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Point process models for extreme returns: Harnessing implied
volatility

Abstract

Forecasting the risk of extreme losses is an important issuein the management of financial risk.

There has been a great deal of research examining how option implied volatilities (IV) can be

used to forecast asset return volatility. However, the roleof IV in the context of predicting

extreme risk has received relatively little attention. Thepotential benefit of IV in forecasting

extreme risk is considered within a range of models beginning with the traditional GARCH based

approach, along with a number of novel point process models.Univariate models where IV is

included as an exogenous variable are considered along witha novel bivariate approach where

extreme movements in IV are treated as another point process. It is found that in the context of

forecasting Value-at-Risk, the bivariate models produce the most accurate forecasts across a wide

range of scenarios.

JEL classification:C32; C53; C58.

Keywords: Implied volatility, Hawkes process, Peaks over threshold,Point process, Extreme

events

1. Introduction

Modeling and forecasting extreme losses is an important issue in the management of financial risk

meaning that accurate estimates of risk measures such as Value-at-Risk (VaR) have attracted a

great deal of research attention. A successful model for dealing with these extreme loss events

must capture their tendency to cluster in time.

A number of approaches to deal with the clustering of events have been proposed. McNeil and

Frey (2000) develop a two stage method where GARCH models arefirst applied to model the

general time variation in volatility with extreme value theory (EVT) techniques then applied to

the residuals. Chavez-Demoulin et al. (2005) propose a novel Peaks Over Threshold (POT) ap-

proach for modelling extreme events. To deal with event clustering they employ a self-exciting

marked point process, specifically a Hawkes-POT process, where the intensity of the occurrence
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of extreme events depends on the past events and their associated size or marks. Herrera and

Schipp (2013) extend the Hawkes-POT framework of Chavez-Demoulin et al. (2005) in proposing

a duration based model to capture the clustering in extreme loss events.

While they have not been considered in this specific context,option implied volatilities (IV) have

been widely used for forecasting volatility. As the volatility of the returns on the underlying asset

price is an input into option pricing models, an expectation(risk neutral) of volatility is required

when pricing options. While IV is a risk neutral estimate, itis well known that IV indices are

negatively correlated with the level of stock market indices and are an important measure of short-

term expected risk (see, Bekaert and Wu, 2000; Wagner and Szimayer, 2004; Giot, 2005; Becker

et al., 2009; Lin and Chang, 2010; Bekaert and Hoerova, 2014,among others), and have been

found to be a useful forecast of physical spot volatility in many studies, see Poon and Granger

(2003). Blair et al. (2001) find the inclusion of IV as an exogenous variable in GARCH models to

be beneficial in terms of forecasting. While not focusing on forecasting, Becker et al. (2009) show

that IV contains useful information about future jump activity in returns, which is likely to reflect

extreme movements in prices.

Very few studies have focused on the complex extremal dependence between IV and equity returns.

Aboura and Wagner (2016) investigate the asymmetric relationship between daily S&P 500 index

returns and VIX index changes revealing a contemporaneous volatility-return tail dependence for

negative extreme events though not for positive returns. Peng and Ng (2012) analyse the cross-

market dependence between five of the most important equity markets and their corresponding

volatility indices, finding evidence of asymmetric tail dependence. Hilal et al. (2011) propose a

conditional approach for capturing extremal dependence between daily returns on VIX futures and

the S&P500. Their empirical analysis shows that VIX futuresreturns are very sensitive to stock

market downside risk.

In this paper, the analysis moves beyond the role of IV in forecasting total volatility to focus on

the link to extreme losses and addresses two main questions.

1. How are extreme shocks in an IV index and extreme events in its respective stock market

return related?

2. Can this relationship be harnessed to provide superior forecasts of extreme returns?

To address these issues, an approach utilising IV within intensity based point process models for

extreme returns is proposed. The first model treats IV as an exogenous variable influencing the in-

tensity and the size distribution of extreme events. A novelalternative view is also proposed based

on a bivariate Hawkes-POT model. Extreme movements in IV aretreated as events themselves,

with their impact on extreme events in equity returns captured through a bivariate Hawkes-POT
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model. Performance of the proposed methods will be analysedin the context of forecasting ex-

treme losses within a VaR framework. The benchmark approachfollows both the earlier forecast-

ing literature in that IV is used as an exogenous variable within the GARCH-EVT framework and

the bad environments, good environment (BEGE) model of Bekaert et al. (2015).

An empirical analysis is undertaken where forecasts of the risk of extreme returns are generated

for five major equity market indices using their associated IV indices. These forecasts are based

on GARCH-EVT, BEGE, univariate and bivariate Hawkes-POT models, and take the form of

VaR estimates at a range of levels of significance. It is foundthat GARCH based forecasts which

include IV are often inaccurate. Univariate Hawkes-POT andBEGE models where IV is treated as

an exogenous variable outperform the GARCH forecasts, though their forecasts do fail a number

of tests for VaR adequacy. The bivariate Hawkes-POT models,where the timing of past extreme

increases in IV are treated as a point process, lead to the most accurate forecasts of extreme risk in

the widest set of scenarios. The results of this paper show that while IV is beneficial for forecasting

extreme risk in equity returns, the framework within which it is used is important. The superior

approach is to treat extreme increases in IV as a point process within a bivariate model for extreme

returns.

The paper proceeds as follows. Section 2 outlines the traditional GARCH-EVT framework, the

BEGE model, and introduces the proposed univariate and bivariate Hawkes point process models.

Section 3 describes how VaR forecasts are generated and evaluated. Section 3.1 outlines the equity

market and associated IV indices. Section 4 presents in-sample estimation results for the full range

of models considered along with the results from tests of forecast accuracy. Section 5 provides

concluding comments.

2. Methodology

This section introduces the competing approaches for forecasting extreme losses in the context

of VaR predictions. The first is based on the classic GARCH approach where IV is used as

an exogenous variable. The specifications considered here are the standard GARCH model of

Bollerslev (1986), the GJR-GARCH models of Glosten et al. (1993), and the exponential GARCH

(EGARCH) of Nelson (1991). The next approach considered is the BEGE (Bad environment

good environment) model of Bekaert et al. (2015) which offers a flexible conditional distribution

to describe returns. The approach proposed here utilizes the Hawkes-POT framework introduced

in the one-dimensional case by Chavez-Demoulin et al. (2005) which has been employed in a

range of empirical applications from modeling equity risk to extreme spikes in electricity prices

(Chavez-Demoulin and McGill, 2012; Herrera, 2013; Herreraand González, 2014). Here, the
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one-dimensional approach is extended to include IV as an exogenous variable. A novel bivariate

model is also developed to incorporate the intensity of the occurrence of extreme movements in

IV. This approach will uncover potential bi-directional linkages between extreme movements in

IV and extreme losses. Results from this analysis will reveal whether using IV itself, or the inten-

sity of its extreme movements, lead to more precise prediction of the intensity and size of extreme

equity market losses.

2.1. Conditional mean and volatility models

The conditional mean of the equity market returns is specified as an Auto Regressive Moving

Average (ARMA) process

rt = µ +
m

∑
i=1

airt−i +
n

∑
j=1

b jεt− j + εt . (2.1)

Wherert denotes the return on a stock market index at timet, µ a constant,ai andb j describe the

autoregressive and moving average coefficients, respectively andεt denotes the residual term. The

residuals are defined by

εt = ηt

√
ht , ηt ∼ iid(0,1), (2.2)

whereηt is the standardized residual andht is the conditional variance. The GARCH specifications

considered for the conditional variances which include IV as an exogenous variable are

GARCH(1,1) :ht = ω +αε2
t−1+βht−1+ γIVt−1 (2.3)

GJR-GARCH(1,1) :ht = ω +αε2
t−1+δ max(0,−εt−1)

2+βht−1+ γIVt−1 (2.4)

EGARCH(1,1) : lnht = ω +αεt−1+δ (|εt−1|−E |εt−1|)+β lnht−1+ γ ln IVt−1. (2.5)

The GARCH model in Eq. (2.3) corresponds to the standard model of Bollerslev (1986), with

ω > 0, α ≥ 0, β ≥ 0 andγ ≥ 0 so that the conditional varianceht > 0. The model is stationary if

|α +β | < 1 is ensured. The GJR-GARCH specification in Eq. (2.4) allowsthe conditional vari-

ance to respond asymmetrically to the sign of past returns bymeans of the parameterδ . Sufficient

conditions forht > 0 areω > 0, α + δ ≥ 0, β ≥ 0 andγ ≥ 0. Finally, the EGARCH specifica-

tion in Eq. (2.5), allows for asymmetries in volatility ifδ 6= 0 while leverage exists ifδ < 0 and

α < δ < −α. To be consistent with the specification of the conditional variance in Eq. (2.5),

IV indices are included in logarithmic form. These three conditional volatility specifications are
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estimated assuming a Skew Student-t distribution.1

The BEGE model of Bekaert et al. (2015) describes the innovations in returns,

εt = σpωp,t −σnωn,t , where

ωp,t ∼ Γ̃(pt ,1), and

ωn,t ∼ Γ̃(nt ,1) (2.6)

as a linear combination of two component shocks, whereΓ̃(k,θ) is a centred gamma distribution

with shape and scale parameters,k andθ respectively. The two gamma distributions are assumed

to have a constant scale, but time-varying shape parameters, pt andnt for the good and bad envi-

ronments respectively. The shape parameters evolve according to a GJR-GARCH like structure

pt = p0+ρppt−1+
σ+

p

2σ2
p

ε2
t Iεt−1≥0+

σ−
p

2σ2
p
(1− Iεt−1≥0),

nt = n0+ρnnt−1+
σ+

n

2σ2
n

ε2
t Iεt−1≥0+

σ−
n

2σ2
n
(1− Iεt−1≥0). (2.7)

A version of this model that includes lagged IV as an exogenous variable, with a common coeffi-

cient in both positive and negative components (denoted below as BEGE+IV) is also estimated.

2.2. Conditional intensity models

Marked point processes (MPP) are stochastic processes thatcouple the temporally clustered arrival

times of extreme events, with a set of random variables, the so-called marks associated with each

event. In EVT, the interest lies in the intensity of extreme event occurrences as well as the distri-

bution of the exceedences over a pre-determined large or extreme threshold. This paper develops

two approaches for investigating the role of IV in explaining the intensity and size of extreme loss

events. In doing so, the nature of the extreme loss-IV relationship will be revealed.

2.2.1. Univariate Hawkes-POT model

The first point process approach is based on a univariate MPP,specifically the Hawkes-POT

model introduced by Chavez-Demoulin et al. (2005) and applied by Chavez-Demoulin and McGill

(2012). The Hawkes-POT model is generalised here by using the IV index as a covariate in the

conditional intensity process for extreme loss events.

1In a preliminary version of the paper both a conditional Normal, and symmetric studentt distribution were also
considered. However assuming a skewed studentt conditional distribution provides a superior fit to the data. Here the
skewness is incorporated into the t-distribution using themethod of Fernandez and Steel (1998).
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In this context, let{(Xt ,Yt)}t≥1 be a vector of random variables that represent the log-returns of

a stock market index and the associated IV derived from options on that index. For ease of sub-

sequent notation, assume returns are multiplied by−1. To determine the conditional intensity of

extreme losses, return events whose size exceeds a pre-defined high thresholdu> 0 are the focus.

This will define a finite subset of observations{(ti,wi ,zi)}i≥1, whereti ∈ R corresponds to occur-

rence times,wi ∈R+ the magnitude of exceedences (the marks), andzi ∈ R+ a covariate based on

the IV index, withwi := Xti −u, andzi :=Yti . A general MPPN(t) is proposed satisfying the usual

conditions of right-continuityN (t) := N(0, t] = ∑i≥11{ti ≤ t, wi = w, zi = z} with past history or

natural filtrationHt = {(ti,wi ,zi) ∀i : ti < t} that includes times, marks and the covariates. Ac-

cording to the standard definition of an MPP, it may be characterized by means of its conditional

intensity function

λ (t,w | Ht) = λg(t | Ht)g(w | Ht , t) , (2.8)

which, broadly speaking, describes the probability of observing a new event in the next instant of

time conditional on the history of the process.

There are two components to the intensity of the MPP, a groundprocessNg(t) := ∑i≥11{ti ≤ t}
with conditional intensityλg(t | Ht) characterizing the rate of the extreme events over time, and

the process for the marks, whose density functiong(w | Ht , t) is conditional on the history of

the process and timet. Observe that the covariatezi does not directly enter into the definition of

the conditional intensity in Eq. (2.8) even though it appears to be another mark in addition towi

contained in the available information set,Ht. Instead, the covariatezi provides extra information

to explain the behaviour of the process without being directly involved in the determination of

likelihood in this stochastic process.

The conditional intensityλg(t | Ht) is characterized by the branching structure of a Hawkes pro-

cess with an exponential decay function

λg(t | Ht) = ν +ϑ ∑
i:ti<t

eψwi+ρzi φe−φ(t−ti), (2.9)

whereν ≥ 0 is the intensity of exogenous events independent of the internal historyHt. The

branching coefficientϑ ≥ 0 describes the frequency with which new extreme events arrive. The

parametersψ ∈ R andρ ∈ R determine the contribution of the markwi and covariatezi to the

conditional intensity of the ground process, andφ > 0 is a decay parameter. The exponential func-

tions inside the sum define the impact functionf (w,z) = eψw+ρz, and the kernel decay function

h(t − ti) = φe−φ(t−ti) which controls how offspring are generated by first order extreme events rep-

resenting the main source of clustering in the model. This process is described as self-exciting as
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the occurrence times and marks of past extreme events may make the occurrence of future extreme

events more probable through the dependance on the history,Ht .

To estimate risk measures such as VaR, an assumption regarding the probability distribution func-

tion of the most extreme return events,wi conditional on the event thatXti exceeds the threshold

u > 0 must be made. Motivated by the Pickands–Balkema–de Haan’stheorem,2 the extreme

losses are assumed to follow a conditional Generalized Pareto Distribution (GPD) with a density

function given by

g(w | Ht , t) =





1
κ(w|Ht ,t)

(
1+ξ w

κ(w|Ht ,t)

)−1/ξ−1
, ξ 6= 0

1
κ(w|Ht ,t)

exp
(
− w

κ(w|Ht ,t)

)
, ξ = 0,

, (2.10)

whereξ is the shape parameter andκ (w | Ht , t) is a scale parameter specified as a self-exciting

function of the arrival times of new extreme events and theirsizes

κ (w | Ht, t) = κ0+κ1 ∑
i:ti<t

eψwi+ρzi φe−φ(t−ti).

Under this specification,κ0 ≥ 0 represents the baseline level for the scale, whileκ1 ≥ 0 is an

impact parameter related to the influence of new extreme event arrivals. The shape parameter is

assumed to be constant through time due to the sparsity of events in the tail of the distribution

which makes estimation of time-varying scale challenging (as evident in Chavez-Demoulin et al.,

2005; Santos and Alves, 2012; Herrera, 2013).

The log-likelihood for the univariate Hawkes-POT model given a set of events{(ti,wi ,zi)}N(T)
i=1 observed

in the space(0,T]× [u,∞) is obtained combining the conditional intensity of Eq.(2.8) and the den-

sity of the marks from Eq. (2.10) as follows

ℓ =
N(T)

∑
i=1

lnλg(ti | Hti)−
� T

0
λg(s | Hs)ds+

N(T)

∑
i=1

lng(wi | Hti , ti) (2.11)

=
N(T)

∑
i=1

ln

(
ν +ϑ ∑

i:ti<T
eψwi+ρzi φe−φ(T−ti)

)
−
{

νT +ϑ ∑
i:ti<T

eψwi+ρzi

(
1−e−φ(T−ti)

)}

−
[
(1/ξ +1)

N(T)

∑
i=1

{lnκ (wi | Hti , ti)+ ln(1+ξwi/κ (wi | Hti , ti))}
]

2See Pickands (1975) and Balkema and De Haan (1974).
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assuming for ease of the exposition thatξ 6= 0. The resulting estimates are consistent, asymptoti-

cally normal and efficient, with standard errors obtained via the Fisher information matrix (Ogata,

1978).

2.2.2. Bivariate Hawkes-POT model

The novel bivariate approach proposed here moves beyond simply including IV as an exogenous

covariate. Extreme increases in IV are treated as a second MPP and represent the second dimension

in a bivariate model in addition to the extreme stock market losses. In this bivariate model, the

marks influence the evolution of its respective ground process and vice versa, offering a framework

to examine the impact of IV events on extreme stock market losses in terms of both the intensity

and size of events.

The bivariate MPP is defined as a vector of point processesN(t) : {N1(t) ,N2(t)}, where the

first point processN1(t) is defined through the pairs
{(

t1
i ,wi

)}
i≥1; the subset of extreme events

in the negative log-returns of the stock market occurring attime t1
i over a high thresholdu1 > 0,

with wi := Xt1
i
−u1. Similarly, the second point processN2(t) is defined by the pairs of events{(

t2
i ,zi
)}

i≥1with zi :=Yt2
i
−u2, which also characterizes the subset of extreme events occurring in

IV at time t2
i over a high thresholdu2 > 0. Ht =

{(
t1
i ,wi

)
,
(

t2
j ,zj

)
∀i, j : t1

i < t ∧ t2
j < t

}
denotes

the combined history over all times and marks. This bivariate MPP includes a bivariate ground

processNg
k (t) := ∑i≥11

{
tk
i ≤ t

}
with conditional intensities

λ 1
g (t | Ht) = ν1+ϑ11 ∑

i:t1
i <t

eψ1wi φ1e−φ1(t−t1
i ) +ϑ12 ∑

i:t2
i <t

eρ1zi φ2e−φ2(t−t2
i ) (2.12)

λ 2
g (t | Ht) = ν2+ϑ21 ∑

i:t1
i <t

eψ2wi φ1e−φ1(t−t1
i ) +ϑ22 ∑

i:t2
i <t

eρ2zi φ2e−φ2(t−t2
i )

whereνk ≥ 0 are the exogenous intensities, the branching coefficientsϑ jk ≥ 0 describe the influ-

ence that dimensionk will have on dimensionj, the parametersψk ≥ 0 andρk ≥ 0 determine the

contribution of the size of the extremes occurring at the returns and IV to the conditional intensity

of the ground process, andφk > 0 are again the decay parameters3. Thus, the impact functions

fk(w) = eψkw and fk(z) = eρkz, and the exponential decay kernel functionhk
(
t − tk

i

)
= φke

−φk(t−tk
i )

account for mutual and cross excitation.

3Assuming the same rate of decayφ1 andφ2 in both dimensions, return and IV events, is common practicein such
models see for instance Embrechts et al. (2011), Aït-Sahalia et al. (2015) and Aït-Sahalia and Hurd (2015). While
in theory it is possible to have four different parameters, the model will suffer from identification problems. The
approach we have taken here allowingφ1 to differ fromφ2 is in fact a middle ground as other studies restrict all of the
decay parameters to take one common value, Lee and Seo (2017).
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A key feature of the proposed bivariate MPP is that it only includes a true mark for the point

process of the stock market returns, with the distribution of the marks for the IV events always set

to unity,g(z | Ht , t) = 1 implying the conditional intensity for these events is

λ 2(t,z | Ht) = λ 2
g (t | Ht) . (2.13)

This assumption is invoked as the focus is on estimating measures of risk for the stock market

returns given the behavior of IV at extreme levels (i.e., conditional intensity, occurrence times and

size of extreme events in IV). To achieve this, it is not necessary to model the distribution of the

extreme IV events thus reducing possible estimation error.

Similar to the univariate MPP, a generalized Pareto densityfor the stock market returns as in

Eq.(2.10), is used again but with conditional scale parameter

κ (w | Ht , t) = κ0+κ1 ∑
i:t1

i <t

eψ1wi φ1e−φ1(t−t1
i )+κ12 ∑

i:t2
i <t

eρ1zi φ2e−φ2(t−t2
i ). (2.14)

Under this specificationκ12≥ 0 is an impact parameter related to the influence of the arrival times

and size of extreme events occurring in the IV index.

Define the occurrence of pairs of observations
{(

t1
i ,wi

)}N1(T)
i=1 and

{(
t2
i ,zi
)}N2(T)

i=1 in a set(0,T]×
[u1,∞) and(0,T]× [u2,∞) respectively. The log-likelihood for this bivariate pointprocess is ob-

tained by linking the bivariate conditional intensity for the ground process in Eq.(2.12) and the

density for the marks of the stock market returns Eq. (2.10) with scale parameter defined by in

Eq.(2.14).

ℓ =
2

∑
k=1





Nk(T)

∑
i=1

lnλ k
g

(
tk
i | Htk

i

)
−
� T

0
λ k

g (s | Hs)ds



+

N1(T)

∑
i=1

lng
(
Ht1

i
, t1

i

)
(2.15)

=
2

∑
k=1

Nk(T)

∑
i=1

ln


νk+ϑk1 ∑

j :t1
j <tk

i

eψkw j φ1e−φ1(tk
i −t1

j ) +ϑk2 ∑
j :t2

j <tk
i

eρkzj φ2e−φ2(tk
i −t2

j )




−



(ν1+ν2)T +

2

∑
k=1



ϑk1 ∑

j :t1
j <T

eψkw j

(
1−e−φk(T−t1

j )
)
+ϑk2 ∑

j :t2
j <T

eρkzj

(
1−e−φ2(T−t2

j )
)








−


(1/ξ +1)

N1(T)

∑
i=1

{
lnκ

(
wi | Ht1

i
, t1

i

)
+ ln

(
1+ξwi/κ

(
Ht1

i
, t1

i

))}

 ,
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assuming once again for ease of the exposition thatξ 6= 0.

Following Embrechts et al. (2011), the following preposition outlines a number of weak conditions

which ensure the existence of a Hawkes-POT process with stationary increments and asymptoti-

cally stationary conditional ground intensity.

Preposition 1. (Stationarity) The conditional ground intensities definedin Eqs. (2.9) and (2.12)

are asymptotically stationary under the following stability conditions

• Univariate model: Define h(s) := φe−φ(s) and f(w,z) :=eψw+ρz as the decay kernel and im-

pact function, respectively. Then, given that the decay kernel function satisfies
� ∞

0 h(s)ds=

1, and the expectation of impact function existsE [ f (w,z)] = µwz, the univariate model de-

fined in Eq. (2.9) is asymptotically stationary, if and only if,

0< ϑ µwz< 1.

• Bivariate model: Define hk (s) := φke−φk(s) as the decay function satisfying
� ∞

0 hk (s)ds=

1 for k = 1,2, and fk(w) := eψkw and fk(z) := eρkz as the impact functions of the marks

and covariates with expectations given byE [ fk(w)] = µk
w andE [ fk(z)] = µk

z, respectively.

In addition, denoting M:=
{(

µk
w,µk

z

)
: k∈ {1,2}

}
and Q:=

{
ϑ jk : j,k∈ {1,2}

}
as the

(2×2) matrix representations of the expectations and branchingcoefficients. The bivariate

model defined in Eq. (2.12) is asymptotically stationary, ifand only if, the spectral radius of

the matrix M◦Q is less than one, i.e.,

Spr(M ◦Q) := max{|ϕ| : det(M ◦Q−ϕ12) = 0}< 1,

where12 is the (2×2) identity matrix,ϕ are the eigenvalues of M◦Q, and◦ denotes the

Hadamard product.

Proof. Given in Appendix A

3. Generating and evaluating forecasts of conditional risk measures

The accuracy of the forecasts of extreme events will be analysed in the context of conditional risk

measures, namely VaR.VaRt
α is the VaR computed at dayt −1 for the negative log-returnXt as

follows

1−α = P
(
Xt >VaRt

α | Ht
)
,
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where the equality above assumes a continuous distributionfor Xt. Most financial return series

exhibit stochastic volatility, autocorrelation, and fat-tailed distributions limiting the direct estima-

tion of VaR. For this reason, under the traditional benchmark approach, the first stage consists of

filtering the returns series with an ARMA-GARCH process suchthat the residuals are closer to iid.

Given the assumed dynamics for the conditional mean of returns in Eq. (2.1), and the conditional

volatility proposed in Eq. (2.2) the following model for thereturns is obtained

Xt = µ +
m

∑
i=1

aiXt−i +
n

∑
j=1

b jεt− j + εt , (3.1)

whereεt = ηt
√

ht andht is the stochastic conditional variance,ht ∈ Ht. The autoregressive spec-

ifications for the conditional variances including the GARCH, GJR-GARCH and EGARCH are

shown in Eqs. (2.3), (2.4) and (2.5) respectively.

In the second stage, the corresponding VaR at theα confidence level of the assumed distribu-

tion of the residualsηt , i.e.,VaRα(ηt) : inf {x∈ R : P(ηt > x)≤ 1−α} is used to obtain esti-

mates for the conditional VaR for the returns. Observe thatηt are iid, and thereforeVaRα(ηt) =

VaRα(ηt−1) = · · ·=VaRα(ηt− j) =: VaRα(η), implying that Eq. (3.1) can be rewritten as follows

VaRt
α = µt +VaRα(η)σt ,

whereµt = µ +∑m
i=1aiXt−i +∑n

j=1b jεt− j and σt =
√

ht are the natural 1-step forecasts of the

conditional mean and variance, respectively. Note that thehistory Ht in this type of model is

generated in a discrete time framework, contrary to the filtration generated by the point process

approach where time is continuous. Therefore all information relating to the stochastic process

prior to (but not at) timet can be included.

VaR forecasts from the BEGE models are obtained by numerically inverting the BEGE cumula-

tive distribution (used to numerically evaluate the probability distribution function and hence the

likelihood) function at the requiredα confidence level, given forecasts ofpt andnt . By doing

so, this takes into account not only the conditional variance, but also the higher moments of the

distribution when generating the VaR forecast.

The two Hawkes-POT models (univariate and multivariate) described in Section 2.2 can also be

directly used to estimate VaR. The advantage of this approach is that it avoids the filtering of

returns and the use of EVT. Observe that the conditional probability that the next daily returnXt

will exceed the thresholdu> 0 given thatXt−1 has already exceeded this threshold is given by
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P(Xt > u | Ht) = 1−P{N ([t −1, t) = 0 | Ht)}

= 1−exp

(
−
� t

t−1
λg(s | Hs)ds

)
,

≈ λg(t | Ht) . (3.2)

On the other hand, the conditional probability of this event, of exceeding an even higher threshold

(u+x)> 0 given that the high thresholdu> 0 has been exceeded, is modeled using a generalized

Pareto distribution.

P(Xt −u> x | Xt > u,Ht) = G(x−u | Ht , t) , (3.3)

whereG(x−u | Ht , t) corresponds to the survival function of the cumulative distribution func-

tion of Eq. (2.10). One can demonstrate that for Hawkes-POT models, the probability that the

next daily returnXt will exceed the VaR at theα confidence level is a solution to the equation

P(Xt > VaRt
α | Ht) = 1−α, or alternatively,

P
(
Xt > VaRt

α | Ht
)

= P(Xt > u | Ht)P
(
Xt −u> VaRt

α −u | Xt > u,Ht
)
. (3.4)

Thus, given the conditional intensity for the ground process in Eq.(3.2) and the distribution for the

marks in Eq. (3.3), a solution to Eq. (3.4) leads to a prediction of the VaR in the next instant at the

α confidence level

VaRt
α = u+

κ (w | Ht)

ξ

{(
λg(t | Ht)

1−α

)ξ
−1

}
. (3.5)

Depending on the approach, univariate or bivariate, the ground conditional intensity in Eq. (3.5)

is replaced with either Eq. (2.9) or (2.12). The same occurs for the scale parameter.

To assess the accuracy of the competing approaches for predicting VaR, a range of statistical tests

are employed. These are based on both long-standing methodsalong with very recent develop-

ments. For further details see Christoffersen (1998); Engle and Manganelli (2004); Ziggel et al.

(2014). Let{It (α)}n
t=1 be a vector of ex-post indicator variables of VaR exceptionstaking the

value 1 ifXt >VaRt
α and 0 ifXt ≤VaRt

α at timet at the VaR coverage probabilityα. In addition,

define the variableHitt (α) = It (α)−α as the de-meaned hits of exceptions.

The first test is the unconditional coverage test (LRuc) introduced by Kupiec (1995) which is con-

12



cerned with whether the reported VaR exceptions occur more (or less) frequently thanα×100% of

the time. The second test examines the independence of theseexceptions (LRind) using a Markov

test. The third test is the conditional coverage test (LRcc), which is a combination of the previ-

ous two tests. The key point of this test is that an accurate VaR measure must exhibit both the

independence and unconditional coverage properties. The next two tests are the regression based

Dynamic Quantile tests introduced by Engle and Manganelli (2004), where the regressors are the

laggedHitt in the Dynamic Quantile Hit (DQhit) test, whereas the Dynamic Quantile VaR (DQVaR)

also includes past VaR estimates as an explanatory variable.

More recently Ziggel et al. (2014) proposed a new set of teststhat, beside testing unconditional

coverage and independence of exceptions, also test that exceptions are identically distributed.

Another advantage of these new tests is that all critical values for these tests are distribution free

and can be obtained utilizing Monte Carlo simulations, allowing for one- and two-tailed tests to be

carried out. Under this framework, the null hypothesis of unconditional coverage test is satisfied if

the expectation of VaR exceptions is equal on average toα, i.e.,H0 : E
[

1
n ∑n

t=1 It (α)
]
= α. They

propose the statistic:

MCuc =
n

∑
t=1

It (α)+ ε, (3.6)

whereε is a continuous random variable with a small variance designed to help to break the link

between the test statistics.

To test for iid VaR exceptions, Ziggel et al. (2014) utilizesthe fact that waiting times between

VaR exceptions should be geometrically distributed. In particular, they propose to test the null hy-

pothesisH0 :E [ti − ti−1] =
1
α , by examining at the squared waiting times between VaR exceptions,

which are better suited to detect exceptions which occur in clusters:

MCiid ,m= t2
1 +(n− tm)

2+
m

∑
i=2

(ti − ti−1)
2+ ε, (3.7)

wherem is the number of observed VaR exceptions andt1, . . . , tm describe the occurrence times

of VaR exceptions. Note, that the value of this statistic increases as the waiting times exhibit a

greater degree of correlation and hence it is very useful fordetecting clustering among the VaR

exceptions.

The final test corresponds to a conditional coverage test whose specification is given by:

MCcc,m = a · f (MCuc)+(1−a) ·g
(
MCiid ,m

)
, 0≤ a≤ 1, (3.8)

where f (MCuc) =
∣∣∣MCuc/n−p

p

∣∣∣ andg
(
MCiid ,m

)
=

MCiid ,m−r̂
r̂ 1{MCiid ,m≥r̂} measure the difference be-
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tween the expected and observed proportions of VaR exceptions, and sum of squared waiting

times, respectively. The parametera is a weighting factor that can be chosen according to an in-

dividuals preference toward the importance of either the iid property or the correct unconditional

coverage of the exceptions. In the subsequent empirical analysis, the importance of both properties

are treated equal, and only results fora = 0.5 are presented. In the last term, ˆr denotes an esti-

mator of the expected value of the statisticMCiid ,m under the null hypothesis. All critical values

for these test statistics are obtained utilizing 10,000 Monte Carlo simulations of the finite sample

null distribution. To ensure that the test statistics follow a continuous distribution, a continuous

random variable with an arbitrarily small variance,ε ∼ N(0,1e−6) is used in all applications4. For

further details on the last three tests see Ziggel et al. (2014).

Backtesting considers whether each individual model produces VaR forecasts that are adequate

in their own right and satisfy the coverage and independenceproperties. While this is important,

these tests do not allow conclusions to be drawn on which model produces the most accurate VaR

forecast. To directly measure forecast accuracy, the asymmetric quantile loss function

ℓ
(
Xt,VaRt

α
)
= (It (α)−α)

(
Xt −VaRt

α
)

(3.9)

proposed by González-Rivera et al. (2004) is used.It (α) is again the indicator function taking the

value 1 when an exception occurs atα significance and 0 otherwise. The motivation behind this

loss function is very intuitive in the context of risk management since VaR exceptions are penalised

more heavily. Such a loss function would underly a fairly broad class of economic applications

involving capital allocation in response to risk forecasts.

Given the quantile loss function in Eq. 3.9, significant differences in VaR forecast performance

will be assessed using the Model Confidence Set (MCS) introduced by Hansen et al. (2011). The

MCS approach avoids the specification of a benchmark model, and starts with a full set of candi-

date modelsM0 = {1, ...,m0}. All loss differentials,di j ,t , using Eq. 3.9, between modelsi and j

are computed and the null hypothesis,H0 : E(di j ,t) = 0 is tested for each pair. IfH0 is rejected at

the significance levelαM, the worst performing model is removed and the process continues until

non-rejection occurs with the set of surviving models beingthe MCS,M̂ ∗
αM

. If a fixed significance

level αM is used at each step,̂M ∗
αM

contains the best model fromM0 with (1−αM) confidence.

The null hypothesis is tested by means of the range statisticfor combining individualt-statistics

from the pairwise comparison of forecasts. An estimate of the asymptotic variance of the pairwise

loss differentials is obtained from a bootstrap procedure described in Hansen et al. (2003). Re-

4According to Ziggel et al. (2014) the finite sample accuracy of the test statistics are not greatly affected by the
choice of a continuous probability distribution function for ε, provided that its variance is small.
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ported p-values are corrected to ensure consistency through the iterative testing framework. See

Hansen et al. (2003) and Hansen et al. (2011) for more detail.In all subsequent empirical results,

a level of 95% confidence will be used in the MCS analysis.

The estimation of VaR for horizons longer than one day is an important issue in determining

financial risk. However, the extension of the Hawkes-POT model from a single prediction period

to a longer horizon is not a trivial exercise, due to the dynamic specification for the intensity

based on a stochastic counting process. As a final measure of the performance of the bivariate

point process models, a simple attempt is made to obtain multi-period VaR estimates and examine

whether they satisfy the standard tests discussed earlier.This is achieved by scaling the one period

VaR by a factorhξ̂u

VaRt+h
α ≈ hξ̂uVaRt

α

whereh is the horizon time and̂ξu is the unconditional shape parameter obtained from the raw

log-returns. The approach used here is based on EVT suggesting that the estimation of long-term

VaR is actually possible for fat tailed distributions (see Danielsson and De Vries, 2000; Cotter,

2007, for empirical applications of this approach). The major advantage of this simple approach is

that besides the estimation of the unconditional shape parameterξ̂u, there is no need to re-estimate

any additional parameters. Although VaR accuracy for multi-periods is complicated by the fact

that the VaR exceptions are intrinsically autocorrelated,the unconditional coverage test (LRuc) is

applied over 5 and 10 day horizons, accounting for autocorrelation. Given the overlapping nature

of the multi-period forecasts none of the more complex testsare undertaken.

3.1. Data

The data consists of daily returns for the S&P 500, Nasdaq, DAX 30, Dow Jones and Nikkei stock

market indices, and their respective IV indices, VIX, VXN, VDAX, VXD, and VXJ. As the focus is

on extreme increases in IV, events will be defined on daily log-changes in IV,△IVt = ln(IVt/IVt−1)

for each market. All data series used here are obtained from Bloomberg. For each pair of stock

market index and IV, the longest sample of data available is collected (S&P 500: 02/01/90, DAX:

02/01/92, Dow Jones: 02/1/98, Nikkei: 05/01/98, Nasdaq: 01/01/00), with all series ending 31

December, 2013. The period ending 30 December 2011 is used for estimation while 2012-2013 is

used for backtesting.

The VIX index was the first widely published IV index upon which trading was developed. IV

for other U.S. indices (VXN and VXD) and both the European (VDAX) and Japanese markets

(VXJ) all follow the same principle as the VIX. The VIX index was developed by the Chicago

Board of Options Exchange from S&P 500 index options to be a general measure of the market’s
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Table 1: Descriptive statistics for the daily stock market returns and IV log-changes.

S&P 500 VIX DAX 30 VDAX Dow Jones VXD Nikkei VXJ Nasdaq VXN
mean 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

sd 0.01 0.03 0.01 0.05 0.01 0.06 0.02 0.06 0.02 0.05
min -0.09 -0.15 -0.09 -0.27 -0.08 -0.33 -0.12 -0.42 -0.10 -0.31
max 0.11 0.22 0.11 0.31 0.11 0.53 0.13 0.58 0.11 0.36

skewness -0.24 0.65 -0.10 0.68 -0.08 0.64 -0.32 1.45 -0.07 0.57
kurtosis 11.65 7.31 7.40 6.81 9.97 7.05 9.11 16.08 7.41 6.74

Ljung-Box 42.26* 109.82* 24.51* 37.77* 39.74* 59.09* 9.43*** 31.01* 18.71* 31.41*
Jarque Bera 18916.57* 5118.41* 4292.14* 3637.99* 7639.51*2837.02* 5806.37* 27554.81* 2632.06 2070.05*
ADF test -18.20* -19.81* -16.94* -17.83* -15.31* -16.49* -15.38* -15.97* -14.54 -16.80*
Start of

sample period
02/01/99 02/01/92 02/01/98 05/01/98 01/01/00

Extreme
events

606 533 379 370 326

Comovements 340 308 201 197 160

Notes:The Ljung-Box statistics are significant for a lag of 5 trading days. *, **, *** represent significance
at 1%, 5% and 10% levels, respectively. All the samples end inDecember 31, 2013.

estimate of average S&P 500 volatility over the subsequent 22 trading days. It is derived from

out-of-the-money put and call options that have maturitiesclose to the fixed target of 22 trading

days. For technical details relating to the construction ofthe VIX index, see CBOE (2003).

Descriptive statistics for each series are given in Table 1.It is clear that for all markets, the sample

standard deviation of changes in IV are much larger than the corresponding equity index returns.

All series exhibit high levels of kurtosis, stock market returns are negatively skewed and changes

in IV are positively skewed. None of the series analysed are normally distributed based on the

Jarque-Bera statistic. The Ljung-Box statistics reject the null of no autocorrelation at a lag of 5

trading days for all series. Augmented Dickey–Fuller (ADF)tests for the presence of unit roots

show that all time series are stationary at 1% significance level.

Extreme movements in stock market returns or changes in IV are events for which the probability

is small. An extreme event is defined as one that belongs to the10% of the most negative returns

in stock markets, or to the 10% of the most positive log-changes in IV. Table 1 reports the number

of extreme events occurring in stock market returns and IV indices, independently and simulta-

neously. Of these, between 49% and 57% of the extreme events are joint events where extreme

movements in equity returns and IV occur simultaneously, reflected in the comovements reported

in the bottom row.

Fig. 3.1 gives an overview of the comovement at extreme levels in stock market returns and

IV. The plots in the left column show the market returns and IVindices, with bars under the IV

indicating the occurrence of the most negative extreme returns given the occurrence of a positive

extreme change in IV. In a similar fashion to volatility itself, these extreme events tend to cluster
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through time. The centre column of plots shows the relationship between changes in IV and

stock market returns. There is a clear negative relationship between the two series reflecting the

commonly observed asymmetry in the equity return-volatility relationship. The occurrence of

extreme events, negative market returns and positive changes in IV, which are of central interest

here, are represented by the black dots.

An alternative approach for measuring extremal comovementis the extremogram introduced by

Davis et al. (2009). This is a flexible conditional measure ofextremal serial dependence making

it particularly well suited for financial applications. Theplots in the right column in Fig. 3.1

show the sample extremograms for the 10% of the most negativestock returns conditional on

the 10% of the most positive log-changes on the IV indices at different lags. The interpretation

of the extremogram is similar to the correlogram. Given thatthe IV index has experienced an

extreme positive change at timet, the probability of obtaining a negative extreme shock in stock

market returns at timet + k is reflected by the solid vertical lines in the sample extremogram

for each lagk. The grey lines represent the .975 (upper) and .025 (lower) confidence intervals

estimated using the stationary bootstrap procedure proposed by Davis et al. (2012), while the

dashed line corresponds to this conditional probability under the assumption that extreme events

in both markets are occurring independently (for more details on the estimation refer to Davis

et al., 2012).5 Observe that the speed of decay of the sample extremograms for all five markets

is extremely slow given that the dependence of extreme movements in returns on IV shocks is

significant out to about 10 lags in most cases.

4. Empirical results

In-sample estimation results are discussed in Section 4.1.As estimation results are not the main

focus of the paper, a full detailed set of parameter estimates are relegated to the Internet Appendix

with a discussion of the central points outlined here. Comparisons of forecast performance in

terms of risk prediction are presented in Section 4.2.

4.1. Estimation results

Estimation results discussed in this section are based on data up to 30 December 2011. Estimation

results for the various GARCH and BEGE specifications are reported in Tables IA.1 and IA.2.

Results for models using a skew t-distribution are reported, because assuming either a conditional

52000 pseudo-series are generated for the estimation of the extremograms utilizing a stationary bootstrap with
resampling based on block sizes from a geometric distribution with a mean of 200.
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Figure 3.1: Left column: Extreme negative returns (grey color) and IV log-changes (blue color) to display the asym-
metric association between them. Middle column: Scatter plot of IV log-changes and stock market returns. The
10% of the most extreme negative (positive) stock market returns (IV log-changes) are displayed in grey color. Right
column: Sample extremograms for the 10% of the most negativestock returns conditional to the 10% of the most
positive log-changes on the IV indices at different lags. Grey lines represent the .975 (upper) and .025 (lower) con-
fidence interval estimated using a stationary bootstrap procedure proposed by Davis et al. (2012), while the dashed
line (blue color) corresponds to this conditional probability under the assumption that extreme events between both
markets occur independently. 18



normal or symmetric student t- distribution leads to inferior results and hence they are not reported

here.

Estimates of the GARCH coefficients reveal a number of commonpatterns. For models that do

not include IV as an exogenous regressor, estimates of theβ coefficient (in Eqs. 2.3, 2.4 and 2.5)

are in excess of 0.9 indicating a strong degree of volatility persistence. When IV is included,γ
in the three models is found to be significant and the presenceof IV helps explain a degree of the

persistence in many of the cases with the estimates ofβ falling. As is to be expected, estimates of

the asymmetry coefficientδ in both the GJR-GARCH and EGARCH (Eqs. 2.4 and 2.5) models

are significant. Conditionally, returns are found to exhibit relatively heavy tails with estimates of

theν falling between 7 and 15. In all cases, estimates of the skew parameterψ are significantly

less than one indicating that returns are conditionally negatively skewed, supporting the choice of

the skewed-t distribution. Of the competing models, EGARCHincluding IV offers the best model

fit for all markets with the fit of the BEGE models close to both the GJR-GARCH and EGARCH

models. While both positive and negative components of volatility int he BEGE model are found

to be persistent, the negative component exhibits less persistence than the corresponding positive

component (ρn < ρp), a result consistent with the findings of Bekaert et al. (2015). In three of the

markets, the impact of IV on the shape parameters,pt andnt are significant and positive with the

final two still positive though not significant.

Three versions of the univariate model in Eq. (2.9) are estimated. Model 1 is the full model

with marks (ψ > 0) and IV (ρ > 0). Model 2 only includes marks (ψ > 0) restrictingρ = 0.

Model 3 includes neither marks nor covariates and restrictsψ = 0 andρ = 0. Again, the full

set of estimation results for the three univariate models are reported in the Internet Appendix in

Table IA.3. In all cases, the unrestricted Model 1 offers thebest overall fit. Estimates forψ are

significant in all instances, reflecting the importance of the size of past marks for future intensity.

On the other hand, estimates ofρ are strongly significant only in the S&P500 and Nikkei markets

meaning that the level of IV is only important for explainingthe intensity of extreme events in these

two markets. Whileρ is marginally significant for the DAX, it is insignificant forthe remaining

markets.

Similar to the univariate case, four versions of the bivariate model are estimated. The ground

intensities under Model 1 are generated by the full unrestricted model in Eq. (2.12) and contain the

past times and marks of both extreme return and IV events, with ψ1, ψ2, ρ1, ρ2 > 0, with the scale

of the return marks specified in Eq. (2.14). Model 2 also includes the past times and marks of both

extreme return and IV events, with the restriction thatψ1 = ψ2 andρ1 = ρ2, with the scale only

driven by the arrival times and size of the past return events(κ12= 0). Model 3 contains the times

and marks of return events (ψ1, ψ2 > 0) but only the times of past IV events (i.e.,ρ1 = ρ2 = 0)
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with the scale only driven by the size of the past return events. The ground intensities under Model

4 are restricted to contain the times of past return and IV events,ψ1 =ψ2 = 0 andρ1 = ρ2 = 0 with

the scale of the marks being driven by the timing of past IV events, (ψ1, ψ2 > 0 andρ1 = ρ2 = 0)

and the dynamic introduced by the arrival times of the extreme events in IV (κ12 > 0).

Table IA.4 in the Internet Appendix reports the full estimation results for all four bivariate models.

In all markets, Model 3 is found to provide the best fit to the data, where the ground intensities of

extreme return (λ 1
g ) and IV (λ 2

g ) events are driven by the size of past return marks and the timing

of past return and IV events, and the scale is driven by the size of past return marks. The impact

of the timing of past IV events on the intensities is evident in the positive estimates ofφ2 which

are significant in four of the five markets. The degree of self,or cross-excitation, is reflected in the

combination ofϑ , ψ or ρ , andφ coefficients. Significant estimates ofϑ11, φ1 andψ1 for Model

3 reveal strong self-excitation in the return events with a similar pattern evident for IV events in

terms ofϑ22 andφ2. In terms of cross excitation the results are varied, estimates ofφ1 andφ2 are

nearly always significant with estimates ofϑ12 andϑ21 being somewhat mixed. There appears to

be bi-directional cross-excitation in the DAX and Nikkei markets, with excitation from returns to

IV in both the S&P500 and Nasdaq markets.

4.2. Forecasting risk

In this section, results of the tests for VaR accuracy discussed in Section 3 are presented. These

results are based on an out-of-sample backtesting period 2012-2013. Model estimation for fore-

casting purposes is initially based on the in-sample periodending 30 December 2011, and then on

a recursive estimation window where the models are re-estimated every week moving through the

2012-2013 period.

Before moving to a formal analysis of VaR accuracy, Figs. 4.1and 4.2 show VaR estimates and

predictions at a significance level of 0.99, along with returns for the in- and out-of-sample (also

with exceptions) periods respectively. Results are shown for the S&P 500 index for a selection of

models across the different classes of models that providedthe best in-sample fit, EGARCH+IV,

BEGE+IV, univariate (M1) and bivariate Hawkes-POT (M3). Beginning with Fig. 4.1, it is clear

that all the VaR estimates broadly follow the volatility of the overall market. Two observations

emerge, the EGARCH+IV estimates appear to be somewhat more variable for much of the period

and both Hawkes based VaR estimates adapt to a higher level during the peak of market volatility

in 2009. The lower panels in Fig. 4.1 show the VaR estimates and associated returns during a

number of important periods of crisis and heightened marketvolatility. It is evident that focusing

in on these periods of interest highlights that the VaR estimates generated by both MPP models are

less variable, certainly in comparison to those from the EGARCH+IV model. They do however
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Figure 4.1: Plots of in-sample VaR estimates and returns (the negative of log returns are shown) on the S&P 500
index. VaR estimates are shown for four models across the different classes of models considered here, EGARCH +
IV, BEGE+IV, univariate and bivariate Hawkes-POT. The top panel shows the full in-sample period, while the lower
panels highlight various subperiods of interest.

adapt to noticeably higher levels during the peak of historically high volatility in 2009. Fig. 4.2

shows the corresponding VaR predictions during the backtesting period, 2012-2013. While all the

forecasts vary with the overall volatility in returns, onceagain, the VaR forecasts from both self-

exciting models are less variable than the EGARCH and BEGE equivalents. The exceptions from

each model, BEGE+IV (×), univariate Hawkes (+) and bivariate Hawkes (▽) are also shown,

with EGARCH+IV model producing no exceptions in this case. Visually speaking, there is no

obvious clustering in the exceptions. It is clear the EGARCH+IV (and to some extent BEGE+IV)

are not producing enough exceptions atα = 0.99 and hence generating slightly conservative VaR

predictions.

To begin the formal analysis, Table 2 reports results for thein-sample tests of VaR accuracy. To

make the most efficient use of space here, and enhance the readability of the results, only a subset

of the results are reported here. Results atα = 0.95,0.99,0.995 for the GARCH, BEGE (those

including IV) and Hawkes-POT (Univariate M1 and Bivariate M3) models with the best in-sample
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Figure 4.2: Plots of out-of-sample VaR prediction and returns (the negative of log returns are shown) on the S&P 500
index. VaR estimates are shown for four models across the different classes of models considered here, EGARCH + IV,
BEGE+IV, univariate and bivariate Hawkes-POT. Exceptionsfrom each model, BEGE+IV (×), univariate Hawkes-
POT (+) and bivariate Hawkes-POT (▽) are also reported. The EGARCH+IV model produced no exceptions in this
case.

performance are reported here. The full set of results, across all GARCH, BEGE and Hawkes-

POT models are reported across Tables IA.5 (GARCH and BEGE) and IA.6 (Hawkes-POT) in

the Internet Appendix. All in cases, the results are based onthe full in-sample period ending in

December 2011. Results are shown in the form of p-values which are shown in bold when a test

is rejected at a significance level ofα = 5%. Cells in the rows with the heading Exc. report the

number of VaR exceptions in each case. Results in the Exc. rows show that in comparison to

the GARCH models, the bivariate models tend to generate slightly fewer exceptions (Xt >VaRt
α)

for most of the series. The bivariate models (M3, including IV) generate a similar number of

rejections relative to the BEGE+IV model. In the vast majority of the cases, the tests are not

rejected, indicating that the models accurately describe the in-sample behaviour of the extreme

events in the context of VaR estimation. The majority of the rejections that do occur are found

with the Nikkei, particularly at the highest (0.999) level of significance. Attention now turns to

forecasting.

Table 3 reports results for tests of out-of-sample VaR forecast accuracy, with the results reported

in the same format as Table 2. Again, only a subset of the results are presented for the GARCH,
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Table 2: In-sample VaR accuracy test results.

Returns Statistics
Volatility Models (In-sample) Hawkes-POT Models(In-sample)

GJRGARCH+IV EGARCH+IV BEGE+IV Univariate (M1) Bivariate (M3)
α- level 0.95 0.99 0.999 0.95 0.99 0.999 0.95 0.99 0.9990.95 0.99 0.999 0.95 0.99 0.999

S
&

P
5

0
0

-V
IX

Exc. 285 51 7 293 60 7 247 43 10 245 52 8 259 49 8
LRuc 0.63 0.54 0.55 0.34 0.54 0.55 0.06 0.08 0.090.04 0.64 0.33 0.26 0.38 0.33
LRind 0.71 0.33 0.89 0.10 0.25 0.89 0.18 0.41 0.850.50 0.32 0.88 0.40 0.35 0.88
LRcc 0.84 0.52 0.83 0.16 0.43 0.83 0.07 0.15 0.230.10 0.55 0.61 0.37 0.44 0.61
DQhit 0.72 0.33 0.89 0.11 0.25 0.89 0.19 0.41 0.850.51 0.32 0.88 0.41 0.35 0.88
DQVaR 0.73 0.52 0.99 0.27 0.42 0.99 0.050.02 0.00 0.03 0.51 0.99 0.65 0.53 0.99
MCuc 0.64 0.54 0.43 0.34 0.50 0.41 0.06 0.10 0.080.05 0.63 0.25 0.26 0.43 0.35
MCind 0.93 0.32 0.62 0.12 0.33 0.32 0.680.01 0.14 0.00 0.01 0.30 0.00 0.05 0.30
MCcc 0.15 0.63 0.74 0.25 0.66 0.66 0.660.03 0.29 0.00 0.02 0.62 0.01 0.10 0.60

D
A

X
-

V
D

A
X

Exc. 284 58 6 297 53 8 207 31 3 253 60 15 246 61 5
LRuc 0.73 0.76 0.86 0.26 0.72 0.330.00 0.00 0.32 0.99 0.20 0.00 0.65 0.15 0.98
LRind 0.35 0.02 0.91 0.19 0.11 0.88 0.08 0.54 0.950.13 0.74 0.77 0.37 0.22 0.92
LRcc 0.61 0.08 0.98 0.22 0.25 0.620.00 0.01 0.61 0.33 0.41 0.00 0.61 0.17 0.99
DQhit 0.36 0.03 0.91 0.20 0.11 0.88 0.08 0.54 0.950.15 0.75 0.77 0.39 0.22 0.92
DQVaR 0.61 0.06 0.99 0.44 0.20 0.990.00 0.64 0.81 0.33 0.63 0.92 0.59 0.31 0.99
MCuc 0.72 0.74 0.73 0.26 0.76 0.380.00 0.00 0.24 0.95 0.20 0.00 0.68 0.14 0.79
MCind 0.65 0.77 0.22 0.22 0.11 0.17 0.35 0.19 0.990.01 0.88 0.49 0.00 0.94 0.11
MCcc 0.70 0.45 0.45 0.43 0.20 0.33 0.67 0.380.01 0.01 0.24 0.98 0.00 0.12 0.22

D
JI

-
V

X
D

Exc. 180 37 5 187 37 5 157 29 6 161 34 10 164 36 12
LRuc 0.76 0.76 0.46 0.40 0.76 0.46 0.13 0.28 0.230.26 0.86 0.00 0.38 0.87 0.00
LRind 0.21 0.41 0.91 0.11 0.41 0.91 0.08 0.49 0.890.82 0.41 0.81 0.62 0.39 0.77
LRcc 0.44 0.68 0.75 0.20 0.68 0.75 0.07 0.43 0.480.52 0.71 0.02 0.60 0.68 0.00
DQhit 0.22 0.41 0.91 0.12 0.41 0.91 0.09 0.49 0.890.82 0.42 0.81 0.63 0.39 0.77
DQVaR 0.39 0.64 0.03 0.20 0.62 0.03 0.22 0.05 0.24 0.81 0.56 0.97 0.83 0.53 0.96
MCuc 0.73 0.79 0.33 0.38 0.73 0.51 0.15 0.30 0.180.25 0.87 0.00 0.37 0.78 0.00
MCind 0.01 0.00 0.33 0.01 0.00 0.62 0.73 0.11 0.87 0.58 0.38 0.02 0.14 0.30 0.02
MCcc 0.02 0.00 0.66 0.02 0.00 0.77 0.53 0.25 0.26 0.85 0.76 0.04 0.27 0.59 0.05

N
ik

ke
i-

V
X

J

Exc. 173 33 5 171 39 6 149 27 6 171 39 10 178 38 7
LRuc 0.93 0.81 0.43 0.95 0.44 0.21 0.07 0.19 0.210.97 0.43 0.00 0.61 0.53 0.09
LRind 0.43 0.33 0.00 0.23 0.08 0.01 0.28 0.21 0.01 0.87 0.08 0.02 0.55 0.44 0.01
LRcc 0.73 0.60 0.01 0.49 0.16 0.01 0.10 0.19 0.01 0.99 0.16 0.00 0.74 0.61 0.01
DQhit 0.44 0.33 0.00 0.25 0.08 0.01 0.29 0.21 0.01 0.87 0.08 0.02 0.56 0.44 0.01
DQVaR 0.45 0.53 0.02 0.51 0.18 0.02 0.10 0.01 0.00 0.29 0.16 0.07 0.39 0.57 0.03
MCuc 0.96 0.79 0.49 0.96 0.45 0.25 0.07 0.21 0.190.97 0.38 0.00 0.60 0.46 0.07
MCind 0.46 0.50 0.42 0.20 0.50 0.53 0.42 0.400.02 0.01 0.87 0.76 0.02 0.91 0.67
MCcc 0.92 1.00 0.84 0.40 0.98 0.94 0.82 0.790.04 0.03 0.25 0.48 0.04 0.18 0.68

N
as

d
aq

-
V

X
N

Exc. 141 27 2 133 25 3 121 17 2 121 26 5 123 28 5
LRuc 0.74 0.93 0.64 0.71 0.63 0.88 0.150.03 0.64 0.17 0.80 0.22 0.23 0.89 0.22
LRind 0.17 0.46 0.96 0.03 0.50 0.94 0.26 0.65 0.96 0.52 0.25 0.89 0.47 0.29 0.89
LRcc 0.37 0.76 0.89 0.10 0.71 0.99 0.18 0.09 0.890.31 0.50 0.46 0.38 0.57 0.46
DQhit 0.18 0.47 0.96 0.04 0.50 0.94 0.26 0.65 0.96 0.53 0.25 0.89 0.48 0.30 0.89
DQVaR 0.21 0.03 0.98 0.03 0.10 0.56 0.53 0.90 0.95 0.59 0.39 0.99 0.60 0.44 0.99
MCuc 0.74 0.97 0.77 0.71 0.66 0.98 0.150.04 0.81 0.16 0.78 0.22 0.24 0.80 0.14
MCind 0.94 0.33 0.70 0.02 0.03 0.42 0.12 0.06 0.69 0.00 0.00 0.16 0.00 0.00 0.16
MCcc 0.12 0.65 0.62 0.05 0.06 0.82 0.25 0.11 0.630.00 0.00 0.34 0.00 0.00 0.34

Notes:Results are based on the full in-sample estimation period ending in December 31, 2011. Results for
the volatility and Hawkes-POT models producing the best in-sample fit are reported here. Results are in
the form of p-values for each of the respective tests (with p-values < 5% shown in bold) and the number of
exceptions observed (Exc.). at each confidence levelα
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Table 3: Out-of-sample VaR accuracy test results.

Returns Statistics
Volatility Models (Out-sample) Hawkes-POT Models(Out-sample)

GJRGARCH+IV EGARCH+IV BEGE+IV Univariate (M1) Bivariate (M3)
α- level 0.95 0.99 0.999 0.95 0.99 0.999 0.95 0.99 0.9990.95 0.99 0.999 0.95 0.99 0.999

S
&

P
5

0
0

-
V

IX

Exc. 5 0 0 10 0 0 18 2 0 38 8 1 23 3 1
LRuc 0.00 0.00 0.32 0.00 0.00 0.32 0.13 0.12 0.32 0.02 0.23 0.54 0.63 0.32 0.54
LRind 0.75 1.00 1.00 0.52 1.00 1.00 0.25 0.90 1.000.56 0.61 0.95 0.14 0.85 0.95
LRcc 0.00 0.01 0.61 0.00 0.01 0.61 0.16 0.30 0.61 0.05 0.42 0.83 0.30 0.60 0.83
DQhit 0.76 1.00 1.00 0.53 1.00 1.00 0.26 0.90 1.000.58 0.61 0.95 0.15 0.85 0.95
DQVaR 0.79 1.00 1.00 0.42 1.00 1.00 0.17 0.91 1.000.84 0.71 0.99 0.30 0.95 1.00
MCuc 0.00 0.01 0.87 0.00 0.00 0.25 0.15 0.16 1.00 0.01 0.25 0.63 0.69 0.39 0.60
MCind 0.78 1.00 1.00 0.75 1.00 1.00 0.94 0.91 1.000.23 0.76 0.91 0.84 0.42 0.91
MCcc 0.45 0.00 0.88 0.53 1.00 0.41 0.12 0.18 1.000.45 0.48 0.20 0.34 0.83 0.19

D
A

X
-

V
D

A
X

Exc. 19 6 0 24 6 0 21 5 0 27 3 0 29 2 0
LRuc 0.19 0.67 0.32 0.82 0.67 0.32 0.36 0.98 0.310.69 0.33 0.32 0.43 0.12 0.32
LRind 0.75 0.70 1.00 0.88 0.70 1.00 0.89 0.75 1.000.67 0.85 1.00 0.55 0.90 1.00
LRcc 0.41 0.85 0.61 0.96 0.85 0.61 0.65 0.95 0.600.85 0.61 0.61 0.61 0.30 0.61
DQhit 0.75 0.70 1.00 0.89 0.70 1.00 0.89 0.75 1.000.68 0.85 1.00 0.56 0.90 1.00
DQVaR 0.58 0.02 1.00 0.91 0.17 1.00 0.74 0.13 1.000.17 0.95 1.00 0.27 0.97 1.00
MCuc 0.22 0.66 1.00 0.91 0.74 1.00 0.34 0.87 1.000.63 0.43 1.00 0.45 0.17 1.00
MCind 0.89 0.27 1.00 0.60 0.28 1.00 0.81 0.92 1.000.40 0.41 1.00 0.30 0.60 1.00
MCcc 0.20 0.53 1.00 0.79 0.54 1.00 0.37 0.16 1.000.78 0.82 1.00 0.61 0.80 1.00

D
JI

-
V

X
D

Exc. 15 1 0 18 1 1 14 1 0 24 3 0 25 3 0
LRuc 0.03 0.03 0.32 0.13 0.03 0.54 0.01 0.03 0.32 0.84 0.33 0.32 0.99 0.33 0.32
LRind 0.34 0.95 1.00 0.67 0.95 0.95 0.37 0.95 1.000.88 0.85 1.00 0.52 0.85 1.00
LRcc 0.05 0.09 0.61 0.28 0.09 0.82 0.03 0.09 0.61 0.97 0.62 0.61 0.81 0.62 0.61
DQhit 0.35 0.95 1.00 0.68 0.95 0.95 0.38 0.95 1.000.88 0.85 1.00 0.53 0.85 1.00
DQVaR 0.51 0.06 1.00 0.78 0.07 0.08 0.68 0.24 1.000.33 0.96 1.00 0.32 0.97 1.00
MCuc 0.04 0.06 1.00 0.16 0.04 0.57 0.01 0.04 1.00 0.87 0.45 1.00 0.96 0.54 1.00
MCind 0.74 0.36 1.00 0.78 0.35 0.36 0.80 0.36 1.000.68 0.41 1.00 0.59 0.41 1.00
MCcc 0.53 0.72 1.00 0.44 0.72 0.72 0.40 0.72 1.000.62 0.84 1.00 0.84 0.82 1.00

N
ik

ke
i-

V
X

J

Exc. 19 1 1 25 2 1 18 2 1 28 6 1 26 6 1
LRuc 0.19 0.03 0.54 0.98 0.12 0.54 0.15 0.13 0.530.50 0.64 0.53 0.78 0.64 0.53
LRind 0.71 0.95 0.95 0.85 0.90 0.95 0.68 0.90 0.950.63 0.01 0.95 0.76 0.05 0.95
LRcc 0.40 0.09 0.82 0.98 0.30 0.82 0.33 0.32 0.820.71 0.01 0.82 0.92 0.14 0.82
DQhit 0.71 0.95 0.95 0.85 0.90 0.95 0.69 0.90 0.950.64 0.01 0.95 0.77 0.06 0.95
DQVaR 0.91 0.75 0.76 0.97 0.30 0.99 0.83 0.52 0.340.85 0.02 1.00 0.94 0.15 1.00
MCuc 0.24 0.07 0.64 0.95 0.22 0.28 0.18 0.20 0.660.54 0.63 0.22 0.72 0.65 0.46
MCind 0.33 0.30 0.30 0.32 0.25 0.30 0.46 0.26 0.310.22 0.25 0.30 0.33 0.10 0.29
MCcc 0.67 0.59 0.60 0.64 0.51 0.61 0.91 0.52 0.600.43 0.50 0.62 0.66 0.20 0.61

N
as

d
aq

-
V

X
N

Exc. 28 9 0 31 16 2 18.00 2.00 0.00 25 3 0 26 5 0
LRuc 0.56 0.11 0.32 0.24 0.00 0.11 0.13 0.12 0.32 0.89 0.36 0.32 0.73 0.95 0.32
LRind 0.07 0.57 1.00 0.04 0.30 0.90 0.67 0.90 1.00 0.82 0.85 1.00 0.75 0.75 1.00
LRcc 0.16 0.23 0.61 0.07 0.00 0.28 0.28 0.30 0.61 0.97 0.64 0.61 0.90 0.95 0.61
DQhit 0.08 0.57 1.00 0.05 0.31 0.90 0.68 0.90 1.000.83 0.85 1.00 0.76 0.75 1.00
DQVaR 0.06 0.26 1.00 0.14 0.52 0.92 0.37 0.93 1.000.18 0.95 1.00 0.15 0.90 1.00
MCuc 0.60 0.08 0.13 0.22 0.00 0.03 0.11 0.25 1.00 0.90 0.53 1.00 0.76 0.86 1.00
MCind 0.28 0.09 0.00 0.35 0.22 0.70 0.84 0.78 0.000.67 0.19 1.00 0.74 0.96 1.00
MCcc 0.57 0.17 0.00 0.71 0.45 0.60 0.31 0.44 1.000.68 0.37 1.00 0.51 0.08 1.00

Notes: Results are based on the backtesting period of 2012-2013. Results for the volatility and Hawkes-
POT models producing the best in-sample fit are reported here. Results are in the form of p-values for each
of the respective tests (with p-values < 5% shown in bold) andthe number of exceptions observed (Exc.).
at each confidence levelα
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Table 4: MCS results for comparing VaR forecast performance.

S&P500 - VIX DAX - VDAX DJI - VXD Nikkei - VXJ Nasdaq - VXN
α-level 0.95 0.99 0.999 0.95 0.99 0.999 0.95 0.99 0.999 0.95 0.99 0.999 0.95 0.99 0.999

Uni. Hawkes-POT
Model 1 * * * * * * * * * *
Model 2 * * * * * * * * * * * *
Model 3 * * * * * * * * *

Biv. Hawkes-POT

Model 1 * * * * * * * * * * * *
Model 2 * * * * * * * * * * * * * *
Model 3 * * * * * * * * * * * * * *
Model 4 * * * * * * * *

Volatility Models

GJRGARCH * * * * * * *
GJRGARCH+IV * * * * * * *

EGARCH * * * * *
EGARCH+IV * * * * * *

GARCH * * * * *
GARCH+IV * * * * *

BEGE * * * * * * * *
BEGE+IV * * * * * * *

Notes:The MCS results are based on the asymmetric quantile loss function in Eq. (3.9), at each VaR level.
The MCS results are reported for a level of significance ofαM = 5%, with an * indicating that the model is
a member of the final MCS.

BEGE (those including IV) and Hawkes-POT (Univariate M1 andBivariate M3) models with

the full set of out-of-sample results reported across Tables IA.7 (GARCH and BEGE) and IA.8

(Hawkes-POT) in the Internet Appendix. The results are based on 1-day ahead VaR forecasts for

the final backtesting period, 2 January, 2012 to 31 Decembers, 2013. The first result that stands

out is the frequent rejections of the LRuc, and often MCuc tests for the GARCH models for all

markets except the DAX and NASDAQ. This indicates that the GARCH models are producing

inaccurate VaR forecasts as the average rate of rejection issignificantly different from the given

level of significance in many cases. While the BEGE models also produce a number of rejections,

they are less frequent than those based on the GARCH forecasts. This improvement reflects the

ability of the more flexible BEGE distribution to capture tail behaviour. Apart from a number

of rejections of the LRuc and MCuc tests in the case of the S&P 500, the univariate Hawkes-

POT models produce few other rejections. In contrast, thereare no rejections produced under the

bivariate Hawkes-POT forecasts across the five markets considered, indicating that treating the IV

events as an additional MPP offers gains in forecast accuracy.

Table 4 reports the MCS results based on the asymmetric quantile loss function in Eq. (3.9) and a

level of significance ofαM = 5%. Table 4 shows a * when a model is included in the final MCS

at a confidence level of 95%. All models are included here in Table 4 as the initial set of models

considered in the MCS testing procedure covers the full range of models. The most significant

result is that the bivariate models are included in the final MCS in nearly every case, across all

markets and VaR levels. Of these models, Models 1-3, which include both the timing and size of
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Table 5: VaR adequacy tests results forh= 5 andh= 10 day ahead forecasts.

S&P500 - VIX DAX - VDAX DJI - VXD Nikkei - VXJ Nasdaq - VXN
α-level 0.95 0.99 0.999 0.95 0.99 0.999 0.95 0.99 0.999 0.95 0.99 0.999 0.95 0.99 0.999

VaR forh = 5

Uni. Hawkes-POT

Model 1 31 1 0 30 1 0 34 1 0 35 2 0 34 5 0
(0.22) (0.03) (0.32) (0.33) (0.03) (0.32) (0.07) (0.03) (0.32) (0.05) (0.13) (0.32) (0.05) (0.94) (0.33)

Model 2 29 2 0 31 2 0 33 1 0 38 1 0 36 5 0
(0.40) (0.13) (0.32) (0.24) (0.12) (0.32) (0.10) (0.03) (0.32) (0.01) (0.03) (0.32) (0.02) (0.94) (0.33)

Model 3 9 0 0 23 1 0 27 2 0 32 2 0 26 3 0
(0.00) (0.00) (0.32) (0.66) (0.03) (0.32) (0.65) (0.13) (0.32) (0.15) (0.13) (0.32) (0.70) (0.37) (0.33)

Biv. Hawkes-POT

Model 1 29 2 0 34 6 0 33 1 0 35 2 0 37 6 0
(0.40) (0.13) (0.32) (0.05) (0.67) (0.32) (0.10) (0.03) (0.32) (0.05) (0.13) (0.32) (0.01) (0.61) (0.33)

Model 2 29 2 0 34 6 0 33 2 0 35 2 0 36 5 0
(0.40) (0.13) (0.32) (0.05) (0.67) (0.32) (0.10) (0.13) (0.32) (0.05) (0.13) (0.32) (0.02) (0.94) (0.33)

Model 3 31 2 0 34 6 0 34 1 0 42 2 0 37 5 0
(0.22) (0.13) (0.32) (0.05) (0.67) (0.32) (0.07) (0.03) (0.32) (0.00) (0.13) (0.32) (0.01) (0.94) (0.30)

Model 4 16 2 0 23 2 0 27 2 0 38 3 0 27 3 0
(0.05) (0.13) (0.32) (0.66) (0.12) (0.32) (0.65) (0.13) (0.32) (0.01) (0.34) (0.32) (0.56) (0.37) (0.33)

VaR forh = 10

Uni. Hawkes-POT

Model 1 19 1 0 20 0 0 30 1 0 36 3 0 24 3 0
(0.23) (0.03) (0.32) (0.30) (0.00) (0.32) (0.27) (0.03) (0.32) (0.03) (0.35) (0.32) (0.98) (0.38) (0.33)

Model 2 19 1 0 21 0 0 30 1 0 37 3 0 24 3 0
(0.23) (0.03) (0.32) (0.42) (0.00) (0.32) (0.27) (0.03) (0.32) (0.02) (0.35) (0.32) (0.98) (0.38) (0.33)

Model 3 8 1 0 15 0 0 24 2 0 36 0 0 18 2 0
(0.00) (0.03) (0.32) (0.03) (0.00) (0.32) (0.92) (0.13) (0.32) (0.03) (0.00) (0.32) (0.2) (0.15) (0.33)

Biv. Hawkes-POT

Model 1 18 1 0 31 1 0 30 1 0 36 3 0 23 5 0
(0.15) (0.03) (0.32) (0.22) (0.03) (0.32) (0.27) (0.03) (0.32) (0.03) (0.35) (0.32) (0.85) (0.92) (0.33)

Model 2 18 1 0 31 1 0 32 2 0 36 3 0 24 3 0
(0.15) (0.03) (0.32) (0.22) (0.03) (0.32) (0.14) (0.13) (0.32) (0.03) (0.35) (0.32) (0.98) (0.38) (0.33)

Model 3 8 1 0 31 1 0 33 1 0 41 6 0 24 3 0
(0.00) (0.03) (0.32) (0.22) (0.03) (0.32) (0.09) (0.03) (0.32) (0.00) (0.63) (0.32) (0.98) (0.38) (0.33)

Model 4 12 1 0 16 1 0 25 2 0 40 2 0 18 2 0
(0.00) (0.03) (0.32) (0.05) (0.03) (0.32) (0.92) (0.13) (0.32) (0.00) (0.14) (0.32) (0.20) (0.15) (0.33)

Expected 25.10 5.02 0.50 25.35 5.07 0.51 25.00 5.00 0.50 25.00 5.00 0.50 24.40 4.88 0.49
Shapeξ̂u 0.476 0.436 0.468 0.375 0.388

Notes:Results of the LRuc test are shown in the form of p-values. p-values less than 5% are shown in bold
to highlight where the rejections of the accuracy tests are occurring.

IV events are virtually always included in the MCS. Model 4, which includes only the timing of

the IV events is excluded in the majority of cases. These results once again support the notion

that treating IV as an additional point process and considering the size and timing of these events

leads to the greatest benefit in terms of forecast accuracy. The univariate Hawkes-POT models are

included in the MCS in well over half the cases. Of these models, Model 2, which only includes

the size of past return events, is most frequently included in the MCS. The BEGE models follow

closely in terms of forecast performance and remain in the MCS in about half of the cases. Finally,

the GARCH models are inferior, and are excluded from the MCS in the majority of cases.

Overall these results reveal that harnessing information from IV, when treated as its own point

process is beneficial. Given the bivariate Hawkes-POT models produce the most accurate forecasts

(that pass all tests) across the widest range of scenarios, indicating that information regarding the

timing and size of past IV extreme events is of benefit in a multivariate setting for forecasting VaR

in equity markets. The benefit of including IV in a univariatepoint process model or the BEGE

framework, is somewhat more limited, and of little use in thecontext of GARCH models.
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While the bivariate MPP models appear to dominate at the one day horizon, the final analysis deter-

mines whether adequate VaR forecasts can be generated from the MPP models at longer horizons.

Based on 5- and 10-day VaR forecasts using the methodology discussed earlier in Section 3, Table

5 reports results for the LRuc test based on both the univariate and bivariate MPP models. Given

the small number of MPP models, results for all the MPP modelsare presented in Table 5. Again,

the results shown in bold indicate when a rejection at 5% is observed. At theh= 5 day horizon,

the adequacy of the coverage is only rejected in 22% and 12% ofthe cases for the univariate and

bivariate models, once again indicating the information inIV is best harnessed through a bivariate

MPP. While unsurprisingly, the rejection rates do rise moving to the longer horizon ofh= 10, the

adequacy of the coverage is only rejected in a quarter of cases for the bivariate models (33% of

cases for the univariate models).

In summary, the bivariate Hawkes-POT models that include IVas an additional MPP produce the

best performing model across the widest range of scenarios.They pass all of the individual tests

of VaR forecast adequacy, they are most frequently found to be amongst the most accurate under

asymmetric quantile loss, and are able to generate adequateVaR forecasts in most cases at a longer

one-week ahead (somewhat less at two-weeks ahead) forecasthorizon.

5. Conclusion

Modelling and forecasting the occurrence of extreme eventsin financial markets is crucially im-

portant. While there have been many studies considering therole of implied volatility (IV) for

forecasting volatility, this has not been the case when dealing with extreme events. This paper

addressed how best to use IV to generate forecasts of the riskof extreme events in the form of

Value-at-Risk (VaR).

The BEGE model, along with traditional GARCH models including IV as an exogenous variable,

coupled with EVT formed the benchmark set of models. More recent advances in VaR prediction

have employed marked point process (MPP) models that treat the points as the occurrence of ex-

treme events and marks their associated size. This paper proposed a number of novel MPP models

that include IV. A number of univariate models for extreme return events are developed, where

the size and timing of past return events and IV are included.In addition, novel bivariate MPP

models were also proposed that move beyond simply includingIV as an exogenous covariate. The

second dimension in the bivariate models, apart from extreme stock market losses, were extreme

increases in IV which were treated as a second MPP.

The empirical analysis here focused on a number of major equity market indices and their asso-

ciated IV indices, where the full range of models are used to generate estimates of VaR. In terms
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of an in-sample explanation of extreme events in equity markets, the bivariate models satisfied all

backtests of VaR adequacy, while the univariate models and the BEGE models passed most. The

GARCH models produced relatively frequent rejections. A similar pattern was observed in 1-day

ahead predictions of VaR. GARCH style models including IV generated inaccurate forecasts of

VaR and failed a number of tests relating to the frequency of the VaR exceptions. Univariate MPP

models and BEGE models provided more accurate forecasts though still produced a number of

rejections in backtesting. It was also shown that longer horizon VaR forecasts from the bivari-

ate MPP models satisfied most tests. Overall, the bivariate models that included the extreme IV

events produced the most accurate forecasts of VaR across the full range of levels of significance

and markets. A direct comparison of VaR forecast accuracy showed that the bivariate MPP models

that consider the size and timing of past IV events were amongthe most accurate in the widest

range of cases. These results show that while IV is certainlyof benefit for predicting extreme

movements in equity returns, the framework within which it is used is important. It is shown that

the novel bivariate MPP model proposed here leads to superior forecasts of extreme risk in a VaR

context.
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AppendixA. Proofs

Proof. (Proposition 1) Using the continuous representation of a Hawkes process andsetting the

expected intensityE [λg(t | Ht)] = λ0 < ∞, gives for the univariate case

E [λg(t | Ht)] = E

[
ν +ϑ

�

(−∞,t)×R
2
+

f (w,z)h(t −s)N(ds×dw×dz)

]

= ν +ϑE [ f (w,z)]E

[
�

(−∞,t)
h(t −s)λg(s | Hs)ds

]

and by assumingE [ f (w,z)] = µwz and by definingλg(s | Hs)ds= N(ds) leads to

E [λg(t | Ht)] = ν +ϑ µwz

�

(−∞,t)
h(t−s)λ0ds

= ν +ϑ µwzλ0

�

(0,∞)
h(s)ds

= ν +ϑ µwzλ0,

where finallyλ0 = (1−ϑ µwz)
−1ν is obtained. Hence, the expectation of the ground conditional

intensity is finite in the univariate case, if and only if, 0< ϑ µwz< 1.

In the bivariate model the demonstration follows the same steps. Assume that the expected inten-

sityE
[
λ k

g(t | Ht)
]
= λ k

0 < ∞, for k= 1,2. Then, by taking the unconditional expectation in (2.12)

leads to

E
[
λ 1

g (t | Ht)
]

= E

[
ν1+ϑ11

�

(−∞,t)×R+

f1(w)h1(t−s)N1(ds×dw)

]

+E

[
+ϑ12

�

(−∞,t)×R+

f1(z)h2(t −s)N2(ds×dz)

]

E
[
λ 2

g (t | Ht)
]

= E

[
ν2+ϑ21

�

(−∞,t)×R+

f2(w)h1(t−s)N1(ds×dw)

]

+E

[
ϑ22

�

(−∞,t)×R+

f2(z)h2(t −s)N2(ds×dz)

]
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by assumingE [ fk(w)] = µk
w andE [ fk(z)] = µk

z, the expectations are reduced to

E
[
λ 1

g(t | Ht)
]

= ν1+ϑ11µ1
wE

[
�

(−∞,t)
h1(t −s)N1(ds)+

]
+ϑ12µ1

zE

[
�

(−∞,t)
h2(t −s)N1(ds)

]

E
[
λ 2

g(t | Ht)
]

= ν2+ϑ21µ2
wE

[
�

(−∞,t)
h1(t −s)N1(ds)+

]
+ϑ22µ2

zE

[
�

(−∞,t)
h2(t −s)N2(ds)

]
.

Since the kernel functions satisfy
� ∞

0 hk (s)ds= 1 andλ k
g(s | Hs)ds= Nk(ds) for k = 1,2, it is

possible to express

E
[
λ 1

g(t | Ht)
]

= ν1+ϑ11µ1
wE

[
�

(0,∞)
h1(s)λ 1

g (s | Hs)ds

]
+ϑ12µ1

zE

[
�

(0,∞)
h2(s)λ 2

g (s | Hs)ds)

]

E
[
λ 2

g(t | Ht)
]

= ν2+ϑ21µ2
wE

[
�

(0,∞)
h1(s)λ 1

g (s | Hs)ds

]
+ϑ22µ2

zE

[
�

(0,∞)
h2(s)λ 2

g (s | Hs)ds)

]
,

which in turn is equivalent to

E
[
λ 1

g(t | Ht)
]

= ν1+ϑ11µ1
wλ 1

0 +ϑ12µ1
zλ 2

0

E
[
λ 2

g(t | Ht)
]

= ν2+ϑ21µ2
wλ 1

0 +ϑ22µ2
zλ 2

0 ,

or in matrix representation

λ0 = ν +(M ◦Q)λ0,

whereν = (ν1,ν2)
T , M =

(
µ1

w µ1
z

µ2
w µ2

z

)
andQ =

(
ϑ11 ϑ12

ϑ21 ϑ22

)
. Hence the unconditional ex-

pectation of the ground intensity given byλ0 = (12 −M ◦Q)−1ν exists, if and only if, the spectral

radius of the matrixM ◦Q is less than one.
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