	computed	using	the	posterior	
distribution	of	trees	obtained	from	the	phylogenetic	analysis
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TABLE  4 Descriptive	summary	of	the	results

Analysis Results

Levels	of	error	(human-	digitized	
landmarks)

Using	all	landmarks,	measurement	error	accounts	for	about	10%	of	total	variance	(repeatability	around	0.8)
Removing	landmarks	difficult	to	digitize,	measurement	error	accounts	for	1%–4%	of	total	variance	(repeatability	
usually	>0.95)	
Effect	size	of	measurement	error	of	the	same	order	of	magnitude	as	asymmetric	components
Error	due	to	digitizing	operator	higher	than	error	due	to	device

Presence	of	bias	(human-	
digitized	landmarks)

Using	all	landmarks,	generally	no	significant	bias
Removing	landmarks	difficult	to	digitize,	bias	is	generally	significant

Levels	of	error	(automated	
method)

Using	all	the	nonzero	principal	coordinates,	error	accounts	for	almost	30%	of	variance	(repeatability	0.58)	
Performing	dimension	reduction,	error	accounts	for	less	than	5%	of	variance	(repeatability	0.95)

Presence	of	bias	(automated	
method)

Significant	bias	generally	present

Measurement	error	and	
phylogenetic	signal,	single	tree

In	some	cases,	the	value	of	KMULT	for	unique	operator/device	combinations	is	more	variable	at	a	broader	than	at	
a	shallower	phylogenetic	scale	(KMULT	differences	between	subsets	between	0.01	and	0.18).	No	clear	
association	of	phylogenetic	diversity	and	variation	in	KMULT	estimates	across	operator/device	combinations	for	
random	samples	of	taxa.	
When	reducing	measurement	error	by	eliminating	the	landmarks	which	are	hardest	to	digitize,	phylogenetic	
signal	increases

Measurement	error	and	
phylogenetic	signal,	posterior	
distribution	of	trees

When	using	all	landmarks,	typically	60%–80%	of	variance	due	to	error
When	using	the	reduced	set	of	landmarks,	70%–95%	of	variance	due	to	phylogenetic	uncertainty
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reported	the	opposite	pattern	 (higher	proportion	of	variance	due	to	
device	than	due	to	digitization).	Clearly,	in	the	more	common	case	of	
combining	 landmark	 sets	 digitized	 by	multiple	 operators	 on	 surface	
scans	obtained	from	multiple	devices,	both	sources	of	variation	will	be	
present	in	the	final	dataset.

The	error	components	of	variance	are	also	 in	 the	same	order	of	
magnitude—and	often	 larger—than	the	components	reflecting	asym-
metry	(Side	and	Individual	x	Side).	This	means	that	combining	different	
datasets	or	surfaces	for	studies	of	asymmetry	can	be	particularly	prob-
lematic.	The	idea	of	asymmetry	being	potentially	heavily	affected	by	
measurement	error	is	certainly	not	new	(Fruciano,	2016;	Klingenberg	
et	al.,	2010;	Leamy	&	Klingenberg,	2005).	However,	here	we	show	em-
pirically	that	this	is	the	case	for	the	error	due	to	variation	among	oper-
ators	and	devices.	We	imagine	that	this	pattern	may	be	quite	general,	
except	perhaps	in	cases	of	a	very	large	asymmetric	component.

4.2 | Bias in landmark data

We	show	that	bias	can	be	pervasive	and	that	significant	bias	is	often	
detected	when	appropriate	 statistical	 procedures	 are	used	 for	 test-
ing.	 This	 reinforces	 the	 suggestion	 (Fruciano,	 2016)	 that	 the	 pres-
ence	of	bias	in	geometric	morphometric	datasets	has	previously	gone	
unnoticed	either	because	of	 lack	of	 testing	or	due	 to	 inappropriate	
statistical	 procedures	 (i.e.,	 using	 permutation	 schemes	 designed	 for	
independent	observations,	as	opposed	to	permuting	within	subjects	
as	we	did).	Furthermore,	in	most	cases,	bias	only	becomes	significant	
when	 removing	 the	 landmarks	 that	 are	more	difficult	 to	 digitize.	 In	
other	words,	when	a	large	amount	of	probably	random	variation	due	
to	certain	 landmarks	 is	removed,	subtler	differences	due	to	nonran-
dom	 variation	 between	 operators	 and	 devices	 become	 apparent.	
This	 bias	 is	 unlikely	 to	 cause	 serious	 problems	 because	 it	 accounts	
for	a	small	proportion	of	variance.	However,	this	nonrandom	variation	
could	be	incorporated	in	inference	if	care	is	not	taken.	For	instance,	if	
one	combined	data	for	two	populations	of	the	same	species,	with	each	
population	digitized	by	a	different	operator	and	then	tested	for	differ-
ence	 in	mean	shape	between	the	two	populations,	 then	differences	
due	to	operator—minor	as	they	might	be—would	be	“mixed”	with	true	
biological	differences	between	populations.

4.3 | Error and bias in automatically generated 
morphometric data

Our	analyses	of	automatically	generated	morphometric	data	obtained	
with	 GPSA	 (Pomidor	 et	al.,	 2016)	 provided	 some	 surprising	 results.	
A	reasonable	assumption	is	that	automated	methods	perform	worse	
than	 data	 digitized	 by	 human	 operators.	 This	 assumption	 is	 clearly	
met	when	using	all	the	nonzero	dimensions	produced	by	GPSA	using	
a	principal	coordinate	analysis	of	distances,	which	have	poor	repeat-
ability.	However,	this	does	not	apply	when	a	dimensionality	reduction	
is	used,	with	levels	of	error	similar	to	the	ones	observed	in	the	more	
error-	free	human-	digitized	datasets.	Interestingly,	when	using	a	simi-
lar	dimensionality	 reduction	approach	on	the	 landmark	datasets,	we	
did	 not	 observe	 an	 improvement	 in	 repeatability	 (first	 five	 principal	

components	 of	 the	 full	 configuration:	 repeatability	 0.79;	 first	 four	
components	 of	 the	 reduced	 configuration:	 repeatability	 0.95;	 see	
Table	1	for	the	repeatabilities	obtained	without	dimensionality	reduc-
tion).	 In	addition	 to	 this,	 the	dimensionality	 reduction	procedure	 re-
sults	in	a	reduction	of	bias	and	lack	of	its	significance	in	one	case.	This	
suggests	that	the	method	 implemented	 in	GPSA	might	be	a	promis-
ing	alternative	to	human	landmarking	of	surface	scans	when	surfaces	
from	different	sources	are	combined,	if	used	in	combination	with	di-
mensionality	reduction	as	suggested	by	its	authors.	The	high	repeat-
ability	 of	 the	GPSA	method	when	 followed	by	 dimension	 reduction	
most	likely	comes	at	the	cost	of	substantial	loss	of	information	on	fine	
details	 of	 surfaces.	However,	 this	might	 be	 acceptable	 in	 situations	
where	 larger-	scale	 shape	variation	 is	of	 interest.	 It	 is	 also	 important	
to	note	that	the	consequences	and	effectiveness	of	dimension	reduc-
tion	might	depend	on	 the	 sample	 and	on	 the	method	of	dimension	
reduction	used.	In	current	geometric	morphometrics,	analyzing	the	full	
dimensional	(tangent)	shape	space	is	preferred	and	dimensionality	re-
duction	should	be	approached	with	caution.	It	is	also	unclear	whether	
dimensionality	reduction	has	reduced	the	measurement	error	due	to	
the	use	of	different	devices	or	variation	introduced	by	the	GPSA	pro-
cedure	itself.	Further,	it	is	worth	noting	that	these	findings	on	GPSA	
do	 not	 necessarily	 generalize	 to	 other	 methods	 for	 the	 automated	
acquisition	of	morphometric	data.	 In	 fact,	previous	studies	on	other	
automated	methods	(Gonzalez,	Barbeito-	Andrés,	D’Addona,	Bernal,	&	
Perez,	2016)	have	shown	these	can	compare	poorly	to	human-	assisted	
digitization	of	landmarks.

4.4 | Measurement error and phylogenetic signal

As	 a	 further	 aim,	 we	 set	 out	 to	 understand	 how	 variation	 due	 to	
measurement	error	affects	the	results	of	downstream	statistical	anal-
yses,	 and	 in	particular	 the	estimation	of	phylogenetic	 signal.	To	 this	
aim,	we	measured	phylogenetic	signal	as	KMULT	(Adams,	2014),	a	re-
cently	proposed—and	increasingly	popular—metric	which	generalizes	
Blomberg’s	K	(Blomberg	et	al.,	2003)	to	multivariate	data.	This	statistic	
and	its	use	in	hypothesis	testing	has	a	number	of	attractive	properties,	
including	insensitivity	to	dimensionality,	appropriate	type	I	error	rate,	
and	high	power	(Adams,	2014).	Here,	the	question	is	whether	and	to	
what	extent	the	estimation	of	phylogenetic	signal	is	affected	by	meas-
urement	error	and	how	the	variation	produced	by	measurement	error	
compares	to	other	sources	of	variation	and	uncertainty.	Phylogenetic	
uncertainty	is	an	obvious	source	of	uncertainty	in	phylogenetic	com-
parative	analyses,	but,	at	the	same	time,	it	is	often	neglected	in	geo-
metric	morphometric	studies.	Further,	we	could	also	test	empirically	
the	widely	held	assumption	of	a	stronger	effect	of	measurement	error	
on	statistical	inference	at	shallower	phylogenetic	scales.

Our	results	only	partially	conform	to	this	expectation.	In	fact,	varia-
tion	among	estimates	of	phylogenetic	signal	in	different	datasets	for	a	
single	reference	phylogeny	was	in	some	cases	lower	in	subclades	(e.g.,	
in Macropus)	than	in	the	full	dataset.	This	could	be	explained	by	mea-
surement	error,	especially	at	certain	landmarks,	accumulating	more	in	
certain	clades	than	in	others	and,	generally,	interacting	with	variation	
in	 biological	 features	 unpredictably.	The	 same	 analysis	 showed	 that	
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in	most	cases,	the	reduced	set	of	landmarks	had	higher	phylogenetic	
signal.	We	hypothesize	that	reduced	measurement	error	due	to	the	re-
moval	of	problematic	landmarks	“exposes”	more	of	the	true,	underly-
ing,	phylogenetic	signal.	Downward	biased	estimates	of	phylogenetic	
signal	due	to	unaccounted	intraspecific	variation	(whether	due	to	bi-
ological	variation	or	measurement	error)	have	also	been	supported	by	
simulations	of	univariate	traits	 (Ives,	Midford,	&	Garland,	2007).	The	
absence	 of	 a	 clear	 relationship	 between	 phylogenetic	 diversity	 and	
variation	in	estimates	of	KMULT	was	also	found	when	using	the	same	
rationale	on	random	subsets	of	taxa	in	the	phylogeny.

When	computing	KMULT	on	distributions	of	trees	so	as	to	compare	
variation	due	 to	phylogenetic	uncertainty	and	measurement	error,	a	
range	of	different	situations	occurred,	probably	reflecting	local	levels	
of	phylogenetic	uncertainty	and	error.	This	further	reinforces	sugges-
tions	that	measurement	error,	phylogenetic	uncertainty,	and	biologi-
cally	relevant	variation	can	interact	unpredictably.	The	most	frequent	
pattern,	however,	was	a	relatively	large	effect	of	measurement	error	
in	 the	 datasets	with	 all	 landmarks.	 By	 contrast,	measurement	 error	
was	reduced	with	fewer	landmarks	and	variation	due	to	phylogenetic	
uncertainty	became	dominant.	Thus,	measurement	error	 can	have	a	
substantial	impact	on	estimates	of	KMULT	but	moderate	levels	of	phy-
logenetic	uncertainty	in	both	topology	and	branch	lengths	most	often	
have	a	reduced	impact	on	KMULT.	Then,	while	KMULT	generalizes	well	to	
different	numbers	of	dimensions	and	the	main	conclusions	drawn	from	
using	KMULT	in	hypothesis	testing	are	quite	stable	(they	were	generally	
significant,	data	not	shown),	the	comparison	of	values	of	KMULT	across	
different	studies	or	datasets	could	be	affected	by	measurement	error.

4.5 | How to address measurement error? 
Strategies and conclusions

Two	nonmutually	exclusive	approaches	are	available	to	address	meas-
urement	error	when	combining	data	from	multiple	sources:	account-
ing	 for	 and	 reporting	 error.	 Discussing	 this	 at	 length	 is	 beyond	 the	
scope	 of	 this	 study	 (see	 previous	 extended	 discussions	 in	Arnqvist	
and	Mårtensson	1998	and	Fruciano	2016).	However,	random	meas-
urement	error	is	often	reduced	by	averaging	repeated	measurements	
(Arnqvist	&	Mårtensson,	1998;	Fruciano,	2016).	When	measurement	
error	 has	 precise	 directions	 in	 shape	 space	which	 can	 be	 modeled	
(even	based	on	a	subset	of	specimens	during	a	preliminary	study),	 it	
can	often	be	removed	from	the	data.	This	strategy—which	is	accom-
plished	 by	 projecting	 observations	 to	 the	 subspace	 orthogonal	 to	 a	
given	vector	 in	multivariate	space	(Gharaibeh,	2005;	Valentin,	Penin,	
Chanut,	Sévigny,	&	Rohlf,	2008)—has	been	fruitfully	used	on	empirical	
datasets	to	remove	artefactual	variation	due	to	position	of	the	head	
in	 pictures	 of	 human	 faces	 (Gharaibeh,	 2005)	 and	 body	 arching	 in	
fish	 (Franchini	et	al.,	2014;	Fruciano,	Tigano,	&	Ferrito,	2011,	2012;	
Fruciano,	 Franchini,	 Kovacova,	 et	al.,	 2016;	 Ingram,	 2015;	 Valentin	
et	al.,	2008),	as	well	as	variation	due	to	sexual	dimorphism	(Fruciano	
et	al.,	 2014).	 Similar	 procedures	 could	 also	 be	 used	 to	 estimate	 the	
amount	 of	 variation	 realistically	 attributable	 to	 measurement	 error.	
This	could	be	especially	useful	in	cases	when	measurement	error	is	col-
linear	with	biologically	relevant	variation	(i.e.,	has	the	same	direction	

in	shape	space)	and	cannot	be	removed	from	a	dataset.	In	this	case,	it	
might	be	possible	to	at	least	derive	confidence	intervals	for	estimates	
of	parameters	obtained	in	downstream	statistical	analyses.	Here,	we	
have	used	estimation	of	KMULT	on	a	sample	of	trees	from	the	Bayesian	
posterior	distribution	of	 trees	obtained	 in	phylogenetic	 inference	 to	
obtain	estimates	of	variation	of	this	statistic	due	to	phylogenetic	un-
certainty.	We	also	provide	the	R	code	for	this	 in	the	Supplementary	
Material,	 to	 facilitate	computations	of	 the	variation	due	 to	phyloge-
netic	uncertainty	similar	to	ours.	This	is	a	relatively	crude	method	to	
estimate	variation	due	to	phylogenetic	uncertainty	and	it	is	likely	that	
more	refined	approaches	will	be	developed	in	the	future.

To	conclude,	as	we	have	highlighted	that	measurement	error	can	
be	a	source	of	substantial	variation	when	combining	different	morpho-
metric	datasets	and	can	have	a	sometimes	unexpected	effect	on	pa-
rameter	estimates,	we	want	to	point	out	that	we	do	not	have	an	“all	or	
nothing”	perspective	on	measurement	error.	Estimating	measurement	
error	might	not	always	be	possible.	The	time	spent	to	estimate	mea-
surement	error	could	also	be	spent	in	generating	more	data,	thereby	
potentially	 increasing	statistical	power,	or	making	certain	 large-	scale	
analyses	simply	possible.	These	are	all	considerations	that	have	to	be	
made	 in	a	case-	by-	case	cost–benefit	analysis.	However,	 researchers	
willing	to	combine	different	datasets	should	at	least	consider	the	issue	
of	measurement	error	and	 its	potential	 impact	on	their	 inference.	 In	
most	 practical	 situations,	 the	 common	 suggestion	 of	 a	 preliminary	
study	of	measurement	error	on	a	small	subset	of	specimens	(Arnqvist	
&	Mårtensson,	1998;	Fruciano,	2016)	represents	a	good	compromise	
between	costs	and	benefits.
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