Differential methylation at MHC in CD4+ T cells is associated with multiple sclerosis independently of HLA-DRB1

Maltby, Vicki, , Sanders, Katherine, , , Scott, Rodney, & Lechner-Scott, Jeannette (2017) Differential methylation at MHC in CD4+ T cells is associated with multiple sclerosis independently of HLA-DRB1. Clinical Epigenetics, 9, Article number: 71 1-6.

[img]
Preview
Published Version (PDF 356kB)
109956.pdf.
Available under License Creative Commons Attribution 2.5.

Open access copy at publisher website

Description

Background Although many genetic variants have been associated with multiple sclerosis (MS) risk, they do not explain all the disease risk and there remains uncertainty as to how these variants contribute to disease. DNA methylation is an epigenetic mechanism that can influence gene expression and has the potential to mediate the effects of environmental factors on MS. In a previous study, we found a differentially methylation region (DMR) at MHC HLA-DRB1 that was associated within relapsing-remitting MS (RRMS) patients in CD4+ T cells. This study aimed to confirm this earlier finding in an independent RRMS cohort of treatment-naïve female patients. Methods Total genomic DNA was extracted from CD4+ T cells of 28 female RRMS and 22 age-matched healthy controls subjects. DNA was bisulfite-converted and hybridised to Illumina 450K arrays. Beta values for all CpGs were analysed using the DMPFinder function in the MINFI program, and a follow-up prioritisation process was applied to identify the most robust MS-associated DMRs. Results This study confirmed our previous findings of a hypomethylated DMR at HLA-DRB1 and a hypermethylated DMR at HLA-DRB5 in this RRMS patient cohort. In addition, we identified a large independent DMR at MHC, whereby 11 CpGs in RNF39 were hypermethylated in MS cases compared to controls (max. ∆beta = 0.19, P = 2.1 × 10−4). We did not find evidence that SNP genotype was influencing the DMR in this cohort. A smaller MHC DMR was also identified at HCG4B, and two non-MHC DMRs at PM20D1 on chr1 and ERICH1 on chr8 were also identified. Conclusions The findings from this study confirm our previous results of a DMR at HLA-DRB1 and also suggest hypermethylation in an independent MHC locus, RNF39, is associated with MS. Taken together, our results highlight the importance of epigenetic factors at the MHC locus in MS independent of treatment, age and sex. Prospective studies are now required to discern whether methylation at MHC is involved in influencing risk of disease onset or whether the disease itself has altered the methylation profile.

Impact and interest:

55 citations in Scopus
47 citations in Web of Science®
Search Google Scholar™

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

122 since deposited on 18 Aug 2017
12 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 109956
Item Type: Contribution to Journal (Journal Article)
Refereed: Yes
ORCID iD:
White, Nicoleorcid.org/0000-0002-9292-0773
Benton, Milesorcid.org/0000-0003-3442-965X
Measurements or Duration: 6 pages
DOI: 10.1186/s13148-017-0371-1
ISSN: 1868-7075
Pure ID: 33273058
Divisions: Past > Institutes > Institute of Health and Biomedical Innovation
Copyright Owner: Consult author(s) regarding copyright matters
Copyright Statement: This work is covered by copyright. Unless the document is being made available under a Creative Commons Licence, you must assume that re-use is limited to personal use and that permission from the copyright owner must be obtained for all other uses. If the document is available under a Creative Commons License (or other specified license) then refer to the Licence for details of permitted re-use. It is a condition of access that users recognise and abide by the legal requirements associated with these rights. If you believe that this work infringes copyright please provide details by email to qut.copyright@qut.edu.au
Deposited On: 18 Aug 2017 02:40
Last Modified: 11 Jul 2024 08:49