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Point process models for extreme returns: Harnessingeapli
volatility

Abstract

Forecasting the risk of extreme losses is an important isstie management of financial risk.
There has been a great deal of research examining how optred volatilities (IV) can be

used to forecast asset return volatility. However, the o6&/ in the context of predicting

extreme risk has received relatively little attention. Plagential benefit of IV in forecasting
extreme risk is considered within a range of models begmiith the traditional GARCH based
approach, along with a number of novel point process motlgiazariate models where 1V is
included as an exogenous variable are considered alongwitivel bivariate approach where
extreme movements in IV are treated as another point prottessound that in the context of
forecasting Value-at-Risk, the bivariate models prodheenhost accurate forecasts across a wide
range of scenarios.

JEL classification: C32; C53; C58.

Keywords: Implied volatility, Hawkes process, Peaks over threshBtant process, Extreme
events

1. Introduction

Modeling and forecasting extreme losses is an importaneigsthe management of financial risk
meaning that accurate estimates of risk measures such as-&aRisk (VaR) have attracted a
great deal of research attention. A successful model folirdeaith these extreme loss events
must capture their tendency to cluster in time.

A number of approaches to deal with the clustering of eveat® lbeen proposed. McNeil and
Frey (2000) develop a two stage method where GARCH model§irateapplied to model the
general time variation in volatility with extreme value timg (EVT) techniques then applied to
the residuals. Chavez-Demoulin et al. (2005) propose alriteaks Over Threshold (POT) ap-
proach for modelling extreme events. To deal with eventtehusy they employ a self-exciting
marked point process, specifically a Hawkes-POT processtenihe intensity of the occurrence
Preprint submitted to Elsevier November 29, 2017



of extreme events depends on the past events and their @&ssbsize or marks. Herrera and
Schipp (2013) extend the Hawkes-POT framework of Chavandgin et al. (2005) in proposing
a duration based model to capture the clustering in extresgedvents.

While they have not been considered in this specific contgtion implied volatilities (IV) have
been widely used for forecasting volatility. As the voliilof the returns on the underlying asset
price is an input into option pricing models, an expectafiask neutral) of volatility is required
when pricing options. While 1V is a risk neutral estimateisitwell known that IV indices are
negatively correlated with the level of stock market indie@d are an important measure of short-
term expected risk (see, Bekaert and Wu, 2000; Wagner amgia$er, 2004; Giot, 2005; Becker
et al., 2009; Lin and Chang, 2010; Bekaert and Hoerova, 28i¥ng others), and have been
found to be a useful forecast of physical spot volatility iamg studies, see Poon and Granger
(2003). Blair et al. (2001) find the inclusion of IV as an exoges variable in GARCH models to
be beneficial in terms of forecasting. While not focusing @me€asting, Becker et al. (2009) show
that IV contains useful information about future jump aityivn returns, which is likely to reflect
extreme movements in prices.

Very few studies have focused on the complex extremal deperecbetween IV and equity returns.
Aboura and Wagner (2016) investigate the asymmetric calakiip between daily S&P 500 index
returns and VIX index changes revealing a contemporanealasility-return tail dependence for
negative extreme events though not for positive returnaigRed Ng (2012) analyse the cross-
market dependence between five of the most important equatkets and their corresponding
volatility indices, finding evidence of asymmetric tail dgglence. Hilal et al. (2011) propose a
conditional approach for capturing extremal dependentvedsn daily returns on VIX futures and
the S&P500. Their empirical analysis shows that VIX futuretsirns are very sensitive to stock
market downside risk.

In this paper, the analysis moves beyond the role of IV indasting total volatility to focus on
the link to extreme losses and addresses two main questions.

1. How are extreme shocks in an IV index and extreme events iespective stock market
return related?
2. Can this relationship be harnessed to provide supeniec&sts of extreme returns?

To address these issues, an approach utilising IV withensity based point process models for

extreme returns is proposed. The first model treats 1V as agenous variable influencing the in-

tensity and the size distribution of extreme events. A nalternative view is also proposed based

on a bivariate Hawkes-POT model. Extreme movements in IMragged as events themselves,

with their impact on extreme events in equity returns caggtithrough a bivariate Hawkes-POT
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model. Performance of the proposed methods will be analys#te context of forecasting ex-
treme losses within a VaR framework. The benchmark apprtmichws both the earlier forecast-
ing literature in that IV is used as an exogenous variablhiwihe GARCH-EVT framework and
the bad environments, good environment (BEGE) model of Betlet al. (2015).

An empirical analysis is undertaken where forecasts of igleaf extreme returns are generated
for five major equity market indices using their associaMdnidices. These forecasts are based
on GARCH-EVT, BEGE, univariate and bivariate Hawkes-POTdels, and take the form of
VaR estimates at a range of levels of significance. It is fainadl GARCH based forecasts which
include IV are often inaccurate. Univariate Hawkes-POTRBB&GE models where 1V is treated as
an exogenous variable outperform the GARCH forecasts gtntteir forecasts do fail a number
of tests for VaR adequacy. The bivariate Hawkes-POT modéisre the timing of past extreme
increases in IV are treated as a point process, lead to theaomsrate forecasts of extreme risk in
the widest set of scenarios. The results of this paper shawwithile 1V is beneficial for forecasting
extreme risk in equity returns, the framework within whithsiused is important. The superior
approach is to treat extreme increases in IV as a point psagigsin a bivariate model for extreme
returns.

The paper proceeds as follows. Section 2 outlines the imadit GARCH-EVT framework, the
BEGE model, and introduces the proposed univariate andiadigaHawkes point process models.
Section 3 describes how VaR forecasts are generated ant&al Section 3.1 outlines the equity
market and associated 1V indices. Section 4 presents ipieastimation results for the full range
of models considered along with the results from tests addast accuracy. Section 5 provides
concluding comments.

2. Methodology

This section introduces the competing approaches for &stawy extreme losses in the context
of VaR predictions. The first is based on the classic GARCHr@ggh where 1V is used as
an exogenous variable. The specifications considered herth@ standard GARCH model of
Bollerslev (1986), the GJIR-GARCH models of Glosten et &9Q), and the exponential GARCH
(EGARCH) of Nelson (1991). The next approach consideretheésBEGE (Bad environment
good environment) model of Bekaert et al. (2015) which affeflexible conditional distribution
to describe returns. The approach proposed here utilizedawkes-POT framework introduced
in the one-dimensional case by Chavez-Demoulin et al. (R@®bch has been employed in a
range of empirical applications from modeling equity riskeixtreme spikes in electricity prices
(Chavez-Demoulin and McGill, 2012; Herrera, 2013; Herranal Gonzélez, 2014). Here, the
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one-dimensional approach is extended to include 1V as agenaus variable. A novel bivariate
model is also developed to incorporate the intensity of t®iorence of extreme movements in
IV. This approach will uncover potential bi-directionahkiages between extreme movements in
IV and extreme losses. Results from this analysis will rewdeether using IV itself, or the inten-
sity of its extreme movements, lead to more precise prexsticaif the intensity and size of extreme
equity market losses.

2.1. Conditional mean and volatility models

The conditional mean of the equity market returns is spetidie an Auto Regressive Moving
Average (ARMA) process

m n
re=u+ Zlairt_iJr zbjst_j+£t. (2.1)
== =1

Wherer; denotes the return on a stock market index at timea constanta; andb; describe the
autoregressive and moving average coefficients, respgctimdg; denotes the residual term. The
residuals are defined by

&=mvh,  n~iid(0,1), (2.2)

wheren is the standardized residual amds the conditional variance. The GARCH specifications
considered for the conditional variances which include $\da exogenous variable are

GARCH(1,1):h = w+ag? {+Bh_1+ylVi1 (2.3)
GJR-GARCH(1,1) hy = w-+ag?,+omax(0,—&_1)>+ Bh_1+ Vi1 (2.4)
EGARCH(L,1): Ity = w-+ag_1+06(|&-_1|—El|&_1])+BInh_1+yinIVi_1. (2.5)

The GARCH model in Eq. (2.3) corresponds to the standard hafdgollerslev (1986), with
w>0,a>0,B>0andy > 0 so that the conditional varianbe > 0. The model is stationary if
o+ B| < 1is ensured. The GJR-GARCH specification in Eq. (2.4) alldvesconditional vari-
ance to respond asymmetrically to the sign of past returmadgns of the parametér Sufficient
conditions forhy > 0 arew > 0,a+d >0, 3 > 0 andy > 0. Finally, the EGARCH specifica-
tion in Eq. (2.5), allows for asymmetries in volatility & # O while leverage exists id < 0 and
a < 0 < —a. To be consistent with the specification of the conditioradiance in Eq. (2.5),
IV indices are included in logarithmic form. These three ditional volatility specifications are



estimated assuming a Skew Student-t distributton.

The BEGE model of Bekaert et al. (2015) describes the inmavgin returns,

& = OpWpt — Onlht, Where
wpt ~ T (pt,1), and
tng ~ T (1, 1) (2.6)

as a linear combination of two component shocks, wi¢ke6) is a centred gamma distribution
with shape and scale parametérand 0 respectively. The two gamma distributions are assumed
to have a constant scale, but time-varying shape parametexsdn; for the good and bad envi-
ronments respectively. The shape parameters evolve asgdoda GJR-GARCH like structure

J’_ —

Op 2 Op
Pt = Po+PpPt—1+ Tﬁgt lg >0+ Tﬁ(l_ le_1>0),
p p
o o,
n = no—|-pnnt—1+27:_2512|gt7120+ 2%2(1— le, 1>0)- (2.7)
n n

A version of this model that includes lagged IV as an exogenauiable, with a common coeffi-
cient in both positive and negative components (denotemibat BEGE+IV) is also estimated.

2.2. Conditional intensity models

Marked point processes (MPP) are stochastic processeilae the temporally clustered arrival
times of extreme events, with a set of random variables,dhmafied marks associated with each
event. In EVT, the interest lies in the intensity of extremaerd occurrences as well as the distri-
bution of the exceedences over a pre-determined large mea&tthreshold. This paper develops
two approaches for investigating the role of 1V in explamthe intensity and size of extreme loss
events. In doing so, the nature of the extreme loss-1V wtatiip will be revealed.

2.2.1. Univariate Hawkes-POT model

The first point process approach is based on a univariate MpHeifically the Hawkes-POT
model introduced by Chavez-Demoulin et al. (2005) and ap@ly Chavez-Demoulin and McGill
(2012). The Hawkes-POT model is generalised here by usmdMhindex as a covariate in the
conditional intensity process for extreme loss events.

1In a preliminary version of the paper both a conditional Nakrand symmetric studendistribution were also
considered. However assuming a skewed studeniditional distribution provides a superior fit to the dddare the
skewness is incorporated into the t-distribution usingntle¢hod of Fernandez and Steel (1998).
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In this context, let{ (X, Y;) };~, be a vector of random variables that represent the logfietof
a stock market index and the associated IV derived from optan that index. For ease of sub-
sequent notation, assume returns are multiplied-thy To determine the conditional intensity of
extreme losses, return events whose size exceeds a preedeiiyh threshold > 0 are the focus.
This will define a finite subset of observatio{*(ﬂ;i,wi,zi)}izl, wheret; € R corresponds to occur-
rence timesw; € R, the magnitude of exceedences (the marks),zaadR ; a covariate based on
the IV index, withw; := X; —u, andz :=Y;,. A general MPRN (t) is proposed satisfying the usual
conditions of right-continuityN (t) :== N (0,t] = ¥i>1 1 {ti <t, w; =w, z = z} with past history or
natural filtration 4 = {(ti,w;,z) Vi : tj <t} that includes times, marks and the covariates. Ac-
cording to the standard definition of an MPP, it may be charastd by means of its conditional
intensity function

A(tw]| ) = Ag(t] 74) g(w| A1), (2.8)

which, broadly speaking, describes the probability of olisg a new event in the next instant of
time conditional on the history of the process.

There are two components to the intensity of the MPP, a grpuocesN9 (t) .= -, 1 {ti <t}

with conditional intensity\g (t | .7%) characterizing the rate of the extreme events over time, and
the process for the marks, whose density functidw | 7#4,t) is conditional on the history of
the process and time Observe that the covariatedoes not directly enter into the definition of
the conditional intensity in Eq. (2.8) even though it appdarbe another mark in addition tq
contained in the available information set{. Instead, the covariatg provides extra information

to explain the behaviour of the process without being diyeaiolved in the determination of
likelihood in this stochastic process.

The conditional intensityg (t | .7%) is characterized by the branching structure of a Hawkes pro-
cess with an exponential decay function

Ag(t| ) =v+9 5 ePitPage et (2.9)
i<t

wherev > 0 is the intensity of exogenous events independent of tlegniat history.74. The
branching coefficienf > 0 describes the frequency with which new extreme eventgeariihe
parametersy € R andp € R determine the contribution of the mavk and covariate; to the
conditional intensity of the ground process, and 0 is a decay parameter. The exponential func-
tions inside the sum define the impact functibfw, z) = e?"+PZ, and the kernel decay function
hit—t) = pe®(t=1) which controls how offspring are generated by first orderesre events rep-
resenting the main source of clustering in the model. Thosgss is described as self-exciting as



the occurrence times and marks of past extreme events mag/timakccurrence of future extreme
events more probable through the dependance on the histry,

To estimate risk measures such as VaR, an assumption negahei probability distribution func-
tion of the most extreme return eventg,conditional on the event tha§, exceeds the threshold
u > 0 must be made. Motivated by the Pickands—Balkema—de H#aesem,? the extreme
losses are assumed to follow a conditional GeneralizeddBistribution (GPD) with a density
function given by

1 (e w Vg
g(w%ﬁ{ by (1 ) 7Y e

Ki(wﬁ-}ﬁt) exp(-W) , §€=0,

where¢ is the shape parameter ardw | %4 ,t) is a scale parameter specified as a self-exciting
function of the arrival times of new extreme events and thieies

K (W | J4,t) = Ko+ K1 Z Wi t+Pz = @(t-t)
ifi<t
Under this specificationgg > 0 represents the baseline level for the scale, wkijle> 0 is an
impact parameter related to the influence of new extremeteremals. The shape parameter is
assumed to be constant through time due to the sparsity otseurethe tail of the distribution
which makes estimation of time-varying scale challengasdvident in Chavez-Demoulin et al.,
2005; Santos and Alves, 2012; Herrera, 2013).

The log-likelihood for the univariate Hawkes-POT modelagia set of eventSt;, wi, zi)}i'\':q)observed
in the spacé0, T| x [u, ) is obtained combining the conditional intensity of Eq.j&8d the den-
sity of the marks from Eq. (2.10) as follows

NT) T N(T)
¢ = Zm;\g(tiuﬁi)—/ (sl ) dst 3 Ing(w | ) (2.11)
i= 0 i=
N(T)

5 in(vro 5 3 e (1enr)

N(T)
(1/&+1) Zl {Ink (Wi | 7,t) +In(1+&wi /K (Wi I%’ﬂ,ti))}]

2See Pickands (1975) and Balkema and De Haan (1974).
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assuming for ease of the exposition thag 0. The resulting estimates are consistent, asymptoti-
cally normal and efficient, with standard errors obtainetdtkie Fisher information matrix (Ogata,
1978).

2.2.2. Bivariate Hawkes-POT model

The novel bivariate approach proposed here moves beyormmysintluding IV as an exogenous
covariate. Extreme increases in IV are treated as a secoRBEvéPrepresent the second dimension
in a bivariate model in addition to the extreme stock markesés. In this bivariate model, the
marks influence the evolution of its respective ground pseead vice versa, offering a framework
to examine the impact of IV events on extreme stock markee® terms of both the intensity
and size of events.

The bivariate MPP is defined as a vector of point procedsgs : {N1(t),N2(t)}, where the
first point proces$\y (t) is defined through the paif$t!,wi) }._,; the subset of extreme events
in the negative log-returns of the stock market occurringna¢ t* over a high threshold; > 0,
with w; := X1 —uy. Similarly, the second point procebs (t) is defined by the pairs of events
{ (tiz, z) }i>1vlvith Z = Ytiz — Uy, which also characterizes the subset of extreme eventsrougin

IV at timet? over a high threshold, > 0. /% = {(til,wi) , <tj2,Zj> Vi, j it <tAt? < t} denotes
the combined history over all times and marks. This bivarMPP includes a bivariate ground
procesdNg (t) := ¥;-1 1 {tk <t} with conditional intensities

NI A) = viton § etipe a8 1o;, ¥ Pige aH) @12
i<t it <t
B = vt S e )5y 5 gtge ot

itt<t ite<t

whereyy > 0 are the exogenous intensities, the branching coefficigpts 0 describe the influ-
ence that dimensiokwill have on dimensiorj, the parametergy, > 0 andp, > 0 determine the
contribution of the size of the extremes occurring at therret and IV to the conditional intensity
of the ground process, angl > 0 are again the decay parameter$hus, the impact functions
fic(w) = e%W¥ and f, (2) = €*Z, and the exponential decay kernel functigrft —t¥) = e (1)
account for mutual and cross excitation.

3Assuming the same rate of decgyandg in both dimensions, return and IV events, is common pradtiseich
models see for instance Embrechts et al. (2011), Ait-Salealal. (2015) and Ait-Sahalia and Hurd (2015). While
in theory it is possible to have four different parameteng, model will suffer from identification problems. The
approach we have taken here allowipgo differ from ¢ is in fact a middle ground as other studies restrict all of the
decay parameters to take one common value, Lee and Seo (2017)
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A key feature of the proposed bivariate MPP is that it onlyludes a true mark for the point
process of the stock market returns, with the distributitme marks for the IV events always set
to unity,g(z| %,t) = 1 implying the conditional intensity for these events is

A2(t,z| ) = Ad (t| ). (2.13)

This assumption is invoked as the focus is on estimating nmeasof risk for the stock market
returns given the behavior of IV at extreme levels (i.e. dibonal intensity, occurrence times and
size of extreme events in V). To achieve this, it is not neaegto model the distribution of the
extreme IV events thus reducing possible estimation error.

Similar to the univariate MPP, a generalized Pareto derisityhe stock market returns as in
Eq.(2.10), is used again but with conditional scale paramet

K (W| J4,t) = Ko+ K1 Z VWi g e (1) 4 ) Z P14 e P2 (t-17) (2.14)

i<t itte<t
Under this specificatiory> > 0 is an impact parameter related to the influence of the tias
and size of extreme events occurring in the IV index.

Define the occurrence of pairs of observatigt', w; ) }iN:lgT) and{ (t?,z) :\'jg) in a set(0,T] x
[ug,0) and (0, T] x [up, ) respectively. The log-likelihood for this bivariate poprocess is ob-
tained by linking the bivariate conditional intensity fdretground process in Eq.(2.12) and the
density for the marks of the stock market returns Eq. (2.1iff) scale parameter defined by in
Eq.(2.14).

2 [ NKT NL(T)
¢ = kzl{ Zx InA ( / Ak sifs)ds}+ Zl |ng<%’;il,ti1) (2.15)

2 NK(T) " o (tth) P (- 12)
= In | v+ i e Nige U +d0 e N
2 2 > 2

jit] <t <tk
7] (1_ e_@(T—th)> } }

[ 1/£+1 InK (Wi |<%’{i1,ti1) +In <1+ Ewi /K <<%’fi1,ti1))}] )

:j<T j:tj <T

{ Vi+ Vo T+Z {Bkl Z e¥Wi (1—6_%(T_til)>+z9k2 Z
it
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assuming once again for ease of the expositionghat0.

Following Embrechts et al. (2011), the following prepasitbutlines a number of weak conditions
which ensure the existence of a Hawkes-POT process witioséay increments and asymptoti-
cally stationary conditional ground intensity.

Preposition 1. (Stationarity) The conditional ground intensities defimedqs. (2.9) and (2.12)
are asymptotically stationary under the following statyilconditions

« Univariatemodel: Define H(s) := ge~?® and f(w, z) := e¥"+PZ as the decay kernel and im-
pact function, respectively. Then, given that the decagedunction satisfiefooo h(s)ds=
1, and the expectation of impact function exi&td (w, z)] = pwz, the univariate model de-
fined in Eq. (2.9) is asymptotically stationary, if and orfly i

0< Fuwz< L.

« Bivariate model: Define i (s) := ge % as the decay function satisfying’ hy (s)ds=
1for k=12, and f(w) :=e¥¥ and §(2) := e** as the impact functions of the marks
and covariates with expectations givenbyf,(w)] = uk andE [f(z)] = ¥, respectively.
In addition, denoting M= { (uX, u¥) : ke {1,2}} and Q:= {8« : j.ke {1,2}} as the
(2 x 2) matrix representations of the expectations and branchoefficients. The bivariate
model defined in Eq. (2.12) is asymptotically stationargnd only if, the spectral radius of
the matrix Mo Q is less than one, i.e.,

Spr(MoQ) :=max{|¢|:detMoQ—¢1y) =0} < 1,

wherel; is the @ x 2) identity matrix,¢ are the eigenvalues of MQ, ando denotes the
Hadamard product.

Proof. Givenin Appendix A

3. Generating and evaluating forecasts of conditional risk measures

The accuracy of the forecasts of extreme events will be apdlyn the context of conditional risk
measures, namely VaRaR, is the VaR computed at day- 1 for the negative log-returk; as
follows

1-a=P(X;>VaR, | /),

10



where the equality above assumes a continuous distribtdroX;. Most financial return series
exhibit stochastic volatility, autocorrelation, and fatled distributions limiting the direct estima-
tion of VaR. For this reason, under the traditional benchnagproach, the first stage consists of
filtering the returns series with an ARMA-GARCH process sttt the residuals are closer to iid.
Given the assumed dynamics for the conditional mean ofmistir Eq. (2.1), and the conditional
volatility proposed in Eqg. (2.2) the following model for theturns is obtained

m n
Xe= U+ Zaixt—i+ > bje—j+&, (3.1)
= =

whereg = ny+/hy andhy is the stochastic conditional variandeg,c /4. The autoregressive spec-
ifications for the conditional variances including the GARGSJR-GARCH and EGARCH are
shown in Egs. (2.3), (2.4) and (2.5) respectively.

In the second stage, the corresponding VaR atathenfidence level of the assumed distribu-
tion of the residualsy , i.e.,VaRy(nt) :inf{xeR: P(nt >x) <1—a} is used to obtain esti-
mates for the conditional VaR for the returns. Observe thatre iid, and therefor¥aR, (nt) =
VaRy(ni—1) = --- =VaRy(ni—j) =: VaRy(n), implying that Eq. (3.1) can be rewritten as follows

VaR, = 1 +VaRy(n)at,

wherep = g+ 3" &% + Y1 bj&-—j and 6 = /Iy are the natural 1-step forecasts of the
conditional mean and variance, respectively. Note thathib®ry 2% in this type of model is
generated in a discrete time framework, contrary to thafitin generated by the point process
approach where time is continuous. Therefore all inforamatielating to the stochastic process
prior to (but not at) time can be included.

VaR forecasts from the BEGE models are obtained by numéricaderting the BEGE cumula-
tive distribution (used to numerically evaluate the praligidistribution function and hence the
likelihood) function at the required confidence level, given forecasts pf andn;. By doing
so, this takes into account not only the conditional vararmit also the higher moments of the
distribution when generating the VaR forecast.

The two Hawkes-POT models (univariate and multivariatescdbed in Section 2.2 can also be
directly used to estimate VaR. The advantage of this appréathat it avoids the filtering of
returns and the use of EVT. Observe that the conditionalahibiby that the next daily returd
will exceed the threshold > 0 given thatX;_; has already exceeded this threshold is given by

11



PX>u|s4) = 1-P{N(t—1t)=0]|4)}

t
= 1—exp(—/t_l)\g(s|¢%é)ds),
Ag(t| ). (3.2)

Q

On the other hand, the conditional probability of this eyehexceeding an even higher threshold
(u+x) > 0 given that the high threshold> 0 has been exceeded, is modeled using a generalized
Pareto distribution.

P(X—u>x|X>us4) = G(x—ul|.4t), (3.3)

whereG (x—u | 74,t) corresponds to the survival function of the cumulativerdistion func-
tion of Eq. (2.10). One can demonstrate that for Hawkes-P©@dets, the probability that the
next daily returnX; will exceed the VaR at the confidence level is a solution to the equation
P (X% > VaR, | #4) = 1— a, or alternatively,

P(X >VaR, | &) = PX>u|A)P(X—u>VaR, —u|[X >us%). (3.4)

Thus, given the conditional intensity for the ground predes=q.(3.2) and the distribution for the
marks in Eq. (3.3), a solution to Eq. (3.4) leads to a prealictif the VaR in the next instant at the

a confidence level ;
g K10 f (101 e

Depending on the approach, univariate or bivariate, themgtaonditional intensity in Eq. (3.5)
is replaced with either Eq. (2.9) or (2.12). The same ocaurghie scale parameter.

To assess the accuracy of the competing approaches fociingdvaR, a range of statistical tests
are employed. These are based on both long-standing medauty with very recent develop-
ments. For further details see Christoffersen (1998); &€agld Manganelli (2004); Ziggel et al.
(2014). Let{l;(a)}{_, be a vector of ex-post indicator variables of VaR exceptiaking the
value 1 ifX >VaR, and 0 ifX; <VaR, at timet at the VaR coverage probability. In addition,
define the variablélit; (a) = I; (a) — a as the de-meaned hits of exceptions.

The first test is the unconditional coverage téR ) introduced by Kupiec (1995) which is con-
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cerned with whether the reported VaR exceptions occur nooilegs) frequently thaa x 100% of
the time. The second test examines the independence ofdkesptionsl(R,q) using a Markov
test. The third test is the conditional coverage te&.£), which is a combination of the previ-
ous two tests. The key point of this test is that an accurake Maasure must exhibit both the
independence and unconditional coverage properties. @&ktewo tests are the regression based
Dynamic Quantile tests introduced by Engle and Mangar&didd), where the regressors are the
laggedHit; in the Dynamic Quantile HitlpQy,;t) test, whereas the Dynamic Quantile VARYyaR)
also includes past VaR estimates as an explanatory variable

More recently Ziggel et al. (2014) proposed a new set of tibstls beside testing unconditional
coverage and independence of exceptions, also test theptexes are identically distributed.
Another advantage of these new tests is that all criticalesfor these tests are distribution free
and can be obtained utilizing Monte Carlo simulations \ailhgy for one- and two-tailed tests to be
carried out. Under this framework, the null hypothesis afamditional coverage test is satisfied if
the expectation of VaR exceptions is equal on average ie.,Hp : E [% Siqh (a)} =a. They
propose the statistic:

MCUC:t;It (a>+£7 (36)

whereg is a continuous random variable with a small variance desidga help to break the link
between the test statistics.

To test for iid VaR exceptions, Ziggel et al. (2014) utilizbe fact that waiting times between
VaR exceptions should be geometrically distributed. Irtipalar, they propose to test the null hy-
pothesidHy : E[ti —ti_1] = % by examining at the squared waiting times between VaR dxuep
which are better suited to detect exceptions which occuluisters:

m
MCig m =1+ (0 ~tm)*+ 3 (¢ ~ti1)’te, (3.7)

wherem is the number of observed VaR exceptions &nd..,t, describe the occurrence times
of VaR exceptions. Note, that the value of this statisticeases as the waiting times exhibit a
greater degree of correlation and hence it is very usefutiéecting clustering among the VaR
exceptions.

The final test corresponds to a conditional coverage tessghpecification is given by:

Mchm =a-f (Mcuc> + (1_ a) g (Mciidm) ,0<a<], (3-8)

wheref (MCyc) = ’%‘ andg (MCijg m) = Mq‘d:m_fl{,\,lqid_’mzf} measure the difference be-

=
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tween the expected and observed proportions of VaR exceptand sum of squared waiting
times, respectively. The parameteis a weighting factor that can be chosen according to an in-
dividuals preference toward the importance of either thgroperty or the correct unconditional
coverage of the exceptions. In the subsequent empiriclsisahe importance of both properties
are treated equal, and only results o 0.5 are presented. In the last termgdénotes an esti-
mator of the expected value of the statisdCiy , under the null hypothesis. All critical values
for these test statistics are obtained utilizing 10,000 tdd&arlo simulations of the finite sample
null distribution. To ensure that the test statistics fwlla continuous distribution, a continuous
random variable with an arbitrarily small varianeey N(0, 1e~) is used in all applicatioris For
further details on the last three tests see Ziggel et al.4R01

Backtesting considers whether each individual model predW/aR forecasts that are adequate
in their own right and satisfy the coverage and independpnmeerties. While this is important,
these tests do not allow conclusions to be drawn on which hppdduces the most accurate VaR
forecast. To directly measure forecast accuracy, the agtringuantile loss function

(%, VaR,) = (I (a) — a) (% —VaR,) (3.9)

proposed by Gonzalez-Rivera et al. (2004) is usgd) is again the indicator function taking the
value 1 when an exception occursaasignificance and 0 otherwise. The motivation behind this
loss function is very intuitive in the context of risk managgnt since VaR exceptions are penalised
more heavily. Such a loss function would underly a fairlyddalass of economic applications
involving capital allocation in response to risk forecasts

Given the quantile loss function in Eq. 3.9, significant@iéinces in VaR forecast performance
will be assessed using the Model Confidence Set (MCS) intediby Hansen et al. (2011). The
MCS approach avoids the specification of a benchmark modelstarts with a full set of candi-
date models#p = {1,...,mp}. All loss differentialsdij , using Eq. 3.9, between modéland j
are computed and the null hypothesis, : E(d;j ) = 0 is tested for each pair. Ho is rejected at
the significance levaty, the worst performing model is removed and the process rmoesi until
non-rejection occurs with the set of surviving models behugMCS,///A;M. If a fixed significance
level oy is used at each stepf[Ag;M contains the best model from#y with (1 — o) confidence.
The null hypothesis is tested by means of the range statstimombining individuak-statistics
from the pairwise comparison of forecasts. An estimate eftbymptotic variance of the pairwise
loss differentials is obtained from a bootstrap procedwscdbed in Hansen et al. (2003). Re-

4According to Ziggel et al. (2014) the finite sample accuratthe test statistics are not greatly affected by the
choice of a continuous probability distribution functiar £, provided that its variance is small.
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ported p-values are corrected to ensure consistency thrinagiterative testing framework. See
Hansen et al. (2003) and Hansen et al. (2011) for more détaall subsequent empirical results,
a level of 95% confidence will be used in the MCS analysis.

The estimation of VaR for horizons longer than one day is apoirtant issue in determining
financial risk. However, the extension of the Hawkes-POT ehérdm a single prediction period
to a longer horizon is not a trivial exercise, due to the dyicaspecification for the intensity
based on a stochastic counting process. As a final measune gietformance of the bivariate
point process models, a simple attempt is made to obtain-peritod VaR estimates and examine
whether they satisfy the standard tests discussed editiexis achieved by scaling the one period
VaR by a factoih?u )
vaR, "~ hfwaR,

whereh is the horizon time anefu is the unconditional shape parameter obtained from the raw
log-returns. The approach used here is based on EVT suggéist the estimation of long-term
VaR is actually possible for fat tailed distributions (seanizlsson and De Vries, 2000; Cotter,
2007, for empirical applications of this approach). Theanagvantage of this simple approach is
that besides the estimation of the unconditional shapermstmfu, there is no need to re-estimate
any additional parameters. Although VaR accuracy for npétiods is complicated by the fact
that the VaR exceptions are intrinsically autocorrelated,unconditional coverage te&tRc) is
applied over 5 and 10 day horizons, accounting for autoladio®. Given the overlapping nature
of the multi-period forecasts none of the more complex tastsindertaken.

3.1. Data

The data consists of daily returns for the S&P 500, Nasdad B@, Dow Jones and Nikkei stock
market indices, and their respective IV indices, VIX, VXNDXX, VXD, and VXJ. As the focus is
on extreme increases in IV, events will be defined on dailydbgnges in IVAIV; =In (1Vy/IVi_1)
for each market. All data series used here are obtained friowntberg. For each pair of stock
market index and IV, the longest sample of data availableliscted (S&P 500: 02/01/90, DAX:
02/01/92, Dow Jones: 02/1/98, Nikkei: 05/01/98, Nasdaq0®/D0), with all series ending 31
December, 2013. The period ending 30 December 2011 is usedtimation while 2012-2013 is
used for backtesting.

The VIX index was the first widely published 1V index upon whitrading was developed. 1V
for other U.S. indices (VXN and VXD) and both the European AX) and Japanese markets
(VXJ) all follow the same principle as the VIX. The VIX indexas developed by the Chicago
Board of Options Exchange from S&P 500 index options to bereegd measure of the market’s
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Table 1: Descriptive statistics for the daily stock marletirns and IV log-changes.

S&P 500 VIX DAX30 VDAX DowJones VXD Nikkei VXJ Nasdaq VXN
mean 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
sd 0.01 0.03 0.01 0.05 0.01 0.06 0.02 0.06 0.02 0.05
min -0.09 -0.15 -0.09 -0.27 -0.08 -0.33 -0.12 -0.42 -0.10  310.
max 0.11 0.22 0.11 0.31 0.11 0.53 0.13 0.58 0.11 0.36
skewness -0.24 0.65 -0.10 0.68 -0.08 0.64 -0.32 1.45 -0.07 57 0.
kurtosis 11.65 7.31 7.40 6.81 9.97 7.05 9.11 16.08 7.41 6.74

Ljung-Box 42.26* 109.82*  24.51* 37.77* 39.74* 50.09* 9.43* 31.01* 18.71*  31.41*
Jarque Bera  18916.57* 5118.41* 4292.14* 3637.99* 7639.512837.02* 5806.37* 27554.81* 2632.06 2070.05*

ADF test -18.20* -19.81*  -16.94*  -17.83* -15.31* -16.49* 5B8* -15.97* -14.54  -16.80*
Start of 02/01/99 02/01/92 02/01/98 05/01/98 01/01/00
sample period
Extreme 606 533 379 370 326
events
Comovements 340 308 201 197 160

Notes:The Ljung-Box statistics are significant for a lag of 5 traglolays. *, **, *** represent significance
at 1%, 5% and 10% levels, respectively. All the samples emkeicember 31, 2013.

estimate of average S&P 500 volatility over the subsequentating days. It is derived from
out-of-the-money put and call options that have maturitiese to the fixed target of 22 trading
days. For technical details relating to the constructiothefVIX index, see CBOE (2003).

Descriptive statistics for each series are given in Tablei clear that for all markets, the sample
standard deviation of changes in IV are much larger than dhesponding equity index returns.
All series exhibit high levels of kurtosis, stock marketureis are negatively skewed and changes
in IV are positively skewed. None of the series analysed arenally distributed based on the
Jarque-Bera statistic. The Ljung-Box statistics rejeetrihll of no autocorrelation at a lag of 5
trading days for all series. Augmented Dickey—Fuller (ADR&3ts for the presence of unit roots
show that all time series are stationary at 1% significanos.le

Extreme movements in stock market returns or changes ind\éaents for which the probability

is small. An extreme event is defined as one that belongs tba#eof the most negative returns
in stock markets, or to the 10% of the most positive log-cleanrg IV. Table 1 reports the number
of extreme events occurring in stock market returns and tices, independently and simulta-
neously. Of these, between 49% and 57% of the extreme evenjsiat events where extreme
movements in equity returns and IV occur simultaneousfiected in the comovements reported
in the bottom row.

Fig. 3.1 gives an overview of the comovement at extreme sewelstock market returns and
IV. The plots in the left column show the market returns andr#fices, with bars under the IV
indicating the occurrence of the most negative extremenstgiven the occurrence of a positive
extreme change in IV. In a similar fashion to volatility ifseéhese extreme events tend to cluster
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through time. The centre column of plots shows the relatignbetween changes in IV and

stock market returns. There is a clear negative relatipnséiween the two series reflecting the
commonly observed asymmetry in the equity return-votgtiielationship. The occurrence of

extreme events, negative market returns and positive @saingV, which are of central interest

here, are represented by the black dots.

An alternative approach for measuring extremal comoversetiite extremogram introduced by
Dauvis et al. (2009). This is a flexible conditional measurexifemal serial dependence making
it particularly well suited for financial applications. Tipéots in the right column in Fig. 3.1
show the sample extremograms for the 10% of the most negstidak returns conditional on
the 10% of the most positive log-changes on the IV indicesfédrdnt lags. The interpretation
of the extremogram is similar to the correlogram. Given that |V index has experienced an
extreme positive change at tinhethe probability of obtaining a negative extreme shock aclt
market returns at timée+ k is reflected by the solid vertical lines in the sample extrgram
for each lagk. The grey lines represent the .975 (upper) and .025 (lowmrjidence intervals
estimated using the stationary bootstrap procedure peopbbg Davis et al. (2012), while the
dashed line corresponds to this conditional probabilitgtarthe assumption that extreme events
in both markets are occurring independently (for more tketan the estimation refer to Davis
et al., 2012P Observe that the speed of decay of the sample extremograra# five markets

is extremely slow given that the dependence of extreme mergsrin returns on IV shocks is
significant out to about 10 lags in most cases.

4. Empirical results

In-sample estimation results are discussed in SectionAkJstimation results are not the main
focus of the paper, a full detailed set of parameter estisrate relegated to the Internet Appendix
with a discussion of the central points outlined here. Caispas of forecast performance in

terms of risk prediction are presented in Section 4.2.

4.1. Estimation results

Estimation results discussed in this section are basedtarugdo 30 December 2011. Estimation
results for the various GARCH and BEGE specifications arenteg in Tables IA.1 and IA.2.
Results for models using a skew t-distribution are repotiedause assuming either a conditional

52000 pseudo-series are generated for the estimation ofxtheneograms utilizing a stationary bootstrap with
resampling based on block sizes from a geometric distohutiith a mean of 200.
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Figure 3.1: Left column: Extreme negative returns (greyoohnd IV log-changes (blue color) to display the asym-
metric association between them. Middle column: Scattet @i IV log-changes and stock market returns. The
10% of the most extreme negative (positive) stock marketrmnst(lV log-changes) are displayed in grey color. Right
column: Sample extremograms for the 10% of the most negstdak returns conditional to the 10% of the most

positive log-changes on the 1V indices at different lagseydmes represent the .975 (upper) and .025 (lower) con-
fidence interval estimated using a stationary bootstrapgutore proposed by Davis et al. (2012), while the dashed
line (blue color) corresponds to this conditional probiaglhnder the assumption that extreme events between both
markets occur independently. 1



normal or symmetric student t- distribution leads to irderiesults and hence they are not reported
here.

Estimates of the GARCH coefficients reveal a number of compaiterns. For models that do
not include IV as an exogenous regressor, estimates @ tteefficient (in Eqgs. 2.3, 2.4 and 2.5)
are in excess of .09 indicating a strong degree of volatility persistence. Whé is included,y

in the three models is found to be significant and the presehidéhelps explain a degree of the
persistence in many of the cases with the estimatg@sfalling. As is to be expected, estimates of
the asymmetry coefficiend in both the GJR-GARCH and EGARCH (Eqgs. 2.4 and 2.5) models
are significant. Conditionally, returns are found to exhiblatively heavy tails with estimates of
thev falling between 7 and 15. In all cases, estimates of the slkaanpeteny are significantly
less than one indicating that returns are conditionallyatiegly skewed, supporting the choice of
the skewed-t distribution. Of the competing models, EGARGe¢Huding 1V offers the best model
fit for all markets with the fit of the BEGE models close to bdik GJR-GARCH and EGARCH
models. While both positive and negative components oftWityaint he BEGE model are found
to be persistent, the negative component exhibits lessspamse than the corresponding positive
componentf, < pp), a result consistent with the findings of Bekaert et al. §01n three of the
markets, the impact of IV on the shape parametgrandn; are significant and positive with the
final two still positive though not significant.

Three versions of the univariate model in Eq. (2.9) are estith Model 1 is the full model
with marks ( > 0) and IV (o > 0). Model 2 only includes markg)( > 0) restrictingp = 0.
Model 3 includes neither marks nor covariates and restgicts 0 andp = 0. Again, the full
set of estimation results for the three univariate modedsr@ported in the Internet Appendix in
Table 1A.3. In all cases, the unrestricted Model 1 offerslibet overall fit. Estimates fap are
significant in all instances, reflecting the importance efsize of past marks for future intensity.
On the other hand, estimatesmfre strongly significant only in the S&P500 and Nikkei masket
meaning that the level of IV is only important for explainiting intensity of extreme events in these
two markets. Whilep is marginally significant for the DAX, it is insignificant fdhe remaining
markets.

Similar to the univariate case, four versions of the bitariamodel are estimated. The ground
intensities under Model 1 are generated by the full unstlimodel in Eq. (2.12) and contain the
past times and marks of both extreme return and IV eventl,yxit -, p1, p2 > 0, with the scale
of the return marks specified in Eq. (2.14). Model 2 also idekithe past times and marks of both
extreme return and IV events, with the restriction tipat= (), and p; = p2, with the scale only
driven by the arrival times and size of the past return evgnts—= 0). Model 3 contains the times
and marks of return eventg/{, ¢» > 0) but only the times of past IV events (i.3 = po = 0)
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with the scale only driven by the size of the past return esz€fite ground intensities under Model
4 are restricted to contain the times of past return and IViesyg, = > = 0 andp; = p2 = 0 with
the scale of the marks being driven by the timing of past IVhesgq, Yo > 0 andp, = p» = 0)
and the dynamic introduced by the arrival times of the exérenents in IV k12 > 0).

Table 1A.4 in the Internet Appendix reports the full estiroatresults for all four bivariate models.
In all markets, Model 3 is found to provide the best fit to theagashere the ground intensities of
extreme return)(gl) and IV ()\gz) events are driven by the size of past return marks and thadim
of past return and IV events, and the scale is driven by treedipast return marks. The impact
of the timing of past IV events on the intensities is evidenthie positive estimates @b which
are significant in four of the five markets. The degree of sel€ross-excitation, is reflected in the
combination of3, ¢ or p, and@ coefficients. Significant estimates 8141, ¢ andy; for Model

3 reveal strong self-excitation in the return events withnailar pattern evident for IV events in
terms ofd22 and . In terms of cross excitation the results are varied, esémaf @, andg are
nearly always significant with estimates®f, and3,1 being somewhat mixed. There appears to
be bi-directional cross-excitation in the DAX and Nikkei rkets, with excitation from returns to
IV in both the S&P500 and Nasdag markets.

4.2. Forecasting risk

In this section, results of the tests for VaR accuracy dsedsn Section 3 are presented. These
results are based on an out-of-sample backtesting perib®2013. Model estimation for fore-
casting purposes is initially based on the in-sample periating 30 December 2011, and then on
a recursive estimation window where the models are re-astdnevery week moving through the
2012-2013 period.

Before moving to a formal analysis of VaR accuracy, Figs. ahd 4.2 show VaR estimates and
predictions at a significance level ofd®, along with returns for the in- and out-of-sample (also
with exceptions) periods respectively. Results are shawthie S&P 500 index for a selection of
models across the different classes of models that provltebdest in-sample fit, EGARCH+IV,
BEGE+V, univariate (M1) and bivariate Hawkes-POT (M3).g8&ing with Fig. 4.1, it is clear
that all the VaR estimates broadly follow the volatility dfet overall market. Two observations
emerge, the EGARCH+IV estimates appear to be somewhat raaebie for much of the period
and both Hawkes based VaR estimates adapt to a higher lawefjdhe peak of market volatility

in 2009. The lower panels in Fig. 4.1 show the VaR estimatelsamsociated returns during a
number of important periods of crisis and heightened marddetility. It is evident that focusing

in on these periods of interest highlights that the VaR estid®generated by both MPP models are
less variable, certainly in comparison to those from the RGA+IV model. They do however
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Figure 4.1: Plots of in-sample VaR estimates and returres rfgrgative of log returns are shown) on the S&P 500
index. VaR estimates are shown for four models across tiferelift classes of models considered here, EGARCH +
IV, BEGE+IV, univariate and bivariate Hawkes-POT. The t@mel shows the full in-sample period, while the lower
panels highlight various subperiods of interest.

adapt to noticeably higher levels during the peak of histdly high volatility in 2009. Fig. 4.2
shows the corresponding VaR predictions during the batikteperiod, 2012-2013. While all the
forecasts vary with the overall volatility in returns, oragain, the VaR forecasts from both self-
exciting models are less variable than the EGARCH and BEGi#valgnts. The exceptions from
each model, BEGE+IV X), univariate Hawkes (+) and bivariate Hawkes) (@are also shown,
with EGARCH+IV model producing no exceptions in this casasudlly speaking, there is no
obvious clustering in the exceptions. It is clear the EGARGH(and to some extent BEGE+IV)
are not producing enough exceptiongrat 0.99 and hence generating slightly conservative VaR
predictions.

To begin the formal analysis, Table 2 reports results forithgample tests of VaR accuracy. To
make the most efficient use of space here, and enhance trabiiggabf the results, only a subset
of the results are reported here. Resultsrat 0.95,0.99,0.995 for the GARCH, BEGE (those

including 1V) and Hawkes-POT (Univariate M1 and Bivariat&@Mnodels with the best in-sample
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Figure 4.2: Plots of out-of-sample VaR prediction and nesuithe negative of log returns are shown) on the S&P 500
index. VaR estimates are shown for four models across tferelift classes of models considered here, EGARCH + 1V,
BEGE+IV, univariate and bivariate Hawkes-POT. Exceptifrosn each model, BEGE+IVX), univariate Hawkes-
POT (+) and bivariate Hawkes-POT) are also reported. The EGARCH+IV model produced no exoaptin this
case.

performance are reported here. The full set of results,sacai GARCH, BEGE and Hawkes-
POT models are reported across Tables IA.5 (GARCH and BE@G#&)IA.6 (Hawkes-POT) in
the Internet Appendix. All in cases, the results are basetheriull in-sample period ending in
December 2011. Results are shown in the form of p-valueshndrie shown in bold when a test
is rejected at a significance level af= 5%. Cells in the rows with the heading Exc. report the
number of VaR exceptions in each case. Results in the Excs stww that in comparison to
the GARCH models, the bivariate models tend to generathtsfi(ewer exceptionsX > VaR,)

for most of the series. The bivariate models (M3, includiNy ¢enerate a similar number of
rejections relative to the BEGE+IV model. In the vast majoof the cases, the tests are not
rejected, indicating that the models accurately deschieer-sample behaviour of the extreme
events in the context of VaR estimation. The majority of tegctions that do occur are found
with the Nikkei, particularly at the highest (0.999) levédlsignificance. Attention now turns to
forecasting.

Table 3 reports results for tests of out-of-sample VaR faseaccuracy, with the results reported
in the same format as Table 2. Again, only a subset of thetseare presented for the GARCH,
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Table 2: In-sample VaR accuracy test results.

Returns  Statistics \olatility Models (In-sample) Hawkes-POT Model§in-sample)
GJRGARCH+IV EGARCH+IV BEGE+IV Univariate (M1) Bivariate (M3)
a-level | 0.95 0.99 0.999 0.95 0.99 0.999 0.95 0.99 0.9¥95 0.99 0.999 0.95 0.99 0.999
Exc. 285 51 7 293 60 7 247 43 10| 245 52 8 259 49 8
LRuc 0.63 054 055 0.34 054 055 0.06 0.08 0.00.04 0.64 0.33 0.26 0.38 0.33
é LRind 0.71 033 089 0.10 025 0.89 0.18 041 0.88.50 0.32 0.88 0.40 0.35 0.88
S LRcc 0.84 052 0.83 0.16 043 0.83 0.07 0.15 0.28.10 055 0.61 0.37 0.44 0.61
3 DQhit 0.72 0.33 0.89 0.11 0.25 0.89 0.19 041 0.8p.51 032 0.88 0.41 0.35 0.88
% DQVaR | 0.73 052 099 0.27 042 099 0.09.02 000 |003 051 099 0.65 053 0.99
n MCuc 0.64 054 043 0.34 050 041 0.06 0.10 0.p8.05 0.63 0.25 0.26 0.43 0.35
MCind | 093 0.32 062 0.12 033 0.32 0.6801 0.14|0.00 001 0.30 000 0.05 0.30
MCcc 0.15 0.63 0.74 0.25 0.66 0.66 0.66.03 0.29|000 002 0.62 0.01 0.10 0.60
Exc. 284 58 6 297 53 8 207 31 3| 253 60 15 246 61 5
LRuc 0.73 0.76 0.86 0.26 0.72 0.330.00 000 0.32 |0.99 0.20 000 0.65 0.15 0.98
é LRind 0.35 002 091 0.19 0.11 0.88 0.08 054 0.950.13 0.74 0.77 0.37 0.22 0.92
a LRcc 0.61 0.08 0.98 0.22 0.25 0.620.00 001 0.61 |0.33 041 000 0.61 0.17 0.99
> DQhit 0.36 003 091 0.20 0.11 0.88 0.08 054 0.950.15 0.75 0.77 0.39 0.22 0.92
é DQVaR | 0.61 0.06 099 0.44 0.20 0.99000 0.64 0.81|0.33 0.63 092 059 031 0.99
a MCuc 0.72 0.74 0.73 0.26 0.76 0.380.00 000 0.24 | 0.95 0.20 000 0.68 0.14 0.79
MCind | 0.65 0.77 0.22 0.22 0.11 0.17 0.35 0.19 0.p9.01 0.88 0.49 000 094 0.11
MCcc 0.70 045 0.45 043 020 0.33 0.67 0.3®.01 | 001 0.24 0.98 0.00 0.12 0.22
Exc. 180 37 5 187 37 5 157 29 6| 161 34 10 164 36 12
LRuc 0.76 0.76 0.46 0.40 0.76 0.46 0.13 0.28 0.28.26 0.86 0.00 0.38 0.87 0.00
a LRind 021 041 091 0.11 041 091 0.08 049 0.89.82 041 0.81 0.62 0.39 0.77
§ LRcc 0.44 0.68 0.75 0.20 0.68 0.75 0.07 043 04852 0.71 002 0.60 0.68 0.00
g DQhit 0.22 041 091 0.12 041 091 0.09 049 0.89.82 042 0.81 0.63 0.39 0.77
g DQVaR | 0.39 0.64 0.03 0.20 0.62 0.03 0.22 0.05 0.24/0.81 056 097 0.83 053 0.96
MCuc 0.73 0.79 0.33 0.38 0.73 0.51 0.15 0.30 0.18.25 0.87 000 0.37 0.78 0.00
MCind |0.01 0.00 0.33 001 0.00 0.62 0.73 0.11 0.87 058 0.38 0.02 0.14 0.30 0.02
MCcc 002 000 0.66 002 000 0.77 053 0.25 0.26 0.85 0.76 004 0.27 0.59 0.05
Exc. 173 33 5 171 39 6 149 27 6| 171 39 10 178 38 7
LRuc 0.93 0.81 043 095 044 0.21 0.07 0.19 0.20.97 043 000 0.61 0.53 0.09
2 LRind 0.43 0.33 000 0.23 0.08 001 0.28 0.21 0.01 |0.87 0.08 002 0.55 0.44 0.01
> LRcc 0.73 0.60 001 0.49 0.16 001 0.10 0.19 0.01 |0.99 0.16 000 0.74 0.61 0.01
-é DQhit 0.44 0.33 000 0.25 0.08 001 0.29 0.21 0.01 |0.87 0.08 002 0.56 0.44 0.01
< DQVaR | 045 0.53 0.02 0,51 0.18 002 0.10 001 000 |0.29 0.16 0.07 0.39 0.570.03
z MCuc 096 0.79 049 096 045 0.25 0.07 021 0.19.97 0.38 000 0.60 0.46 0.07
MCind | 046 050 042 0.20 050 053 0.42 04®02 |0.01 0.87 0.76 002 091 0.67
MCcc 0.92 1.00 0.84 040 098 094 0.82 0.79.04 | 003 0.25 0.48 0.04 0.18 0.68
Exc. 141 27 2 133 25 3 121 17 2] 121 26 5 123 28 5
- LRuc 0.74 093 0.64 0.71 0.63 0.88 0.19.03 0.64 |0.17 080 0.22 0.23 0.89 0.22
X LRind 0.17 0.46 0.96 003 0.50 0.94 0.26 0.65 0.960.52 025 0.89 0.47 0.29 0.89
> LRcc 0.37 0.76 0.89 0.10 0.71 0.99 0.18 0.09 0.89.31 050 0.46 0.38 057 0.46
g DQhit 0.18 0.47 0.96 004 050 0.94 0.26 0.65 0.960.53 025 0.89 0.48 0.30 0.89
3 DQVaR | 0.21 003 0.98 003 0.10 056 053 0.90 0.9%059 039 099 0.60 0.44 0.99
2 MCuc 0.74 097 0.77 071 0.66 0.98 0.19.04 0.81|0.16 0.78 0.22 0.24 0.80 0.14
MCind | 0.94 0.33 0.70 0.02 0.03 0.42 0.12 0.06 0.690.00 0.00 0.16 000 0.00 0.16
MCcc 0.12 0.65 0.62 0.05 0.06 0.82 0.25 0.11 0.68.00 0.00 0.34 0.00 000 0.34

Notes:Results are based on the full in-sample estimation peridihgnn December 31, 2011. Results for

the volatility and Hawkes-POT models producing the bestample fit are reported here. Results are in
the form of p-values for each of the respective tests (witkalpres < 5% shown in bold) and the number of
exceptions observed (Exc.). at each confidence kevel
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Table 3: Out-of-sample VaR accuracy test results.

Returns  Statistics \olatility Models (Out-sample) Hawkes-POT Model§Out-sample)

" GJRGARCH+IV EGARCH+IV BEGE+IV Univariate (M1) Bivariate (M3)
a-level [ 0.95 0.99 0.999 0.95 0.99 0.999 0.95 0.99 0.9®95 0.99 0.999 0.95 0.99 0.999

Exc. 5 0 0 10 0 0 18 2 0| 38 8 1 23 3 1
LRuc 0.00 0.00 0.32 000 000 0.32 0.13 0.12 0.320.02 0.23 054 0.63 032 0.54
é LRind 0.75 100 1.00 052 1.00 1.00 0.25 090 1.p0.56 0.61 0.95 0.14 085 0.95
o LRcc 000 0.01 0.61 000 001 0.61 0.16 0.30 0.6140.05 042 0.83 0.30 060 0.83
3 DQhit 0.76 100 1.00 053 1.00 1.00 0.26 0.90 1.p0.58 0.61 0.95 0.15 0.85 0.95
fal DQVaR |[0.79 1.00 1.00 042 100 100 0.17 091 1.p084 0.71 0.99 0.30 0.95 1.00
% MCuc 000 0.01 0.87 000 000 0.25 0.15 0.16 1.000.01 025 0.63 0.69 0.39 0.60
MCind |0.78 1.00 1.00 0.75 100 100 094 091 1.p0.23 0.76 091 0.84 042 091
MCcc 0.45 0.00 0.88 053 1.00 0.41 0.12 0.18 1.000.45 0.48 0.20 0.34 0.83 0.19

Exc. 19 6 0 24 6 0 21 5 0| 27 3 0 29 2 0
LRuc 0.19 0.67 032 082 0.67 032 036 098 0.p0.69 033 0.32 043 0.12 0.32
> LRind 0.75 070 1.00 0.88 0.70 1.00 0.89 0.75 1.p0.67 0.85 1.00 0.55 0.90 1.00
é LRcc 0.41 085 061 096 0.85 0.61 065 095 0.6085 061 061 0.61 030 0.61
> DQhit 0.75 070 1.00 0.89 0.70 1.00 0.89 0.75 1.p0.68 0.85 1.00 0.56 0.90 1.00
é DQVaR | 0.58 0.02 1.00 091 0.17 100 0.74 0.13 1.000.17 0.95 1.00 0.27 0.97 1.00
a MCuc 0.22 066 1.00 091 0.74 1.00 0.34 0.87 1.p0.63 043 1.00 0.45 0.17 1.00
MCind |0.89 0.27 100 060 0.28 1.00 0.81 0.92 1.00.40 041 100 0.30 0.60 1.00
MCcc 0.20 053 1.00 0.79 054 1.00 037 0.16 1.p0.78 0.82 1.00 0.61 0.80 1.00

Exc. 15 1 0 18 1 1 14 1 0| 24 3 0 25 3 0
LRuc 003 0.03 0.32 0.13 003 054 001 003 032|084 033 032 099 033 0.32
a LRind 0.34 095 1.00 0.67 0.95 095 037 095 1.p0.88 0.85 1.00 0.52 0.85 1.00
§ LRcc 0.05 0.09 061 0.28 0.09 0.820.03 0.09 061|097 062 061 0.81 062 0.61
s DOQhit 035 095 1.00 0.68 0.95 0.95 0.38 095 1.p0.88 0.85 1.00 0.53 0.85 1.00
g DQVaR | 051 0.06 1.00 0.78 0.07 0.08 0.68 0.24 1.p0.33 096 1.00 0.32 0.97 1.00
MCuc 004 0.06 1.00 0.16 0.04 057 001 0.04 1.00|0.87 045 1.00 0.96 054 1.00
MCind |0.74 036 1.00 0.78 035 0.36 0.80 0.36 1.p0.68 0.41 1.00 059 041 1.00
MCcc 053 0.72 1.00 044 0.72 0.72 040 0.72 1.p0.62 0.84 1.00 0.84 0.82 1.00

Exc. 19 1 1 25 2 1 18 2 1| 28 6 1 26 6 1
LRuc 0.19 0.03 054 098 0.12 054 0.15 0.13 0.530.50 0.64 0.53 0.78 0.64 0.53
2 LRind 0.71 095 095 085 090 0.95 0.68 090 0.p5.63 001 095 0.76 0.05 0.95
> LRcc 0.40 0.09 0.82 098 030 0.82 0.33 032 0.8p71 001 0.82 092 0.14 0.82
-é DQhit 0.71 095 095 085 0.90 095 0.69 090 0.p8.64 001 095 0.77 0.06 0.95
~ DQVaR | 091 0.75 0.76 097 030 099 0.83 052 0.36085 002 1.00 0.94 0.15 1.00
z MCuc 0.24 0.07 064 095 0.22 0.28 0.18 0.20 0.66.54 0.63 0.22 0.72 0.65 0.46
MCind |0.33 0.30 0.30 0.32 0.25 030 046 0.26 0.80.22 0.25 0.30 0.33 0.10 0.29
MCcc 0.67 059 0.60 064 051 061 091 052 0.6043 050 0.62 0.66 020 0.61

Exc. 28 9 0 31 16 2 18.00 2.00 0.00 25 3 0 26 5 0
> LRuc 0.56 0.11 0.32 0.24000 0.11 0.13 0.12 0.320.89 036 0.32 0.73 095 0.32
X LRind 0.07 057 1.000.04 030 0.90 0.67 090 1.000.82 0.85 1.00 0.75 0.75 1.00
> LRcc 0.16 0.23 0.61 0.070.00 0.28 0.28 0.30 0.6110.97 0.64 0.61 090 095 0.61
g DQhit 0.08 057 1.00 0.05 031 0.90 0.68 090 1.p0.83 0.85 1.00 0.76 0.75 1.00
3 DQVaR | 0.06 0.26 1.00 0.14 052 092 0.37 093 1.p0.18 095 1.00 0.15 0.90 1.00
2 MCuc 0.60 0.08 0.13 0.22000 0.03 0.11 0.25 1.00/0.90 0.53 1.00 0.76 0.86 1.00
MCind |0.28 0.09 000 0.35 0.22 0.70 0.84 0.78 0.0p0.67 0.19 1.00 0.74 0.96 1.00
MCcc 0.57 0.17 000 0.71 045 0.60 0.31 0.44 1.0p0.68 0.37 1.00 0.51 0.08 1.00

Notes: Results are based on the backtesting period of 2012-2018ultR®édor the volatility and Hawkes-
POT models producing the best in-sample fit are reported Rasults are in the form of p-values for each
of the respective tests (with p-values < 5% shown in bold)taechumber of exceptions observed (Exc.).
at each confidence level
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Table 4: MCS results for comparing VaR forecast performance

S&P500 - VIX DAX - VDAX DJI - VXD Nikkei - VXJ Nasdaq - VXN
a-level 0.95 0.99 0.999 0.95 0.99 0.999 0.95 0.99 0.999 0.95 0.99 0.999 0.95 0.99 0.999
Model l * * * * * * * * * *
Uni. Hawkes-POT Model 2 * * * * * * * * * * * *
Model 3 * * * * * * * * *
Model l * * * * * * * * * * * *
. Model 2 * * * * * * * * * * * * * *
BIV HaWkeS‘POT Model 3 * * * * * * * * * * * * * *
MOdel 4 * * * * * * * *
GJRGARCH * * * * * * *
GJRGARCH+IV * * * * * * *
EGARCH * * * * *
* * * * * *
\olatility Models EGGAESS_TIV . . . . .
GARCH+IV * * * * *
BEGE * * * * * * * *
BEGE+IV * * * * * * *

Notes:The MCS results are based on the asymmetric quantile lostidarin Eq. (3.9), at each VaR level.
The MCS results are reported for a level of significancengt= 5%, with an * indicating that the model is
a member of the final MCS.

BEGE (those including IV) and Hawkes-POT (Univariate M1 d@idariate M3) models with
the full set of out-of-sample results reported across Fabde7 (GARCH and BEGE) and IA.8
(Hawkes-POT) in the Internet Appendix. The results are thasel-day ahead VaR forecasts for
the final backtesting period, 2 January, 2012 to 31 DecemB64s3. The first result that stands
out is the frequent rejections of the LRuc, and often MCutstés the GARCH models for all
markets except the DAX and NASDAQ. This indicates that theR&K models are producing
inaccurate VaR forecasts as the average rate of rejectgigngficantly different from the given
level of significance in many cases. While the BEGE models mteduce a number of rejections,
they are less frequent than those based on the GARCH foseCHsis improvement reflects the
ability of the more flexible BEGE distribution to captureltbehaviour. Apart from a number
of rejections of the LRuc and MCuc tests in the case of the S&®, the univariate Hawkes-
POT models produce few other rejections. In contrast, taereno rejections produced under the
bivariate Hawkes-POT forecasts across the five marketsdemesl, indicating that treating the IV
events as an additional MPP offers gains in forecast acgurac

Table 4 reports the MCS results based on the asymmetricitpibnsts function in Eq. (3.9) and a
level of significance otryy = 5%. Table 4 shows a * when a model is included in the final MCS
at a confidence level of 95%. All models are included here bldd as the initial set of models
considered in the MCS testing procedure covers the fullgasfgnodels. The most significant
result is that the bivariate models are included in the fin@lSvin nearly every case, across all
markets and VaR levels. Of these models, Models 1-3, whicludte both the timing and size of
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Table 5: VaR adequacy tests resultshies 5 andh = 10 day ahead forecasts.

S&P500 - VIX DAX - VDAX DJI - VXD Nikkei - VXJ Nasdaq - VXN
a-level | 095 099 0999 095 099 0999 095 099 0999 095 0.99 0.999 0.95 0.99 0.999

VaR forh =5
Model 1| 31 1 0 30 1 0 34 1 0 35 2 0 34 5 0
(0.22) ©.03) (0.32)| (0.33) ©.03) (0.32)| (0.07) ©.03) (0.32)| (0.05) (0.13) (0.32) (0.05) (0.94) (0.33)
Model 2| 29 2 0 31 2 0 33 1 0 38 1 0 36 5 0
(0.40) (0.13) (0.32) (0.24) (0.12) (0.32) (0.10) ©.03) (0.32)| (0.01) (0.03) (0.32)| (0.02) (0.94) (0.33)
Model 3 9 0 0 23 1 0 27 2 0 32 2 0 26 3 0
(0.00) (0.00) (0.32)| (0.66) ©.03) (0.32)| (0.65) (0.13) (0.32) (0.15) (0.13) (0.32) (0.70) (0.37) (0.33)
Model 1| 29 2 0 34 6 0 33 1 0 35 2 0 37 6 0
(0.40) (0.13) (0.32) (0.05) (0.67) (0.32) (0.10) ©.03) (0.32)| (0.05) (0.13) (0.32) (0.01) (0.61) (0.33)
Model 2| 29 2 0 34 6 0 33 2 0 35 2 0 36 5 0
(0.40) (0.13) (0.32) (0.05) (0.67) (0.32) (0.10) (0.13) (0.32) (0.05) (0.13) (0.32) (0.02) (0.94) (0.33)
Model 3| 31 2 0 6 0 1 0 2 0 37 5 0
(0.22) (0.13) (0.32) (0.05) (0.67) (0.32) (0.07) ©.03) (0.32)| (0.00) (0.13) (0.32)| (0.01) (0.94) (0.30)
Model 4| 16 2 0 23 2 0 27 2 0 38 3 0 3 0
(0.05) (0.13) (0.32) (0.66) (0.12) (0.32) (0.65) (0.13) (0.32) (0.01) (0.34) (0.32)| (0.56) (0.37) (0.33)

Uni. Hawkes-POT

Biv. Hawkes-POT

VaR forh =10
Model 1| 19 1 0 20 0 0 30 1 0 36 3 0 24 3 0
(0.23) ©.03) (0.32)| (0.30) ©.000 (0.32)| (0.27) ©.03) (0.32)| (0.03) (0.35) (0.32)| (0.98) (0.38) (0.33)
Model 2| 19 1 0 21 0 0 30 1 0 37 3 0 24 3 0
(0.23) ©.03) (0.32)| (0.42) ©E.000 (0.32)| (0.27) ©.03) (0.32)| (0.02) (0.35) (0.32)| (0.98) (0.38) (0.33)
Model 3 8 1 0 15 0 0 24 2 0 36 0 0 18 2 0
(0.00) (0.03) (0.32)| (0.03) (0.00) (0.32)| (0.92) (0.13) (0.32) (0.03) (0.00) (0.32)| (0.2) (0.15) (0.33)
Model 1| 18 1 0 31 1 0 30 1 0 36 3 0 23 5 0
(0.15) ©.03) (0.32)| (0.22) ©.03) (0.32)| (0.27) ©.03) (0.32)| (0.03) (0.35) (0.32)| (0.85) (0.92) (0.33)
Model 2| 18 1 0 31 1 0 2 0 3 0 24 3 0
(0.15) ©.03) (0.32)| (0.22) ©.03) (0.32)| (0.14) (0.13) (0.32) (0.03) (0.35) (0.32)| (0.98) (0.38) (0.33)
Model 3 8 1 0 31 1 0 33 1 0 41 6 0 24 3 0
(0.00) (0.03) (0.32)| (0.22) ©E.03) (0.32)| (0.09) ©.03) (0.32)| (0.00) (0.63) (0.32)| (0.98) (0.38) (0.33)
Model 4| 12 1 0 16 1 0 25 2 0 40 2 0 18 2 0
(0.00) (0.03) (0.32)| (0.05) ©E.03) (0.32)| (0.92) (0.13) (0.32) (0.00) (0.14) (0.32)| (0.20) (0.15) (0.33)
Expectgd 2510 5.02 0.50| 2535 5.07 0512500 5.00 0500 25.00 5.00 050 24.40 4.88 0.49
Shapeg, 0.476 0.436 0.468 0.375 0.388

Notes:Results of the LRuc test are shown in the form of p-valuesalpes less than 5% are shown in bold
to highlight where the rejections of the accuracy tests aceiwing.

Uni. Hawkes-POT

Biv. Hawkes-POT

IV events are virtually always included in the MCS. Model 4igh includes only the timing of
the IV events is excluded in the majority of cases. Theselteesuce again support the notion
that treating IV as an additional point process and consigehe size and timing of these events
leads to the greatest benefit in terms of forecast accurdmyumivariate Hawkes-POT models are
included in the MCS in well over half the cases. Of these ngddbdel 2, which only includes
the size of past return events, is most frequently includetie MCS. The BEGE models follow
closely in terms of forecast performance and remain in th&SMCabout half of the cases. Finally,
the GARCH models are inferior, and are excluded from the MCtBe& majority of cases.

Overall these results reveal that harnessing informatiom flV, when treated as its own point
process is beneficial. Given the bivariate Hawkes-POT nsqatelduce the most accurate forecasts
(that pass all tests) across the widest range of scenandisating that information regarding the
timing and size of past IV extreme events is of benefit in a ivaiitate setting for forecasting VaR
in equity markets. The benefit of including IV in a univarigi@nt process model or the BEGE
framework, is somewhat more limited, and of little use in ¢batext of GARCH models.
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While the bivariate MPP models appear to dominate at the apdadrizon, the final analysis deter-
mines whether adequate VaR forecasts can be generatediedtRP models at longer horizons.
Based on 5- and 10-day VaR forecasts using the methodolsgysied earlier in Section 3, Table
5 reports results for the LRuc test based on both the unteaaiad bivariate MPP models. Given
the small number of MPP models, results for all the MPP maoalepresented in Table 5. Again,
the results shown in bold indicate when a rejection at 5% seoled. At théenh =5 day horizon,
the adequacy of the coverage is only rejected in 22% and 12¥%eafases for the univariate and
bivariate models, once again indicating the informatiohMiis best harnessed through a bivariate
MPP. While unsurprisingly, the rejection rates do rise mgwo the longer horizon di = 10, the
adequacy of the coverage is only rejected in a quarter oksdasd¢he bivariate models (33% of
cases for the univariate models).

In summary, the bivariate Hawkes-POT models that includag\an additional MPP produce the
best performing model across the widest range of scenartosy pass all of the individual tests
of VaR forecast adequacy, they are most frequently founetarbongst the most accurate under
asymmetric quantile loss, and are able to generate adedatiorecasts in most cases at a longer
one-week ahead (somewhat less at two-weeks ahead) foherasin.

5. Conclusion

Modelling and forecasting the occurrence of extreme evianfisancial markets is crucially im-
portant. While there have been many studies consideringoleeof implied volatility (V) for
forecasting volatility, this has not been the case wheninigalith extreme events. This paper
addressed how best to use IV to generate forecasts of thefreskireme events in the form of
Value-at-Risk (VaR).

The BEGE model, along with traditional GARCH models inchgliV as an exogenous variable,
coupled with EVT formed the benchmark set of models. Moremeadvances in VaR prediction
have employed marked point process (MPP) models that tregidints as the occurrence of ex-
treme events and marks their associated size. This papesged a number of novel MPP models
that include IV. A number of univariate models for extrem&ure events are developed, where
the size and timing of past return events and IV are includecaddition, novel bivariate MPP
models were also proposed that move beyond simply includrag an exogenous covariate. The
second dimension in the bivariate models, apart from exdrstock market losses, were extreme
increases in IV which were treated as a second MPP.

The empirical analysis here focused on a number of majortyequarket indices and their asso-
ciated IV indices, where the full range of models are usecetegate estimates of VaR. In terms
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of an in-sample explanation of extreme events in equity etarkhe bivariate models satisfied all
backtests of VaR adequacy, while the univariate modelsla@EGE models passed most. The
GARCH models produced relatively frequent rejections. iikir pattern was observed in 1-day
ahead predictions of VaR. GARCH style models including I\hgmted inaccurate forecasts of
VaR and failed a number of tests relating to the frequench®MaR exceptions. Univariate MPP
models and BEGE models provided more accurate forecastighstill produced a number of
rejections in backtesting. It was also shown that longeizborVaR forecasts from the bivari-
ate MPP models satisfied most tests. Overall, the bivariatgets that included the extreme IV
events produced the most accurate forecasts of VaR ac®séglithange of levels of significance
and markets. A direct comparison of VaR forecast accuraowst that the bivariate MPP models
that consider the size and timing of past IV events were antb@gnost accurate in the widest
range of cases. These results show that while 1V is certaifhlyenefit for predicting extreme
movements in equity returns, the framework within whiclsitised is important. It is shown that
the novel bivariate MPP model proposed here leads to sugererasts of extreme risk in a VaR
context.
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AppendixA. Proofs

Proof. (Proposition 1) Using the continuous representation of a Hawkes processedtidg the
expected intensit [Ag(t | 7&)] = Ao < o, gives for the univariate case

EAg(t | )]

E

v+19/ f(w,z)h(t —s)N(dsx dwx dz)]
(—oot)xRZ

v+IE[f(w2)]E

/ h(t—s) Ag(s| %’g)ds]
()

and by assuming [ f (w, z)] = pwz and by defining\g(s | .7Z5)ds= N(ds) leads to

Eg(t| )] = v+9thuz [ hit—9Aods
(—oo7t)

= v+z9uwz)\o/ h(s)ds
(0,00)

= V49 UwAo,

where finallyAp = (1— 29[1WZ)_1V is obtained. Hence, the expectation of the ground condition
intensity is finite in the univariate case, if and only if<09 iz < 1.

In the bivariate model the demonstration follows the sarapsstAssume that the expected inten-
sity E [AK(t | 74)] = A§ < o, fork = 1,2. Then, by taking the unconditional expectation in (2.12)

leads to

E [Ag(t| 4)]

E[A(t] 4)]

E

V1+z911/ fa(w)hg (t —s)Ny(dsx dw)]
(—oo7t)><]R+

+E

+z912/ f1(z)ha (t —s) No(dsx dz)]
(—oo7t)><]R+

E

V2+z921/ fo(w)hy (t —s) Ny (dsx dw)]
(—oo7t)><]R+

+E

1922/ f2(z2)hp (t —s) No(dsx dZ)]
(_°°7t)><R+
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by assuming [ fi(w)] = uK andE[f«(2)] = uk, the expectations are reduced to

E[AMt )] = vitOnpiE /( (- N(ds+ + 910l /( ety
—oot —oot

E[A2t | )] = vo+OulE /( (- N(ds+ + 9o /( et 9l
—oo.t i —oo7t

Since the kernel functions satisff§” hy (s)ds= 1 and)\g';(s| Hs)ds= Ng(ds) for k=1,2, it is
possible to express

E[AMt )] = vitOnpiE /(O )hl(s))\g(s\%s)ds + S1oulE /(0 )hz(s))\g(sufs)ds)

E[A2t | )] = vo+OulE /(O )hl(s))\g(s\%s)ds + 99pl2E /(0 )hz(s))\g(sufs)ds)

which in turn is equivalent to

ENt|4)] = vitIupiAd +91opird
EA2(t] )] = Vot 9audAd+922u2A8,

or in matrix representation
Ao =V +(MoQ)Ao,

1,1

wherev = (v1,v2)", M = “‘g “g andQ = 1 Y1z . Hence the unconditional ex-
Hw Hz J21 922

pectation of the ground intensity given By = (1, — Mo Q)_1 v exists, if and only if, the spectral

radius of the matridM o Q is less than one.
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