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ABSTRACT

Unique encoding of the dynamics of facial actions has po-
tential to provide a spontaneous facial expression recogni-
tion system. The most promising existing approaches rely on
deep learning of facial actions. However, current approaches
are often computationally intensive and require a great deal
of memory/processing time, and typically the temporal as-
pect of facial actions are often ignored, despite the poten-
tial wealth of information available from the spatial dynamic
movements and their temporal evolution over time from neu-
tral state to apex state. To tackle aforementioned challenges,
we propose a deep learning framework by using the 3D con-
volutional filters to extract spatio-temporal features, followed
by the LSTM network which is able to integrate the dynamic
evolution of short-duration of spatio-temporal features as an
emotion progresses from the neutral state to the apex state.
In order to reduce the redundancy of parameters and acceler-
ate the learning of the recurrent neural network, we propose
a shallow embedding layer to reduce the number of param-
eters in the LSTM by up to 98% without sacrificing recog-
nition accuracy. As the fully connected layer approximately
contains 95% of the parameters in the network, we decrease
the number of parameters in this layer before passing features
to the LSTM network, which significantly improves training
speed and enables the possibility of deploying a state of the art
deep network on real-time applications. We evaluate our pro-
posed framework on the DISFA and UNBC-McMaster Shoul-
der pain datasets.

1. INTRODUCTION

Facial expression, as a unique universal language, is the most
natural means for humans to express their internal emotional
states in any face-to-face communication. The wealth of
information present in facial motions alongside the recent
availability of massive amounts of data has increased re-
search interest in developing new approaches to model and
facilitate human-computer interaction. Recent approaches for
automatic facial expression recognition have been disrupted
by the use of Deep Neural Networks (DNN) [2, 9, 12, 11].
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Fig. 1. We propose a framework for facial action detection
using 3D DCNNs and LSTMs. Spatio-temporal features are
extracted from overlapping windows to integrate the dynamic
temporal aspects of the actions. We then apply a LSTM net-
work to discover the transitions of actions from a neutral state
to an apex state. We also propose a shallow embedding layer
before passing the last fully connected layer output to the
LSTM, resulting in much more efficient and faster learning
by the LSTM.

These networks have demonstrated impressive performance
on a wide variety of audio and vision data; however train-
ing a complex model with a huge amount of data results in
large computational costs due to the embedding of a chain of
convolutional [29] and fully connected layers to overcome a
highly non-convex optimization, often requiring the utiliza-
tion of highly optimized CPU or GPU architectures. As such,
the recognition task is typically constrained by the trade-off
between an over parameterized network and the performance
accuracy, which makes for a very slow training due to a huge
number of redundant parameters compared to other machine
learning approaches such as GMMs [28] and HMMs [1].



The increase use of deep learning approaches for real time
recognition tasks makes speed increases and efficiency gains
in the training, and particularly the evaluation stages of large
scale networks, without compromising performance, highly
desirable. Furthermore, a real time facial action detector re-
quires a highly sophisticated model to efficiently capture the
non-linearity of salient motions based on the Facial Action
Coding System (FACS) [10], which has been developed to
describe facial activities in terms of visually observable facial
muscle actions. The necessity of a complex model for such a
task heightens the need for efficiency gains within the model.

Our main contributions are as follows: we present a
framework which uses 3D convolutional deep networks to
encapsulate appearance and motion information simultane-
ously. We also detect facial actions by incorporating salient
short temporal segments into the memory units of the LSTM,
which allows the network to learn when to forget and when
to update hidden states. In addition, we utilize kernel tricks
with a random projection to reduce the number of parameters
of the LSTM network, enabling the LSTM network to learn
the discriminative features of each class of action with less
computational complexity for training, and obtain similar or
better testing performance.

2. RELATED WORKS

Automatic recognition of action units is still challenging due
to pose, illumination, shape, and texture variations. In ad-
dition, there is no quantitative definition of how action units
can appear in various complex combinations to form facial
actions [31]. Action units are typically detected by extract-
ing hand-crafted features including Gabor wavelet coeffi-
cients [35, 37, 32], Local Binary Patterns (LBP) [17, 38, 27],
Histograms of Oriented Gradients (HOG) [30, 21], scale-
invariant feature transform (SIFT) descriptors [5] and active
shape and appearance features [23, 3]; followed by training
a model using a SVM classifier. However, it is problematic
since no matter how many iterations are used to train a model,
the extracted hand-crafted features are always fixed. Very re-
cently, deep learning approaches have obtained promising
results for the recognition of action units. A deep 2D convo-
lutional framework proposed in [11] shows the capability of
deep learning in providing an abstract representation of spa-
tial information from low-level features to high level feature
for facial action unit detection. In addition, [26] proposed
a deep region network, which allows learning the activated
regions of the face independently during the training of the
network. However, the dynamic temporal aspects of facial
actions have been ignored in recent works, despite them pro-
viding a rich source of information as an action evolves over
time [33].

In addition, several recent works [13, 8] demonstrate the
significant redundancy of parameters in deep learning mod-
els. In [16], the number of parameters in the final weight
layer of the network reduced by up to 40% using a low-rank

factorization approach, which results in a drop off in training
time, without a significant loss in final recognition accuracy,
in comparison with a full-rank representation. In another
study [13], only 10% of the network parameters are learned,
while the rest of the weight values are predicted at each it-
eration based on a few learned parameters. [6, 4] proposed a
hashing approach to speed up the learning of the parameters
of the fully-connected layers of a Neural Network, which
significantly reduces the computational complexity of both
forward and backward propagation in the network. [7] also
proposed an approach that scales up the kernel tricks to be
applied on extremely large data sets using Doubly Stochas-
tic Gradients. The Network in Network architecture of [19]
achieves state of the art results on several deep learning
benchmarks by replacing the fully connected layers with
global average pooling over feature maps, which prevents
the over-fitting problem of traditional fully connected layers.
In deep fried convolutional network [36] a 2D convolutional
neural networks and Adaptive Fastfood transform [18] are
utilized to reduce the number of parameters in the fully con-
nected layers. All of aforementioned approaches demonstrate
that DCNNs contain significant redundancy, and can be sim-
plified without compromising accuracy.

3. METHODOLOGY

We use a convolutional neural network classifier for facial ac-
tion unit recognition. We first present the data preparation in
Section 3.1, and we then describe the proposed network ar-
chitecture and methodology in Section 3.2.

3.1. Pre-Processing
Prior to processing facial components, images need to be nor-
malized against variations including translation, scale, and
rotation. First, we rotate all face images to horizontal us-
ing eye corners identified from manually labelled landmarks
corresponding facial components such as the eyes, nose, and
lips. Then, all images are cropped by creating a bounding
box around the set of predefined landmarks. This region is
then expanded by 15 pixels to improve the subsequent de-
scriptor extraction, and we then resize all final facial images
into 128×96 pixels. Following the normalization, we use the
approach of [14] to centre the data by subtracting the average
image over the whole training set from each image.

3.2. Network Architecture
An input video is divided into overlapping windows of length
16 frames, with the windows overlapping by 5 frames. Then
the network takes inputs in the form of a volume of frames
(i.e. a short video clip) and predicts facial action units. Our
proposed network consists of three 3D convolution layers,
each of which is followed by a max-pooling layer. The input
dimensions to the first layer is 16 × 128 × 96. The num-
bers of filters for three convolution layers are 64, 128, 256



respectively with a filter size of 5 × 5. Then the output of
the last 3D convolutional layer is passed to a fully-connected
layer with 1024 neurons. After training the 3D convolutional
framework, the feature map is fed into our proposed shallow
embedding layer, and then as input to the LSTM with 32 hid-
den states, to learn discriminative spatio-temporal features for
estimating the class of AUs.

3.2.1. Convolutional 3D (C3D)
Architectures with volumetric convolutions have been suc-
cessfully used in video analysis [34]. Compared to 2D con-
volutional networks, a 3D convolutional network has the abil-
ity to model the temporal aspect of actions. In a 3D Con-
volutional network, convolution and pooling operations are
performed spatio-temporally while only spatial information
is extracted in a 2D convolutional network.

3.2.2. LSTM
Long Short Term Memory networks (LSTMs) [15] is one
of the best sequence learners for time-series data and shows
promising results for a large variety of problems such as
speech recognition, multiple sequence behavior recognition
and action recognition from videos [?]. LSTMs are a type
of RNN, which are able to learn long-term dependencies of
temporal information and avoids the problem that events ly-
ing far back in time tend to be forgotten. LSTMs contain a set
of memory blocks, which each contain one or more memory
cells. The salient temporal information can be remembered
over arbitrarily long periods of time through the memory cells
of the LSTM structure. The LSTM architecture consists of
three layers: an input layer, a hidden layer, and an output
layer. The number of input layer units corresponds to the
dimension of the feature vector. In our experiments, we use
LSTMs of 32 memory blocks and an output layer of one unit,
corresponding to the class of facial action.

3.2.3. Random Features Approximations
The random projection is a fast, simple approach that can be
applied to reduce the dimensionality of features in large scale
datasets. As shown in [25], the random projection converges
to the Gaussian RBF kernel, with a cost of O(nd) for opera-
tions and O(nd) for storage, where n is the number of sam-
ples and d is the number of dimensions in random space. As
such, the random projection prevents an increase in the cost of
computing a non-liner decision function as the dataset grows.

More specifically, the Kernel methods [22] guarantee that
kernels can be expressed as an inner product in the Hilbert
space:

Theorem 1 Any kernel k : x× x→ R
satisfying

∫
k(x,xT )f(x)f(xT )dxdxT ≥ 0 for all L2(x)

measurable functions f can be expanded into,

k(x,xT ) =
∑
j

λjΦj(x)Φj(x
T ) (1)

where λj > 0 and the Φj are orthonormal on L2(x).

According to [25], the continues shift-invariant kernel ex-
pressed in Eq. 1 can be approximated by randomly sampling
the λj from a data-independent distribution p(λ) and generat-
ing a lower dimensional random features. Therefore, Eq. (1)
can be expressed as

k(x,xT ) ≈
∑
j λ

n

n∑
1

Φλi
(x)Φλi

(xT ) (2)

where
λj ∼ p(λ) where p(λi) ∝ λi. (3)

and

Φλj
(x) =

1√
n
exp([Zx]j) (4)

To generate an approximation of a Gaussian RBF kernel,
k(x,xT ) = exp(−||x− xT ||2/2σ2), each sample, zi ∈ Rd,
is generated from a normal distribution N(0, σ2) and each
feature φj is a sin or cos wave varying along the direction
given by one row of Z, with varying periods. We can ap-
proximate the above expectation, and hence approximate the
kernel k(x, x′) with an inner product of stacked sin and cos
features. Therefore, we select n samples from p(w) to gen-
erate the weight vector, W = (w1, w2, ...wn)T . Then, the
inner-product of the following random features can approxi-
mate the kernel,

φrbf =

√
a

n
(cos(Wx) sin(Wx))T (5)

In practice, φrbf is the output of our proposed shallow embed-
ding layer, consisting of a linear layer, Wx, and non-liner
operations (sine and cosine), that correspond to a particular
implicit kernel function. In fact, we can implicitly approxi-
mate a squared exponential kernel by drawing the rows of W
from a Gaussian distribution and use Eq. (5) to implement
the proposed shallow embedding layer.

The random dimension for our approach was set to 14 and
8 for DISFA and UNBC-McMaster pain datasets respectively
as we could not observe any improvements by decreasing the
embedding dimensions further. Moreover, as noted in [24],
the randomised embedding dimension should not be too much
smaller than the original dimensionD to prevent a point in the
set from being mapped to the origin.

Fig. 2. Examples images UNBC-McMaster. Each frame has
a pain intensity level equal to 5 (high pain).



Fig. 3. Samples images DISFA. The intensities of 12 AUs are
encoded framewise in a 0 to 5 scale.

4. EXPERIMENTAL SETUP

4.1. Datasets

UNBC-McMaster Shoulder Pain: The UNBC-McMaster
Shoulder Pain dataset [20] contains videos of 129 patients
suffering from shoulder pain in one shoulder in two test con-
ditions. In the first, patient’s move their shoulder by them-
selves with the camera approximately frontal to start. In the
second, the shoulder is moved by a physiotherapist with the
camera approximately 70 degrees to start. In this paper, we
used 200 sequences from 25 subjects, all from the first condi-
tion where moderate head motion was common. AUs related
to pain are annotated for every frame by trained FACS coders.
Example images from the database are shown in Figure 2.
DISFA: Denver Intensity of Spontaneous Facial Actions:
The Denver Intensity of Spontaneous Facial Actions (DISFA)
database [21] (see Figure 3) includes spontaneous AUs for
27 adult subjects in which each subject has been recorded
by a stereo camera while they viewed video clips intended
to elicit spontaneous emotional expression. FACS codes and
66 points landmarks corresponding to the key-points on the
face are also provided for every frame.

Accuracy% on Disfa Dataset
AU N C1024 φ(C32) φ(C16) φ(C14) φ(C10)

1 1715 0.93 0.84 0.90 0.91 0.58
2 1436 0.94 0.89 0.92 0.91 0.54
4 4782 0.81 0.73 0.76 0.78 0.43
5 393 0.98 0.94 0.98 0.98 0.59
6 3729 0.85 0.71 0.77 0.80 0.50
9 1410 0.94 0.90 0.94 0.88 0.56
12 5902 0.55 0.59 0.63 0.73 0.53
15 1557 0.94 0.87 0.91 0.90 0.60
17 2557 0.90 0.83 0.88 0.90 0.57
20 895 0.96 0.93 0.96 0.82 0.52
25 8995 0.53 0.52 0.53 0.62 0.45
26 4799 0.81 0.64 0.73 0.74 0.58
Avg 0.74 0.68 0.72 0.76 0.54

Table 1. Average AU detection accuracy of proposed shallow
embedding layer with Different Random Projection Sizes on
DISFA dataset.

4.2. Experimental Results
We explore how well our features can approximate the exact
kernel computation. We decrease the parameters of LSTM

Accuracy% on UNBC Dataset
AU N C1024 φ(C64) φ(C32) φ(C16) φ(C8) φ(C7)

4 1074 0.95 0.84 0.90 0.91 0.94 0.94
6 5557 0.95 0.83 0.90 0.92 0.94 0.94
7 3366 0.97 0.85 0.90 0.94 0.96 0.96
9 423 0.94 0.83 0.89 0.91 0.93 0.93
10 525 0.92 0.82 0.88 0.91 0.92 0.92
12 6956 0.93 0.82 0.88 0.90 0.92 0.92
20 706 0.93 0.81 0.87 0.90 0.92 0.92
25 2433 0.93 0.82 0.86 0.91 0.93 0.93
26 2199 0.96 0.84 0.88 0.93 0.95 0.95
43 2343 0.89 0.80 0.84 0.88 0.90 0.90
Avg 0.94 0.83 0.88 0.91 0.94 0.93

Table 2. Average AU detection accuracy of proposed shallow
embedding layer with Different Random Projection Sizes on
UNBC-McMaster dataset.

network by 98% using a Random Kitchen Sink projection
from 1024 dimensions into 32, 16, 14, and 10 dimensions for
DISFA; and into 64, 32, 16, 8, and 7 dimensions for UNBC-
McMaster. We find that by decreasing the dimensions to less
than 14 for DISFA and 8 for UNBC-McMaster, performance
begins to degrade (see Table 1). However, we find that we can
achieve the best result of around 76% and 94% for AU de-
tection on DISFA and UNBC-McMaster respectively by pro-
jecting the feature map to 14 and 8 dimensions for DISFA
and UNBC-McMaster respectively. The average results are
shown in Table 1 and Table 2 over the number of videos avail-
able per action.

We also explore the processing time of the LSTM net-
work in the test/train phase when we apply the random fea-
ture approximation. We train the model with 24,150 samples
for DISFA, and 9,190 samples for UNBC McMaster. The av-
erage processing time of a batch of 32 images is shown in
Table 3, and indicates the ability of random projection to de-
crease the computational complexity of the LSTM network,
enabling it to perform on embedded devices.

Processing Time of LSTM
C1024 φ(C32) φ(C16) φ(C14)

Train (sec) 262.26 36.47 35.61 34.26
Test (sec) 0.37 0.03 0.03 0.02

Table 3. The processing time of LSTM in training and test
phase with Different Random Projection Sizes.

5. CONCLUSIONS

In this paper, we propose the use of a shadow embedding layer
in a deep learning framework which is able to provide spatio-
temporal deep features to a Long Short Temporal Memory
(LSTM) network, resulting a super-fast temporal action unit
classification approach with a high level of accuracy. The pro-
posed shallow embedding layer achieves a substantial reduc-
tion in the number of parameters without sacrificing predic-
tive performance on the DISFA dataset and the UNBC Mc-
Master pain archive.
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