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Abstract

Fractional differential equations are powerful tools to model the non-locality and spatial heterogeneity evident in
many real-world problems. Although numerous numerical methods have been proposed, most of them are limited to
regular domains and uniform meshes. For irregular convex domains, the treatment of the space fractional derivative
becomes more challenging and the general methods are no longer feasible. In this work, we propose a novel
numerical technique based on the Galerkin finite element method (FEM) with an unstructured mesh to deal with
the space fractional derivative on arbitrarily shaped convex and non-convex domains, which is the most original
and significant contribution of this paper. Moreover, we present a second order finite difference scheme for the
temporal fractional derivative. In addition, the stability and convergence of the method are discussed and numerical
examples on different irregular convex domains and non-convex domains illustrate the reliability of the method. We
also extend the theory and develop a computational model for the case of a multiply-connected domain. Finally,
to demonstrate the versatility and applicability of our method, we solve the coupled two-dimensional fractional
Bloch-Torrey equation on a human brain-like domain and exhibit the effects of the time and space fractional indices
on the behaviour of the transverse magnetization.

Keywords: finite element method, unstructured mesh, Riesz fractional derivative, irregular domains,
two-dimensional, time-space fractional diffusion equation

1. Introduction

Over the past decades, fractional derivatives have been widely used in physics [1, 2], biology [3, 4], chemistry
[5], hydrology [6, 7], finance [8] and the related theory has been expanding at a fast rate [9, 10, 11]. A considerable
number of computational models emerged that are based on applying the finite element method (FEM) to frac-
tional diffusion equations (FDE). This work dates back to Roop and Ervin [12, 13], who constructed appropriate
fractional derivative spaces and presented a theoretical framework for the Galerkin finite element approximation to
the fractional advection dispersion equation. Deng [14] developed the FEM for the numerical resolution of the space
and time fractional Fokker-Planck equation. Zhang et al. [15] discussed the Galerkin finite element approximation
of symmetric space-fractional partial differential equations. Li et al. [16] studied the Galerkin FEM for time-space
fractional order nonlinear subdiffusion and superdiffusion equations. Liu et al. [17] investigated the finite element
approximation for a modified anomalous subdiffusion equation. Zeng et al. [18] developed finite difference and finite
element approaches for the time-fractional subdiffusion equation with Dirichlet boundary conditions. Jin et al. [19]
studied the Galerkin FEM and lumped mass Galerkin FEM for the initial boundary value problem of a homoge-
neous time-fractional diffusion equation. Jin et al. also [20] considered the Galerkin FEM for the initial/boundary
value problem involving multiple time-fractional derivatives on a bounded convex polyhedral domain. Bu et al.
[21] considered the Galerkin FEM for two-dimensional Riesz space FDE. Liu et al. [22] presented a mixed FEM
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for a time-fractional fourth-order partial differential equation. Feng et al. [23] considered the FEM with a second-
order time scheme for a space-time FDE. Zhuang et al. [24] introduced the Galerkin FEM and error analysis for
the fractional cable equation. Recently, Zhao et al. [25] established the nonconforming FEM for two-dimensional
multi-term time fractional subdiffusion equations. Jin et al. [26] developed variational formulations of a Petrov-
Galerkin FEM type for one-dimensional fractional boundary value problems. Yang et al. [27] considered the FEM
for nonlinear Riesz space fractional diffusion equations on irregular domains. Fan et al. [28] discussed the FEM for
the two-dimensional time-space fractional wave equation on irregular domains.

In fact, many problems from science and engineering involve mathematical models that must be computed on
irregular domains and therefore seeking effective numerical methods to solve FDE on such domains is important.
Although existing numerical methods for FDE are numerous, most of them are limited to regular domains and
uniform meshes. Research involving unstructured meshes [28, 29] and irregular domains [27, 30, 31] is more sparse.
For the classical diffusion equation with integer order derivatives, there is some theory and research involving
unstructured meshes with the finite volume element method (see [32, 33, 34] and references therein). For the
fractional case, recently, Karaa et al. [35] proposed a finite volume element method with unstructured mesh for
approximating the anomalous subdiffusion equations with temporal fractional derivative. Le et al. [36] studied the
finite element approximation for a time-fractional diffusion problem on a domain with a re-entrant corner. Fan
et al. [28] discussed the unstructured mesh finite element method for the time-space fractional wave equation.
They used the L2 scheme to approximate the temporal derivative with low accuracy and extended the properties
of the fractional derivative space to the two-dimensional convex domain case without detailed proof. Here, we
will consider a finite element method suitable for implementation with an unstructured mesh for the time-space
fractional diffusion equation.

In this paper, we consider the following two-dimensional time-space Riesz fractional diffusion equation (2D
TSRFDE) on an irregular convex domain:

C
0 D

γ
t u(x, y, t) = K1

∂2αu(x, y, t)

∂|x|2α
+K2

∂2βu(x, y, t)

∂|y|2β
+ f(x, y, t), (x, y, t) ∈ Ω× (0, T ], (1)

with the initial condition
u(x, y, 0) = φ(x, y), (x, y) ∈ Ω, (2)

and boundary condition
u(x, y, t) = 0, (x, y, t) ∈ ∂Ω× (0, T ], (3)

where 0 < γ < 1, 1
2 < α, β ≤ 1, K1 > 0, K2 > 0, f(x, y, t) and φ(x, y) are two known smooth functions.

The irregular convex domain Ω is defined as (see Figure 1): Ω = {(x, y)| c(y) < x < r(y), a1 < y < b1} or
Ω = {(x, y)| g(x) < y < m(x), c1 < x < d1}, where a1 = min

(x,y)∈Ω
g(x), b1 = max

(x,y)∈Ω
m(x), c1 = min

(x,y)∈Ω
c(y), and

d1 = max
(x,y)∈Ω

r(y). Here the irregular convex domains means the convex domain in with a curved boundary, which is

compared with the regular convex domain such as a square or rectangle. In Eq.(1), the Caputo fractional derivative

c(y) r(y)

b1

a1

y

xO

g(x)

m(x)

c1 d1

y

xO

Figure 1: The boundaries of convex domain Ω .

2



C
0 D

γ
t u is defined as [10]

C
0 D

γ
t u(x, y, t) =

1

Γ(1 − γ)

Z t

0

(t− s)−γ ∂u(x, y, s)

∂s
ds.

As Ω is an irregular convex domain, the boundary value in the space fractional derivative is no longer a fixed
constant, which is distinct from the common Riemann-Liouville fractional derivative definition [9]

aD
2α
x u(x, y, t) =

1

Γ(n− 2α)

∂n

∂xn

Z x

a
(x− s)n−2α−1u(s, y, t) ds,

xD
2α
b u(x, y, t) =

(−1)n

Γ(n− 2α)

∂n

∂xn

Z b

x

(s− x)n−2α−1u(s, y, t) ds.

Here, we define the Riesz fractional derivatives ∂2αu
∂|x|2α

and ∂2βu
∂|y|2β

as

∂2αu(x, y, t)

∂|x|2α
= − 1

2 cos(απ)

�
c(y)D̃

2α
x u(x, y, t) + xD̃

2α
r(y)u(x, y, t)

�
,

∂2βu(x, y, t)

∂|y|2β
= − 1

2 cos(βπ)

�
g(x)D̃

2β
y u(x, y, t) + yD̃

2β
m(x)u(x, y, t)

�
,

and the Riemann-Liouville fractional derivative with varying boundary c(y)D̃
2α
x u(x, y, t), xD̃

2α
r(y)u(x, y, t), g(x)D̃

2β
y u(x, y, t)

and yD̃
2β
m(x)u(x, y, t) (n− 1 < 2α, 2β < n) are given by

c(y)D̃
2α
x u(x, y, t) :=

1

Γ(n− 2α)

∂n

∂xn

Z x

c(y)
(x− s)n−2α−1u(s, y, t) ds,

xD̃
2α
r(y)u(x, y, t) :=

(−1)n

Γ(n− 2α)

∂n

∂xn

Z r(y)

x
(s− x)n−2α−1u(s, y, t) ds,

g(x)D̃
2β
y u(x, y, t) :=

1

Γ(n− 2β)

∂n

∂yn

Z y

g(x)
(y − s)n−2β−1u(x, s, t) ds,

yD̃
2β
m(x)u(x, y, t) :=

(−1)n

Γ(n− 2β)

∂n

∂yn

Z m(x)

y

(s− y)n−2β−1u(x, s, t) ds.

The major contribution of this paper is as follows. Firstly, we establish and prove some new definitions and
lemmas for convex domains, which extends the properties of the fractional derivative space from the one-dimensional
case to the two-dimensional convex domain case. We believe this is a new contribution to the literature that was
not discussed in [28, 37]. Secondly, we propose a novel technique utilizing FEM and unstructured triangular meshes
to deal with the space fractional derivative on an irregular convex domain, which we believe is very flexible because
our considered solution domain can be arbitrarily convex and we need less grid nodes to generate the meshes. For
general convex domains, such as a human brain-like domain, the software Gmsh [38] can be used to partition and
generate regular unstructured triangular meshes (see figure 2). Due to the irregular domain, the treatment of the
space fractional derivative is not straightforward. Therefore, we reduce the calculation from the whole domain
Ω to every single triangular element and deal with it approximately by the Gauss quadrature technique, which
is elaborated in section 3. In [28], Fan et al. considered the time-space fractional wave equation, of which the
order of time fractional derivative is 1 < γ < 2 and discretised the time fractional derivative using the L2 scheme,
which requires discretisation of two time levels. Different to [28], we consider application of the FEM to time-space
fractional diffusion equations, of which the order of time fractional derivative is 0 < γ < 1. The time fractional
derivative is discretised using the L1 scheme, which only requires discretisation of the time fractional derivative at
one temporal level and is more computational efficient. Furthermore, we present a second order numerical scheme
for the temporal fractional derivative based on finite difference. Moreover, we extend the method to non-convex
domains and solve a problem on a multiply-connected domain, respectively. Another important contribution of our
work is the extension of the theory to allow the solution of the 2D TSRFDE on a multiply-connected domain and
we illustrate the numerical results for a particular case.

In order to demonstrate the applicability of our computational approach, we solve the two-dimensional coupled
fractional Bloch-Torrey equation on a human brain-like domain numerically and analyse the impact of the space
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fractional index on the diffusion behavior. In clinical settings, diffusion-weighted imaging (DWI) is increasingly
utilised to study heterogeneous water diffusion in the human brain, which is thought to be anomalous. In [39], the
researchers used the stretched exponential model to investigate the diffusion behavior in complex biological tissues,
such as human brain gray matter, glioblastoma tissues and erythrocyte ghosts. In [40], Magin et al. showed that
the model was a fundamental extension of the classical Bloch-Torrey equation through application of the operators
of fractional calculus. The time and space fractional Bloch-Torrey equation has the following form [40, 41]:

ωα−1C
0 D

α
t Mxy(r, t) = Dµ2(β−1)

�
∂2βMxy(r, t)

∂|x|2β
+

∂2βMxy(r, t)

∂|y|2β
+

∂2βMxy(r, t)

∂|z|2β
�
+ λ(t)Mxy(r, t), (4)

where λ(t) = −iγ(r · G(t)) , G(t) is the magnetic field gradient, γ and D are the gyromagnetic ratio and the
diffusion coefficient respectively, ω and µ are time and space constants, r = (x, y, z), i =

√
−1 and Mxy(r, t) =

Mx(r, t) + iMy(r, t). Therefore, models using fractional-order calculus have emerged as promising tools to analyse
diffusion images of the human brain to provide new insights into the investigations of tissue structures and the
microenvironment. For the two dimensional case, we equate real and imaginary components to express equation
(4) as a coupled system for the components Mx and My, i.e.,8><>: ωα−1C

0 D
α
t Mx(x, y, t) = Dµ2(β−1)

�
∂2βMx(x,y,t)

∂|x|2β
+ ∂2βMx(x,y,t)

∂|y|2β

�
+ λ0(t)My(x, y, t),

ωα−1C
0 D

α
t My(x, y, t) = Dµ2(β−1)

�
∂2βMy(x,y,t)

∂|x|2β
+

∂2βMy(x,y,t)

∂|y|2β

�
− λ0(t)Mx(x, y, t).

(5)

In [41], Yu et al. proposed an implicit numerical method for the two dimensional time-space fractional Bloch-Torrey

Figure 2: The sectional view of human brain [42] and unstructured mesh partition.

equation on a finite rectangular domain. However, this method may have low spatial accuracy (O(τα + h2 + ρh),
0 ≤ ρ ≤ 1) for problems where the solution domain is irregular [43], for example a human brain-like domain (see
Figure 2(a)).

The outline of this paper is as follows. In section 2, some new definitions and properties of the fractional
derivative space and fractional Sobolev space on irregular convex domains are introduced. In section 3, we derive
the fully discrete variational formulation of problem (1)-(3) and describe how the finite element method implemented
using an unstructured mesh can be used to solve the 2D TSRFDE on an arbitrarily convex domain and present a
second order temporal numerical scheme. In section 4, we discuss the stability and convergence of the method. In
section 5, we discuss the FEM for the 2D TSRFDE on a non-convex domain. In section 6, some numerical examples
on irregular domains, including convex domains and a multiply-connected domain, are presented. We also solve a
coupled fractional Bloch-Torrey equation to verify the effectiveness of the method. Finally, some conclusions of the
work are drawn.

2. Preliminary knowledge

At first, we introduce some definitions and lemmas on the fractional derivative space, which were first established
by Roop and Ervin [12, 13] in the one-dimensional case. In the two-dimensional rectangular domains, these results
are also applicable [37]. Here, we extend them to convex domains. Referring to Fig.1, we define

(u, v)Ω :=

Z b1

a1

Z r(y)

c(y)
u(x, y)v(x, y)dxdy =

Z d1

c1

Z m(x)

g(x)
u(x, y)v(x, y)dydx
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and ||u||L2(Ω) := (u, u)
1/2
Ω .

Definition 2.1. (Left fractional derivative space) For µ > 0, denote the semi-norm and the norm respectively as

|u|J̃µ

L
(Ω) :=

�
||c(y)D̃µ

xu||2L2(Ω) + ||g(x)D̃µ
yu||2L2(Ω)

�1/2
, ||u||J̃µ

L
(Ω) :=

�
||u||2L2(Ω) + |u|2

J̃µ

L
(Ω)

�1/2
,

and define J̃µ
L(Ω) (J̃

µ
L,0(Ω)) as the closure of C∞(Ω) (C∞

0 (Ω)) with respect to || · ||J̃µ

L
(Ω).

Definition 2.2. (Right fractional derivative space) For µ > 0, denote the semi-norm and the norm respectively as:

|u|J̃µ

R
(Ω) :=

�
||xD̃µ

r(y)u||
2
L2(Ω) + ||yD̃µ

m(x)u||
2
L2(Ω)

�1/2
, ||u||J̃µ

R
(Ω) :=

�
||u||2L2(Ω) + |u|2

J̃µ

R
(Ω)

�1/2
,

and define J̃µ
R(Ω) (J̃

µ
R,0(Ω)) as the closure of C∞(Ω) (C∞

0 (Ω)) with respect to || · ||J̃µ

R
(Ω).

Definition 2.3. (Symmetric fractional derivative space) For µ > 0, µ 6= n− 1
2 , n ∈ N denote the semi-norm and

the norm respectively as:

|u|J̃µ

S
(Ω) :=

�
|(c(y)D̃µ

xu, xD̃
µ
r(y)u)Ω|+ |(g(x)D̃µ

yu,y D̃
µ
m(x)u)Ω|

�1/2
, ||u||J̃µ

S
(Ω) :=

�
||u||2L2(Ω) + |u|2

J̃µ

S
(Ω)

�1/2
,

and define J̃µ
S (Ω) (J̃

µ
S,0(Ω)) as the closure of C∞(Ω) (C∞

0 (Ω)) with respect to || · ||J̃µ

S
(Ω).

Definition 2.4. (Fractional Sobolev space) For µ > 0, denote the semi-norm and the norm respectively as:

|u|Hµ(Ω) := || |ξ|µF(û)(ξ)||L2(R2), ||u||Hµ(Ω) :=
�
||u||2L2(Ω) + |u|2Hµ(Ω)

�1/2
,

where F(û)(ξ) is the Fourier transform of û, which is the zero extension of u outside Ω and define Hµ(Ω) (Hµ
0 (Ω))

as the closure of C∞(Ω) (C∞
0 (Ω)) with respect to || · ||Hµ(Ω).

Define the following fractional derivative and integral operators:

−∞Dµ
xu(x, y, t) =

1

Γ(n− µ)

∂n

∂xn

Z x

−∞

(x− s)n−µ−1u(s, y, t) ds,

xD
µ
+∞u(x, y, t) =

(−1)n

Γ(n− µ)

∂n

∂xn

Z +∞

x
(s− x)n−µ−1u(s, y, t) ds,

−∞I−µ
x u(x, y, t) =

1

Γ(µ)

Z x

−∞
(x− s)µ−1u(s, y, t) ds,

xI
−µ
+∞u(x, y, t) =

(−1)n

Γ(µ)

Z +∞

x

(s− x)µ−1u(s, y, t) ds,

c(y)Ĩ
−µ
x u(x, y, t) :=

1

Γ(µ)

Z x

c(y)

(x− s)µ−1u(s, y, t) ds,

xĨ
−µ
r(y)u(x, y, t) :=

(−1)n

Γ(µ)

Z r(y)

x
(s− x)µ−1u(s, y, t) ds.

The definitions of the operators in the y direction are similar.

Remark 2.1. If supp(u) ⊂ Ω, then −∞Dµ
xu = c(y)D̃

µ
xu, xD

µ
+∞u = xD̃

µ
r(y)u, −∞I−µ

x u = c(y)Ĩ
−µ
x u and xI

−µ
+∞u =

xĨ
−µ
r(y).

Lemma 2.1. Let µ > 0, define the operators: (i) −∞I−µ
x : L2(Ω) → L2(Ω), (ii) −∞Dµ

x : J̃µ
L(Ω) → L2(Ω), (iii)

xI
−µ
+∞ : L2(Ω) → L2(Ω), (iv) xD

µ
+∞ : J̃µ

R(Ω) → L2(Ω), then all the operators are bounded operators.
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Proof. Using Young’s theorem [44] ||v ∗w||L2(Ω) ≤ ||v||L1(Ω)||w||L2(Ω) and noting that −∞I−µ
x u = xµ−1

Γ(µ) ∗ u, where ∗
denotes convolution, we have

||−∞I−µ
x u||L2(Ω) =

1

Γ(µ)
||xµ−1 ∗ u||L2(Ω) ≤

1

Γ(µ)
||xµ−1||L1(Ω)||u||L2(Ω)

=
1

Γ(µ)

Z b1

a1

Z r(y)

c(y)
|x|µ−1dxdy||u||L2(Ω) ≤

1

Γ(µ)

Z b1

a1

Z d1

c1

|x|µ−1dxdy||u||L2(Ω)

≤ (b1 − a1)(|d1|µ + |c1|µ)
Γ(µ+ 1)

||u||L2(Ω) ≤ C||u||L2(Ω).

By the definition of J̃µ
L(Ω), we have

||−∞Dµ
xu||L2(Ω) ≤ (||u||2L2(Ω) + ||−∞Dµ

xu||2L2(Ω) + ||−∞Dµ
yu||2L2(Ω))

1

2

= (||u||2L2(Ω) + ||c(y)D̃µ
xu||2L2(Ω) + ||g(x)D̃µ

yu||2L2(Ω))
1

2 = ||u||J̃µ

L
(Ω).

The proofs of (iii) and (iv) are similar.

Lemma 2.2. For u ∈ J̃µ
L,0(Ω) ∩ J̃µ

R,0(Ω) and 0 < s < µ, we have

||u||L2(Ω) ≤ C1||c(y)D̃s
xu||L2(Ω) ≤ C2||c(y)D̃µ

xu||L2(Ω),

||u||L2(Ω) ≤ C3||g(x)D̃s
yu||L2(Ω) ≤ C4||g(x)D̃µ

yu||L2(Ω),

where C1, C2, C3 and C4 are some positive constants independent of u.

Proof. Combining Lemma 2.1, we have

||u||L2(Ω) = ||−∞I−s
x −∞Ds

xu||L2(Ω) ≤ C1||−∞Ds
xu||L2(Ω) = C1||c(y)D̃s

xu||L2(Ω),

||c(y)D̃s
xu||L2(Ω) = ||−∞Ds

xu||L2(Ω) = ||−∞I−(µ−s)
x −∞Dµ

xu||L2(Ω)

≤ C2||−∞Dµ
xu||L2(Ω) = C2||c(y)D̃µ

xu||L2(Ω).

The second inequality can be proved similarly.

Lemma 2.3. If µ > 0, then J̃µ
L(Ω), J̃

µ
R(Ω) and Hµ(Ω) are equivalent with equivalent norms and semi-norms; if

µ > 0, µ 6= n − 1
2 , n ∈ N, then J̃µ

L,0(Ω), J̃
µ
R,0(Ω), J̃

µ
S,0(Ω) and Hµ

0 (Ω) are equivalent with equivalent norms and
semi-norms.

Proof. The proof is similar to the one-dimensional case in [12], therefore we omit it here.

Lemma 2.4. If µ ∈ (1/2, 1), u, v ∈ J̃2µ
L,0(Ω) ∩ J̃2µ

R,0(Ω), then�
c(y)D̃

2µ
x u(x, y), v(x, y)

�
Ω
=
�
c(y)D̃

µ
xu(x, y), xD̃

µ
r(y)v(x, y)

�
Ω
,�

xD̃
2µ
r(y)u(x, y), v(x, y)

�
Ω
=
�
xD̃

µ
r(y)u(x, y), c(y)D̃

µ
xv(x, y)

�
Ω
.

Proof. Combining the formula [12] (aI
−µ
x w, v)L2(a,b) = (w, xI

−µ
b v)L2(a,b), we have�

c(y)D̃
2µ
x u(x, y), v(x, y)

�
Ω
=
�
D2

xc(y)Ĩ
−(2µ−2)
x u(x, y), v(x, y)

�
Ω

=
�
Dxc(y)Ĩ

−(2µ−2)
x u(x, y),−Dxv(x, y)

�
Ω
=
�
c(y)Ĩ

−(2µ−2)
x Dxu(x, y),−Dxv(x, y)

�
Ω

=
�
c(y)Ĩ

−(µ−1)
x Dxu(x, y),−xĨ

−(µ−1)
r(y) Dxv(x, y)

�
Ω
=
�
c(y)D̃

µ
xu(x, y), xD̃

µ
r(y)v(x, y)

�
Ω
.

The proof of the second identity is similar.
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3. Variational formulation

3.1. The fully discrete variational formulation

For convenience, in the subsequent sections, we suppose that C, C1, C2, ... are some positive constants, which
may take distinct values according to different contexts discussed throughout this paper.

Let τ = T
N be the time step and tn = nτ , n = 0, 1, 2, ..., N . Using the finite difference method we have

C
0 D

γ
t u(x, y, tn) =

1

Γ(1− γ)

Z tn

0
(tn − s)−γ ∂u(x, y, s)

∂s
ds =

τ−γ

Γ(2− γ)

nX
k=0

bnku(x, y, tk) +Rn
t ,

where bnn = 1, bn0 = (n−1)1−γ −n1−γ < 0, bnk = (n−k+1)1−γ −2(n−k)1−γ +(n−k−1)1−γ < 0, k = 1, 2, ..., n−1.
Denote

∇γ
t u(x, y, tn) =

τ−γ

Γ(2 − γ)

nX
k=0

bnku(x, y, tk), n = 1, 2, ..., N, (6)

then [45]

||Rn
t ||0 = ||C0 Dγ

t u(x, y, tn)−∇γ
t u(x, y, tn)||0 ≤ Cτ2−γ . (7)

Denote V = Hα
0 (Ω) ∩Hβ

0 (Ω). We divide the domain Ω into a number of regular triangular regions. Let Th be this
triangulation and h be the maximum diameter of the triangular elements. We define the finite element subspace as:

Vh :=
n
vh|vh ∈ C(Ω) ∩ V, vh|K is linear for all K ∈ Th and vh|∂Ω = 0

o
.

Assume that un
h ∈ Vh is the approximation of u(x, y, t) at t = tn. Then, by Lemma 2.4, we obtain the fully discrete

scheme associated with the variational form of Eq.(1) is: find un
h ∈ Vh for each t = tn (n = 1, 2, ..., N) such that§

(∇γ
t u

n
h, vh)Ω + A(un

h, vh)Ω = (fn, vh)Ω, ∀vh ∈ Vh,
u0
h = u0h,

(8)

where u0h ∈ Vh is a reasonable approximation of u0 and Kx = K1

2 cos(απ) , Ky = K2

2 cos(βπ) and

A(u, v)Ω := Kx

n�
c(y)D̃

α
xu, xD̃

α
r(y)v

�
Ω
+
�
xD̃

α
r(y)u, c(y)D̃

α
xv)
�
Ω

o
+Ky

n�
g(x)D̃

β
yu, yD̃

β
m(x)v

�
Ω
+
�
yD̃

β
m(x)u, g(x)D̃

β
y v
�
Ω

o
.

3.2. The implementation of FEM with an unstructured mesh

We consider the computation process for piecewise linear polynomials on the triangular element ep, p =
1, 2, ..., Ne, where Ne is the total number of triangles. Then, within element ep, the field function up(x, y) can
be written as

up(x, y) =
3X

j0=1

uj0 ϕj0(x, y),

where the triangle vertices are numbered in a counter-clockwise order as 1, 2, 3 and the basis function ϕj0(x, y) is
defined by

ϕj0(x, y)
���
(x,y)∈ep

=
1

2∆ep

(aj0 x+ bj0 y + cj0), ϕj0(x, y)
���
(x,y)/∈ep

= 0,

a1 = y2 − y3, a2 = y3 − y1, a3 = y1 − y2,

b1 = x3 − x2, b2 = x1 − x3, b3 = x2 − x1,

c1 = x2y3 − x3y2, c2 = x3y1 − x1y3, c3 = x1y2 − x2y1,

7



where ∆ep is the area of triangle element p. It is well-known that

ϕj0(xi0 , yi0) = δi0j0 , i0, j0 = 1, 2, 3,

where δ is the Kronecker function. With these local field functions and basis functions, we can obtain the formulation
of u(x, y) for the whole triangulation:

u(x, y) =

NpX
i=1

ui li(x, y),

where li(x, y) is the new basis function whose support domain is Ωei (see figure 3) and Np is the total number of
vertices on the convex domain Ω.

Now, we rewrite un
h in the form of

un
h =

NpX
i=1

un
i li(x, y), (9)

where un
i are the coefficients that are to be solved for. Substituting Eq.(9) into Eq.(8) with vh = lj(x, y), j =

1, 2, . . . , Np gives

NpX
i=1

un
i

h
(li, lj)Ω + ω0A(li, lj)Ω

i
= −

NpX
i=1

n−1X
k=1

bnku
k
i (lk, lj)Ω − bn0 (u

0, lj)Ω + ω0(f
n, lj)Ω, (10)

where ω0 = τγΓ(2 − γ). Eq.(10) can be expressed in matrix form as

(M + ω0B)Un = −M
n−1X
k=1

bnkU
k −G0 + ω0F

n
1 , (11)

where M is the mass matrix with elements Mij = (lj , li)Ω =
PNe

p=1(lj , li)ep , B is the stiffness matrix with elements

Bij = A(lj , li)Ω and Un = [un
1 , u

n
2 , ..., u

n
Np

]T . The vectors G0 and Fn
1 are given by

G0 = bn0 [(u
0, l1)Ω, (u

0, l2)Ω, ..., (u
0, lNp

)Ω]
T =

NeX
p=1

bn0 [(u
0, l1)ep , (u

0, l2)ep , ..., (u
0, lNp

)ep ]
T ,

Fn
1 = [(fn, l1)Ω, (f

n, l2)Ω, ..., (f
n, lNp

)Ω]
T =

NeX
p=1

[(fn, l1)ep , (f
n, l2)ep , ..., (f

n, lNp
)ep ]

T .

Due to the non-local property of the fractional derivative, matrix B is the most difficult part to calculate. For
matrix B, the (i, j) entry is given by

Bij = A(lj , li)Ω = Kx

n�
c(y)D̃

α
x lj(x, y), xD̃

α
r(y)li(x, y)

�
Ω
+
�
xD̃

α
r(y)lj(x, y), c(y)D̃

α
x li(x, y)

�
Ω

o
+Ky

n�
g(x)D̃

β
y lj(x, y), yD̃

β
m(x)li(x, y)

�
Ω
+
�
yD̃

β
m(x)lj(x, y), g(x)D̃

β
y li(x, y)

�
Ω

o
. (12)

Here, we first discuss the support domains of the four fractional derivatives c(y)D̃
α
x l(x, y), xD̃

α
r(y)l(x, y), g(x)D̃

β
y l(x, y),

yD̃
β
m(x)l(x, y), and denote them as ΩL

ei , Ω
R
ei , Ω

D
ei , Ω

U
ei , respectively. We adopt the notation that L, R, D, U correspond

to the ’left’, ’right’, ’down’ and ’up’ directions for the four fractional derivatives. They do not correspond to the
actual location in the domain Ω. From figure 3, we see node i is surrounded by the elements e1, e2, e3, e4, e5 and
the boundary ∂Ωei is constituted by ∂Ωl

ei and ∂Ωr
ei , where ∂Ω

l
ei is made up of line segments B1B2, B2B3, B3B4 and

∂Ωr
ei is connected by the line segments B4B5, B5B1, respectively. Then ∂Ωl

ei , y = yB4
(x ≥ xB4

), y = yB1
(x ≥ xB1

)
and ∂Ω form the support domain ΩL

ei . Similarly, we can obtain the support domains ΩR
ei , Ω

D
ei and ΩU

ei (see figure
3). In view of the similarity of the four terms in the right hand side of Eq.(12), we illustrate the computation of

8



e1
e2

e3
e4

e5

B1

B2

B3

B4

B5

Ω
L
eiΩ

R
ei

∂Ω ∂ΩΩei

e1
e2

e3
e4

e5

B1

B2

B3

B4

B5

Ω
D
ei

Ω
U
ei

∂Ω

∂Ω

Ωei

Figure 3: The illustration of support domains ΩL
ei , Ω

R
ei , Ω

D
ei , Ω

U
ei .

(c(y)D̃
α
x lj, xD̃

α
r(y)li)Ω as an example. By applying Gauss quadrature, we have�

c(y)D̃
α
x lj , xD̃

α
r(y)li

�
Ω
=

NeX
p=1

�
c(y)D̃

α
x lj , xD̃

α
r(y)li

�
ep

=

NeX
p=1

Z
ep

c(y)D̃
α
x lj xD̃

α
r(y)li dxdy

≈
NeX
p=1

X
(x̂q,ŷq)∈GK

ωq c(y)D̃
α
x lj

���
(x̂q,ŷq)

xD̃
α
r(y)li

���
(x̂q,ŷq)

,

where GK stands for the set of all Gauss points in element ep and ωq are the weights associated with the Gauss point

P (x̂q , ŷq) (see figure 4). When point P (x̂q , ŷq) is out of the support domains ΩL
ei and ΩR

ei , we have c(y)D̃
α
x lj(x, y) = 0

and xD̃
α
r(y)li(x, y) = 0. To evaluate c(y)D̃

α
x lj

���
(x̂q,ŷq)

, suppose that segment y = ŷq, c(ŷq) ≤ x ≤ x̂q intersects nq

points with the triangular element of Ωej , and these points are numbered as x0
q < x1

q < x2
q <, ..., x

nq
q , then by the

definition of the fractional derivative, we have

c(y)D̃
α
x lj

���
(x̂q,ŷq)

= c(ŷq)D̃
α
x lj(x, ŷq)

���
x=x̂q

=

�
1

Γ(1− α)

∂

∂x

Z x

c(ŷq)

(x − ξ)−αlj(ξ, ŷq)dξ

����
x=x̂q

=

niX
k=1

�
1

Γ(1− α)

∂

∂x

Z xk
i

xk−1

i

(x − ξ)−αlj(ξ, ŷq)dξ

����
x=x̂q

. (13)

Then, there are three different cases that need to be discussed (see figure 4). In case I, the Gauss point P0(x0, y0)
is only located in ΩL

ej , and we have

lj(x, y0) =

8>><>>: 0, x0
0 ≤ x ≤ x1

0,
ϕj2(x, y0), x1

0 ≤ x ≤ x2
0,

ϕj1(x, y0), x2
0 ≤ x ≤ x3

0,
ϕj5(x, y0), x3

0 ≤ x ≤ x4
0,

0, x4
0 ≤ x,

where ϕjp(x, y) is the basis function of node j on element p and c(y0) = x0
0. Case II, the Gauss point P1(x1, y1) is

only located in the ΩR
ej\ΩL

ej , then we have c(y)D̃
α
x lj

���
(x1,y1)

= 0. Case III, the Gauss point P2(x2, y2) is located in

ΩL
ej ∩ΩR

ej = Ωej , then we have

lj(x, y2) =

8><>: 0, x0
2 ≤ x ≤ x1

2,
ϕj2(x, y2), x1

2 ≤ x ≤ x2
2,

ϕj3(x, y2), x2
2 ≤ x ≤ x3

2,
ϕj4(x, y2), x3

2 ≤ x ≤ x4
2.
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e1
e2

e3
e4

e5

Ω
L
ejΩ

R
ej

x40
P0(x0, y0)

x30x20x10x00

j

Case I

e1
e2

e3
e4

e5

Ω
L
ejΩ

R
ej

x31x21x11x01

j

P1(x1, y1)

Case II

e1
e2
e3

e4

e5

Ω
L
ejΩ

R
ej

x32x22

x12x02
j

P2(x2, y2)

x42 x52

Case III

Figure 4: The points of intersection by y = ŷq with the triangle element of Ωej and ∂Ω.

Similarly, to evaluate xD̃
α
r(y)lj

���
(x̂q,ŷq)

, we also need to consider three cases. In case I, xD̃
α
r(y)lj

���
(x0,y0)

= 0. In case

II,

lj(x, y1) =

8><>: 0, x ≤ x0
1,

ϕj3(x, y1), x0
1 ≤ x ≤ x1

1,
ϕj4(x, y1), x1

1 ≤ x ≤ x2
1,

0, x2
1 ≤ x ≤ x3

1.

In case III,

lj(x, y2) =

8><>: ϕj2(x, y2), x1
2 ≤ x ≤ x2

2,
ϕj3(x, y2), x2

2 ≤ x ≤ x3
2,

ϕj4(x, y2), x3
2 ≤ x ≤ x4

2,
0, x4

2 ≤ x ≤ x5
2.

As lj(ξ, ŷq) is a linear function on [xk−1
i , xk

i ], k = 1, 2, ..., ni, Eq.(13) can be evaluated using integration by parts.
Finally, we summarise the whole computation process in the following algorithm (see Algorithm 1).

Algorithm 1 Compiling fractional derivative using FEM on an unstructured mesh

1: Partition the convex domain Ω with unstructured triangular elements ep and save the element information
(node number, coordinates, and element number );

2: for p = 1, 2, · · · , Ne do

3: Find the Gauss points (x̂q , ŷq) and weights ωi on each triangle element ep;
4: for j = 1, 2, · · · , Np do

5: Find the support domain Ωej ;

6: Find the points of intersection by y = ŷq with Ωej and calculate c(y)D̃
α
x lj

���
(x̂q,ŷq)

, xD̃
α
r(y)li

���
(x̂q,ŷq)

;

7: Find the points of intersection by x = x̂q with Ωej and calculate g(x)D̃
β
y lj

���
(x̂q,ŷq)

, yD̃
β
m(x)li

���
(x̂q,ŷq)

;

8: end for

9: Form stiffness matrix B;
10: end for

11: Calculate (lj , li)ep on each triangle element ep to form the mass matrix M ;
12: Calculate (u0, lk)ep and (fn, lk)ep , k = 1, 2, ..., Np and obtain G0, Fn;
13: Solve the linear system (11) and obtain Un.

3.3. Second order temporal numerical scheme

In this part, we will give a second order temporal numerical scheme. Firstly, when 0 < γ < 1, for a function
W (t) for which the Caputo fractional derivative of order γ exists, we have the following relationship between its

10



Caputo fractional derivative and Riemann-Liouville fractional derivative [10]

C
0 D

γ
t W (t) = 0D

γ
t [W (t)−W (0)] = 0D

γ
t W (t)− W (0)

Γ(1− γ)tγ
. (14)

Then, we consider the shifted Grünwald formula [46] to approximate the Riemann-Liouville fractional derivative.
Define

Aγ
τ,lW (t) = τ−γ

∞X
k=0

g
(γ)
k W (t− (k − l)τ),

where g
(γ)
k = (−1)k

�γ
k

�
for k ≥ 0. To obtain the second order temporal numerical scheme, we need the following

lemma [47, 48]

Lemma 3.1. Let W (t) ∈ L1(R), −∞Dγ+2
t W and its Fourier transform belong to L1(R), and define the weighted

and shifted Grünwald difference operator by

RL∇γ
t W (t) =

γ − 2q

2(p− q)
Aγ

τ,pW (t) +
2p− γ

2(p− q)
Aγ

τ,qW (t), (15)

then we have

RL∇γ
tW (t) = −∞Dγ

t W (t) +O(τ2),

for t ∈ R, where p and q are integers and p 6= q.

By choosing (p, q) = (0,−1) in (15), we obtain

RL∇γ
t W (tn) =

2 + γ

2τγ

nX
k=0

g
(γ)
k W (tn−k)−

γ

2τγ

n−1X
k=0

g
(γ)
k W (tn−k−1)

=
1

τγ

nX
k=0

ω
(γ)
k W (tn−k) =

1

τγ

nX
k=0

ω
(γ)
n−kW (tk),

where ω
(γ)
0 = 2+γ

2 g
(γ)
0 , ω

(γ)
k = 2+γ

2 g
(γ)
k − γ

2 g
(γ)
k−1, k ≥ 1. Now, we transform (1) into the following form

0D
γ
t u(x, y, t) = K1

∂2αu(x, y, t)

∂|x|2α
+K2

∂2βu(x, y, t)

∂|y|2β
+ f̃(x, y, t), (16)

where f̃(x, y, t) = f(x, y, t) + u(x,y,0)
Γ(1−γ)tγ . Then, we obtain the fully discrete scheme associated with the variational

form of Eq.(16) is: to find un
h ∈ Vh for each t = tn (n = 1, 2, ..., N) such that�

(RL∇γ
t u

n
h, vh)Ω +A(un

h, vh)Ω = (f̃n, vh)Ω, ∀vh ∈ Vh,
u0
h = u0h,

(17)

Substituting Eq.(9) into Eq.(17) with vh = lj(x, y), j = 1, 2, . . . , Np gives

NpX
i=1

un
i

h
ω
(γ)
0 (li, lj)Ω + τγA(li, lj)Ω

i
= −

NpX
i=1

n−1X
k=0

ω
(γ)
n−ku

k
i (lk, lj)Ω + τγ(f̃n, lj)Ω. (18)

Writing (18) in matrix form, we have

(ω
(γ)
0 M + τγB)Un = −M

n−1X
k=0

ω
(γ)
n−kU

k + τγFn
2 , (19)

where Fn
2 = [(f̃n, l1)Ω, (f̃

n, l2)Ω, ..., (f̃
n, lNp

)Ω]
T .

Remark 3.1. When the solution u(x, y, t) is not smooth enough, the modified weighted shifted Grünwald-Letnikov
formula with appropriate correction terms can be used [49].
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4. Stability and convergence of the fully discrete scheme

Before giving the proof, we introduce some new definitions and lemmas. Here, we simplify the notations (·, ·)Ω,
|| · ||L2(Ω) and || · ||Hs(Ω) as (·, ·), || · ||0, || · ||s, respectively. Let σ = max{α, β}, we define the semi-norm | · |(α,β)
and norm ||| · |||(α,β) as follows

|u|(α,β) :=
�
K1||c(y)D̃α

xu||20 +K2||g(x)D̃β
yu||20

� 1

2

, |||u|||(α,β) :=
�
||u||20 + |u|2(α,β)

� 1

2

.

Then we have the following lemma.

Lemma 4.1. Assume that u ∈ Hα
0 (Ω) ∩Hβ

0 (Ω) and Ω is a convex domain, then

C1|||u|||(α,β) ≤ |u|(α,β) ≤ |||u|||(α,β) ≤ C2|u|Hσ(Ω),

where positive constants C1 < 1 and C2 are independent of u, i.e., the semi-norm |u|(α,β) and ||u||(α,β) are equivalent.

Proof. We have that |u|(α,β) ≤ |||u|||(α,β). By Lemma 2.2,

||u||0 ≤ C||c(y)D̃s
xu||0 ≤ C|u|(α,β),

then |||u|||2(α,β) ≤ (C2 + 1)|u|2(α,β), therefore,

C1|||u|||(α,β) ≤ |u|(α,β), C1 =
1√

C2 + 1
.

Since |u|(α,β) ≤ C3|u|Jσ
L
(Ω), by Lemma 2.3, we obtain

|||u|||(α,β) ≤
p
C2 + 1|u|(α,β) ≤ C3

p
C2 + 1|u|Jσ

L
(Ω) ≤ C2|u|Hσ(Ω).

By the above lemma, it is straightforward to obtain, ∀ u ∈ Hα
0 (Ω) ∩Hβ

0 (Ω),

A(u, v) ≤ C|||u|||(α,β)|||v|||(α,β), A(u, u) ≥ C|||u|||2(α,β).

Here we choose the interpolation operator Ih to satisfy the approximation properties of the subspace of Hs+1(Ω)
[50], then Ih : Hs+1(Ω) → Vh satisfies

||u − Ihu||l ≤ Chµ−l||u||µ, ∀u ∈ Hµ(Ω), 0 ≤ l < µ ≤ s+ 1. (20)

We define the projection operator Ph : V → Vh satisfying

A(Phu, v) = A(u, v), u ∈ V, ∀v ∈ Vh.

Furthermore, we can derive the approximation property of Ph.

Lemma 4.2. If u ∈ H2(Ω) ∩ V , σ = max(α, β), then

|u− Phu|(α,β) ≤ Ch2−σ||u||2,

in which the constant C is independent of u and h.

Proof. Since |u− Phu|2(α,β) = A(u− Phu, u− Phu) = A(u− Phu, u− Ihu) and

A(u − Phu, u− Ihu) ≤ C|||u − Phu|||(α,β)|||u − Ihu|||(α,β) ≤ C1|u− Phu|(α,β)|u− Ihu|(α,β),

therefore, via the approximation properties (20) and Lemma 4.1, we have

|u− Phu|(α,β) ≤ C1|u− Ihu|(α,β) ≤ C2|u − Ihu|σ ≤ C3h
2−σ||u||2.
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As A(u, v) is continuous and coercive, we can derive the existence and uniqueness of scheme (8). Now, we discuss
stability and the convergence of this scheme.

Theorem 4.3. The fully discrete variational scheme (8) is unconditionally stable.

Proof. Assume that znh (n = 1, 2, ..., N) is another solution of the fully scheme (8), and let En
h = un

h − znh , then

(∇γ
t E

n
h , vh) +A(En

h , vh) = 0, i.e.,

(En
h , vh) + τγΓ(2− γ)A(En

h , vh) = −(
n−1X
k=0

bnkE
k
h , vh).

Using the Cauchy-Schwarz inequality and taking vh = En
h and noting the positivity of A(·, ·), we have

||En
h ||0 ≤ −

n−1X
k=0

bnk ||Ek
h ||0.

Utilising mathematical induction and noticing −
Pn−1

k=0 b
n
k = 1, it is readily concluded that ||En

h ||0 ≤ ||E0
h||0.

Therefore, the fully discrete scheme (8) is unconditional stable.

Theorem 4.4. Suppose that u(tn), u
n
h are the exact solution and numerical solution of problem (1)-(3) at t = tn

respectively, and u, utt,
C
0 D

γ
t u ∈ L∞(0, T ;Hs+1(Ω)). Then for n = 1, 2, ..., N , the following error estimate holds

|||un
h − u(tn)|||2(α,β) ≤ C

n
τ4−2γ + ||u0

h − u(t0)||2σ + h2s+2−2σ
�
||u(t0)||2s+1 + ||u(tn)||2s+1 + max

0≤t≤T
||C0 Dγ

t u(t)||2s+1

�o
.

Proof. As u(x, y, t) is the exact solution of problem (1)-(3) , then�
C
0 D

γ
t u(tn), vh

�
+A

�
u(tn), vh

�
= (fn, vh), ∀v ∈ Vh. (21)

Denote en = u(tn)− un
h, and subtract (8) from (21), we have

(∇γ
t e

n, vh) +A(en, vh) = −
�
C
0 D

γ
t u(tn)−∇γ

t u(tn), vh

�
.

Define en = ρn + θn, ρn = u(tn)− Phu(tn), θ
n = Phu(tn)− un

h and let vh = ∇γ
t θ

n, we obtain

(∇γ
t θ

n,∇γ
t θ

n) +A(θn,∇γ
t θ

n) = −(∇γ
t ρ

n,∇γ
t θ

n)− (Rn
t ,∇γ

t θ
n). (22)

We have

|(∇γ
t ρ

n,∇γ
t θ

n)| ≤ 1

2
||∇γ

t ρ
n||20 +

1

2
||∇γ

t θ
n||20,

|(Rn
t ,∇γ

t θ
n)| ≤ 1

2
||Rn

t ||20 +
1

2
||∇γ

t θ
n||20.

Substituting them into (22) leads to

A

�
θn,

nX
k=0

bnkθ
k

�
≤ τγΓ(2− γ)

2
||∇γ

t ρ
n||20 +

τγΓ(2− γ)

2
||Rn

t ||20. (23)

Note that

A

�
θn,

nX
k=0

bnkθ
k

�
=

1

2

�
A(θn, θn) +

n−1X
k=0

bnkA(θ
k, θk)−

n−1X
k=0

bnkA(θ
k − θn, θk − θn)

�
. (24)

As A(θk − θn, θk − θn) ≥ 0, bnk < 0, k = 0, 1, ..., n− 1, substituting (24) into (23), gives

A(θn, θn) ≤ −
n−1X
k=0

bnkA(θ
k, θk) + τγΓ(2− γ)||∇γ

t ρ
n||20 + τγΓ(2− γ)||Rn

t ||20. (25)
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From (7) we have

||Rn
t ||20 ≤ Cτ4−2γ max

0≤t≤T
||utt||20, ||C0 Dγ

t ρ
n −∇γ

t ρ
n||0 ≤ Cτ2−γ max

0≤t≤T
||ρtt||0,

then

||∇γ
t ρ

n||20 ≤ ||C0 Dγ
t ρ

n||20 + Cτ4−2γ max
0≤t≤T

||ρtt||20.

Using Lemma 2.2 and Lemma 4.2, we obtain

||∇γ
t ρ

n||20 ≤ C

§
h2s+2−2σ||C0 Dγ

t ρ
n||2s+1 + τ4−2γ

ª
.

By Lemma 4.1, Lemma 4.2 and A(u, u) ≤ C||u||2(α,β), we have

A(θ0, θ0) ≤ C||θ0||2(α,β) ≤ C
n
||u(t0)− u0

h||2(α,β) + ||ρ0||2(α,β)
o
≤ C

n
||u(t0)− u0

h||2σ + h2s+2−2σ||u(t0)||2s+1

o
.

Then, from (25), we obtain

A(θn, θn) ≤ Γ(2− γ)(−bn0 )C
n
||u(t0)− u0

h||2σ + h2s+2−2σ||u(t0)||2s+1

o
+ Γ(2− γ)τγC

§
τ4−2γ + h2s+2−2σ||C0 Dγ

t u(tn)||2s+1

ª
−

n−1X
k=1

bnkA(θ
k, θk). (26)

Utilising mathematical induction, it is readily concluded that

A(θn, θn) ≤ Γ(1− γ)C1

n
||u(t0)− u0

h||2σ + h2s+2−2σ||u(t0)||2s+1

o
+ Γ(1− γ)nγτγC2

§
τ4−2γ + h2s+2−2σ max

0≤t≤T
||C0 Dγ

t u(t)||2s+1

ª
,

Since A(θn, θn) ≥ C||θn||2(α,β), the above mathematical induction gives

||θn||2(α,β) ≤ C

§
τ4−2γ + ||u(t0)− u0

h||2σ + h2s+2−2σ
h
||u(t0)||2s+1 + max

0≤t≤T
||C0 Dγ

t u(t)||2s+1

iª
, (27)

and

||en||2(α,β) ≤ C
�
||ρn||2(α,β) + ||θn||2(α,β)

�
.

Therefore, using Lemma 4.2, we obtain

||un
h − u(tn)||2(α,β) ≤ C

n
τ4−2γ + ||u(t0)− u0

h||2σ + h2s+2−2σ
�
||u(t0)||2s+1 + ||u(tn)||2s+1 + max

0≤t≤T
||C0 Dγ

t u(t)||2s+1

�o
.

Remark 4.1. It can deduced from Theorem 4.4 that when a triangular linear basis function (s = 1) is used, the
error satisfies

|||un
h − u(tn)|||(α,β) ≤ C(τ2−γ + h2−σ).

Remark 4.2. It is well-known that the study of the regularities of the elliptic space-fractional PDEs is still under
development. Wang and Yang [51] analyzed the regularity of the solution of fractional-order derivatives involving a
variable coefficient in Hölder spaces, and established the well-posedness of a Petrov-Galerkin formulation. Jin et al.
[52] developed variational formulations for boundary value problems involving either Riemann-Liouville or Caputo
fractional derivatives and established the Sobolev regularity of the variational solutions. Recently, Ervin et al. [53]
investigated the regularity solution of the steady-state fractional diffusion equation on a bounded domain. As the
theoretical analysis of regularities for the elliptic space-fractional PDEs on convex domains with both left and right
sided fractional derivatives is challenging, it is still an open research problem and needs further exploration.
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5. FEM for the 2D TSRFDE on non-convex domains

In this section, we will discuss the FEM for the two-dimensional time-space Riesz fractional diffusion equation on
non-convex domains. When the considered solution domain is nonconvex, the definition of the fractional derivative
should change according to the shape of the solution domain. For example, we consider the multiply-connected
domain Ω0 = [a, b]× [c, d]\[a∗, b∗]× [c∗, d∗] =

S8
i=1 Ωi shown in Figure 5. In this case, the fractional derivative must

be modified to take the central hole into consideration.

Ω1 Ω2 Ω3

Ω4 Ω5

Ω6 Ω7 Ω8

a a∗ b∗ b
c

c∗

d∗

d

Figure 5: The illustration of a multiply-connected domain.

Definition 5.1. The definition of the fractional derivative in the x direction for the domain Ω0 illustrated in figure
5 is defined as:

aD
2α
x u(x, y, t) =

§
aD

2α
x u(x, y, t), x ∈ Ω0\Ω5,

b∗D
2α
x u(x, y, t), x ∈ Ω5.

xD
2α
b u(x, y, t) =

§
xD

2α
b u(x, y, t), x ∈ Ω0\Ω4,

xD
2α
a∗ u(x, y, t), x ∈ Ω4.

The definition of the fractional derivative in the y direction is defined in a similar manner.

Following Algorithm 1, we can solve the problem on a multiply-connected domain Ω0. We now provide the
theoretical analysis when the solution is nonconvex. Here we still take the multi-connected domain Ω0 shown in
figure 5 as an example. The domain Ω0 can be divided into a finite union of convex domains Ωi: Ω0 =

S8
i=1 Ωi.

Next, we define the inner product and its induced norm as:

(u, v)Ω0
:=

8X
i=1

(u, v)Ωi
, ||u||L2(Ω0) := (u, u)

1/2
Ω0

=

Ì
8X

i=1

||u||2L2(Ωi)
,

where (u, v)Ωi
and ||u||L2(Ωi) are the general inner product and norm defined on convex domain Ωi. Then we define

the semi-norm and the norm of the left fractional derivative space on Ω0 as:

|u|J̃µ

L
(Ω0)

:=
�
||aD̃µ

xu||2L2(Ω0)
+ ||cD̃µ

yu||2L2(Ω0)

�1/2
, ||u||J̃µ

L
(Ω0)

:=
�
||u||2L2(Ω0)

+ |u|2
J̃µ

L
(Ω0)

�1/2
.

It is straightforward to derive

|u|J̃µ

L
(Ω0)

=

Ì
8X

i=1

|u|2
J̃µ

L
(Ωi)

, ||u||J̃µ

L
(Ω0)

=

Ì
8X

i=1

||u||2
J̃µ

L
(Ωi)

,

where |u|J̃µ

L
(Ωi)

and ||u||J̃µ

L
(Ωi)

are defined in definition 2.1. Similarly, we can define other norm operators for the

fractional derivative space on domain Ω0. In the following, we will prove Lemmas 2.1 to 2.4 also hold on domain
Ω0.
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Lemma 5.1. Let µ > 0, define the operators: (i) −∞I−µ
x : L2(Ω0) → L2(Ω0), (ii) −∞Dµ

x : J̃µ
L(Ω0) → L2(Ω0), (iii)

xI
−µ
+∞ : L2(Ω0) → L2(Ω0), (iv) xD

µ
+∞ : J̃µ

R(Ω0) → L2(Ω0), then all the operators are bounded operators.

Proof. By the definition we have

||−∞I−µ
x u||L2(Ω0) =

Ì
8X

i=1

||−∞I−µ
x u||2L2(Ωi)

.

According to Lemma 2.1, the operator −∞I−µ
x : L2(Ωi) → L2(Ωi) is bounded. Then we haveÌ

8X
i=1

||−∞I−µ
x u||2L2(Ωi)

≤

Ì
8X

i=1

Ci||u||2L2(Ωi)
≤

Ì
C0

8X
i=1

||u||2L2(Ωi)
=
p
C0||u||L2(Ω0),

where C0 = max{Ci}, i = 1, 2, . . . , 8. Then we obtain

||−∞I−µ
x u||L2(Ω0) ≤ C||u||L2(Ω0).

By the definition of J̃µ
L(Ω0), we have

||−∞Dµ
xu||L2(Ω0) ≤ (||u||2L2(Ω0)

+ ||−∞Dµ
xu||2L2(Ω0)

+ ||−∞Dµ
yu||2L2(Ω0)

)
1

2

= (||u||2L2(Ω0)
+ ||c(y)D̃µ

xu||2L2(Ω0)
+ ||g(x)D̃µ

yu||2L2(Ω0)
)

1

2 = ||u||J̃µ

L
(Ω0)

.

The proofs of (iii) and (iv) are similar.

Lemma 5.2. For u ∈ J̃µ
L,0(Ω0) ∩ J̃µ

R,0(Ω0) and 0 < s < µ, we have

||u||L2(Ω0) ≤ C1||c(y)D̃s
xu||L2(Ω0) ≤ C2||c(y)D̃µ

xu||L2(Ω0),

||u||L2(Ω0) ≤ C3||g(x)D̃s
yu||L2(Ω0) ≤ C4||g(x)D̃µ

yu||L2(Ω0),

where C1, C2, C3 and C4 are some positive constants independent of u.

Proof. Combining Lemma 2.2, we have

||u||L2(Ω0) =

Ì
8X

i=1

||u||2L2(Ωi)
≤

Ì
8X

i=1

C1i||c(y)D̃s
xu||2L2(Ωi)

≤ C1

Ì
8X

i=1

||c(y)D̃s
xu||2L2(Ωi)

= C1||c(y)D̃s
xu||L2(Ω0),

||c(y)D̃s
xu||L2(Ω0) =

Ì
8X

i=1

||c(y)D̃s
xu||2L2(Ωi)

≤

Ì
8X

i=1

C2i||c(y)D̃µ
xu||2L2(Ωi)

≤ C2||c(y)D̃µ
xu||L2(Ω0),

where C1 = max{
√
C1i} and C2 = max{

√
C2i}, i = 1, 2, . . . , 8. The second inequality can be proved similarly.

Lemma 5.3. If µ ∈ (1/2, 1), u, v ∈ J̃2µ
L,0(Ω0) ∩ J̃2µ

R,0(Ω0), then�
c(y)D̃

2µ
x u(x, y), v(x, y)

�
Ω0

=
�
c(y)D̃

µ
xu(x, y), xD̃

µ
r(y)v(x, y)

�
Ω0

,�
xD̃

2µ
r(y)u(x, y), v(x, y)

�
Ω0

=
�
xD̃

µ
r(y)u(x, y), c(y)D̃

µ
xv(x, y)

�
Ω0

.

Proof. Combining Lemma 2.4, we have�
c(y)D̃

2µ
x u(x, y), v(x, y)

�
Ω0

=

Ì
8X

i=1

�
c(y)D̃

2µ
x u(x, y), v(x, y)

�
Ωi

=

Ì
8X

i=1

�
c(y)D̃

µ
xu(x, y), xD̃

µ
r(y)v(x, y)

�
Ωi

=
�
c(y)D̃

µ
xu(x, y), xD̃

µ
r(y)v(x, y)

�
Ω0

.

The proof of the second identity is similar.
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Then we can obtain the fully discrete scheme associated with the variational form of Eq.(1) on the multi-
connected domain Ω0: find un

h ∈ Vh for each t = tn (n = 1, 2, ..., N) such that§
(∇γ

t u
n
h, vh)Ω0

+A(un
h , vh)Ω0

= (fn, vh)Ω0
, ∀vh ∈ Vh,

u0
h = u0h,

(28)

Now we will prove the stability of scheme (28).

Theorem 5.4. The fully discrete variational scheme (28) is unconditionally stable.

Proof. Assume that znh (n = 1, 2, ..., N) is another solution of the fully scheme (28), and let En
h = un

h − znh , then

(∇γ
t E

n
h , vh)Ω0

+A(En
h , vh)Ω0

= 0, i.e.,

(En
h , vh)Ω0

+ τγΓ(2− γ)A(En
h , vh)Ω0

= −(
n−1X
k=0

bnkE
k
h , vh)Ω0

.

Then we have

8X
i=1

(En
h , vh)Ωi

+ τγΓ(2− γ)
8X

i=1

A(En
h , vh)Ωi

= −
8X

i=1

(
n−1X
k=0

bnkE
k
h , vh)Ωi

.

According to Theorem 4.3, we have ||En
h ||L2(Ωi) ≤ ||E0

h||L2(Ωi). Then we obtainÌ
8X

i=1

||En
h ||2L2(Ωi)

≤

Ì
8X

i=1

||E0
h||2L2(Ωi)

,

i.e., ||En
h ||L2(Ω0) ≤ ||E0

h||L2(Ω0), which means the fully discrete scheme (28) is unconditional stable.

Following a similar process of proof, we can obtain that Theorem 4.4 also hold for multi-connected domain Ω0,
which means that we can extend the analysis of stability and convergence from convex domain Ωi to multi-connected
domain Ω0. The extension of our theory to multi-connected domain Ω0 is studied numerically in Example 4.

We remark that the results from this initial investigation appear very promising and we believe the theory can
be generalised to more complicated domain in a straightforward manner.

6. Numerical examples

In this section, we present some numerical examples to verify the effectiveness of our theoretical analysis p-
resented in section 4. We adopt the linear polynomials on triangles, where h is the maximum length of the
triangles and Ne is the number of triangles in Th. By Theorem 4.4, it is expected that ||u(tn) − un

h||0 ∼ O(h2),
|||u(tn)−un

h|||(α,β) ∼ O(h2−σ), σ = max(α, β) in the spatial direction and ||u(tn)−un
h||0 ∼ O(τ2−γ) in the temporal

direction. Here, we use the following formulation to calculate the convergence order:

Order =

(
log(||E(h1)||0/||E(h2)||0)

log(h1/h2)
, in space,

log(||E(τ1)||0/||E(τ2)||0)
log(τ1/τ2)

, in time.

Example 1 Firstly, we consider the following 2D TSRFDE on an elliptical domain8<: C
0 D

γ
t u(x, y, t) = K1

∂2αu(x,y,t)

∂|x|2α
+K2

∂2βu(x,y,t)

∂|y|2β
+ f(x, y, t), (x, y, t) ∈ Ω× (0, T ],

u(x, y, 0) = 1
10 (4x

2 + y2 − 1)2, (x, y) ∈ Ω,
u(x, y, t) = 0, (x, y, t) ∈ ∂Ω× (0, T ],
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where Ω = {(x, y)| 4x2 + y2 < 1}, K1 = 1, K2 = 1, T = 1,

f(x, y, t) =
t2−γ

5Γ(3− γ)
(4x2 + y2 − 1)2 +

t2 + 1

20 cos(απ)

n
16[f1(x, a0, 2α) + g1(x, b0, 2α)]

+ 8(y2 − 1)[f2(x, a0, 2α) + g2(x, b0, 2α)] + (y4 − 2y2 + 1)[f3(x, a0, 2α) + g3(x, b0, 2α)]
o

+
t2 + 1

20 cos(βπ)

n
[f1(y, c0, 2β) + g1(y, d0, 2β)] + 8(x2 − 1)[f2(y, c0, 2β) + g2(y, d0, 2β)]

+ (16x4 − 8x2 + 1)[f3(y, c0, 2β) + g3(y, d0, 2β)]
o
,

a0 = −1

2

È
1− y2, b0 =

1

2

È
1− y2, c0 = −

p
1− 4x2, d0 =

p
1− 4x2,

f1(x, a, α) = aD
α
x (x

4), f2(x, a, α) = aD
α
x (x

2), f3(x, a, α) = aD
α
x (1),

g1(x, b, α) = xD
α
b (x

4), g2(x, b, α) = xD
α
b (x

2), g3(x, b, α) = xD
α
b (1).

The exact solution is u(x, y, t) = t2+1
10 (4x2 + y2 − 1)2.
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Figure 6: The unstructured triangular meshes used in the calculation for h = 0.12558, 0.08391 and 0.04531.

Figure 6 shows the elliptical domain partitioned by different unstructured triangular meshes. The corresponding
numerical results are given in Table 1, which illustrates the L(α,β) error, L2 error and corresponding convergence
order of h. Table 2 displays the L2 error and the convergence order of τ . From these two tables we can see
that the expected convergence orders O(h2−σ), O(h2), and O(τ2−γ) are attained. Table 3 shows the L2 error and
the convergence order of τ = h for the second order temporal numerical scheme. We can see that the numerical
results are in excellent agreement with the exact solution and we attain the second order, which demonstrates the
effectiveness of the numerical method.

Table 1: The L(α,β) error, L2 error and convergence order of h for different α, β at t = 1 with γ = 0.7, τ = 1/1000.

γ = 0.7 Ne h L(α,β) error Order L2 error Order
70 3.0312E-01 8.9507E-02 – 9.1296E-03 –

α = 0.75 468 1.2558E-01 3.5831E-02 1.04 1.7483E-03 1.88
β = 0.95 1142 8.3913E-02 2.1668E-02 1.25 6.9743E-04 2.28

4324 4.5308E-02 1.0303E-02 1.21 1.8504E-04 2.15
70 3.0312E-01 9.0145E-02 – 8.6868E-03 –

α = 0.8 468 1.2558E-01 3.1969E-02 1.18 1.4612E-03 2.02
β = 0.8 1142 8.3913E-02 1.8311E-02 1.38 5.5341E-04 2.41

4324 4.5308E-02 8.1488E-03 1.31 1.3987E-04 2.23

Example 2 Next, we consider the following 2D TSRFDE without a source term on a general irregular convex
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Table 2: The L2 error and convergence order of τ for γ = 0.7 at t = 1 with α = β = 0.8 and h2 ≈ τ2−γ .

Ne τ h L2 error Order

276 1
14 1.8428E-01 2.2122E-03 –

1142 1
46 8.3913E-02 5.5444E-04 1.16

1738 1
61 6.9134E-02 3.7308E-04 1.40

Table 3: The L2 error and convergence order of τ = h for the second order numerical scheme with γ = 0.7,
α = β = 0.8 at t = 1.

Ne h L2 error Order
276 1.8428E-01 2.2182E-03 –
1142 8.3913E-02 5.7249E-04 1.72
1738 6.9134E-02 3.9132E-04 1.96
4324 4.5308E-02 1.6187E-04 2.09

domain Ω 8<: C
0 D

γ
t u(x, y, t) =

∂2αu(x,y,t)

∂|x|2α
+ ∂2βu(x,y,t)

∂|y|2β
, (x, y, t) ∈ Ω× (0, T ],

u(x, y, 0) = 10 cos(π2xy), (x, y) ∈ Ω,
u(x, y, t) = 0, (x, y, t) ∈ ∂Ω× (0, T ].

Figure 7 shows the different triangular unstructured meshes used to partition the domain Ω. Figure 8 shows a
diffusion behaviour of u(x, y, t) at different time t = 0.2, 0.4, 0.8 that decays with increasing time. As we cannot
determine the exact solution for this problem, we use an approximate solution un

h derived by choosing a very fine
mesh (h = 0.0557). To observe the convergence behaviour, we choose a set of points in the domain and derive
the L2 error for different h. The corresponding numerical results are given in Table 4. Again, we see that the
numerical results exhibits a convergence order that attains the expected value of O(h2), which means that the
numerical method is effective on general irregular convex domains. As other arbitrarily shaped convex domains can
be partitioned similarly, we can conclude that the method is applicable to other arbitrarily shaped convex domains
as well.
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Figure 7: The unstructured triangular meshes used in the calculation for h = 0.2825, 0.1454 and 0.0557.

Example 3 Then, we consider the following two dimensional coupled fractional Bloch-Torrey diffusion equa-
tion with a time-varying magnetic field gradient on human brain-like domain shown in Figure 2, in which we choose
41 sample points on the boundary of the human brain (Figure 2) and connect the adjacent points by a line to form
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Figure 8: The diffusion profiles of u(x, y, t) at different t with γ = 0.9, α = β = 0.80, h = 0.1454, τ = 1/1000 at
t = 1.0.

Table 4: The L2 error and convergence order of h for α = β = 0.8, γ = 0.9, τ = 1/1000 at t = 1.0.

Ne h L2 error Order
244 2.8250E-01 5.0708E-03 –
958 1.4536E-01 1.6899E-03 1.65
2476 8.9184E-02 5.4918E-04 2.30

an approximate boundary of the human brain (Figure 2(b)).8>>>><>>>>: ωγ−1C
0 D

γ
t Mx(x, y, t) = Dµ2(β−1)

�
∂2βMx(x,y,t)

∂|x|2β
+ ∂2βMx(x,y,t)

∂|y|2β

�
+ λ1(t)My(x, y, t), (x, y, t) ∈ Ω× (0, T ],

ωγ−1C
0 D

γ
t My(x, y, t) = Dµ2(β−1)

�
∂2βMy(x,y,t)

∂|x|2β
+

∂2βMy(x,y,t)

∂|y|2β

�
− λ1(t)Mx(x, y, t), (x, y, t) ∈ Ω× (0, T ],

Mx(x, y, 0) = 0, My(x, y, 0) = 100, x, y ∈ Ω,
Mx(x, y, t)|∂Ω = 0, My(x, y, t)|∂Ω = 0, (x, y, t) ∈ ∂Ω× (0, T ].

(29)

Here, we choose ω = 2, D = 1 × 10−3, µ = 15, λ1(t) = t, T = 50, τ = 1/20 to observe the behaviour of

the transverse magnetization |Mxy(x, y, t)| =
È
Mx(x, y, t)2 +My(x, y, t)2. The related numerical scheme for the

system (29) is given in the appendix. Figure 9 shows the different triangular unstructured meshes used to partition
the domain Ω. Figure 10 displays the solution behaviour for Mx(x, y, t), My(x, y, t) at the randomly chosen point
(x∗, y∗) = (0.5702, 0.8548) with different values of γ. We observe that the effects of γ on the solution behaviour is
significant and the smaller γ is, the faster it decays from (0, 100) to (0, 0). Figure 11 highlights a new finding of
the effect of β on the solution behavior, which we believe is an original contribution to the literature. Although
not obvious, the effects of β on the solution behaviour is similar to that of γ, which can be reflected clearly
in Figure 12(b). Figure 12 exhibits the normalized decay of the transverse magnetization versus t at the point
(x∗, y∗) = (0.5702, 0.8548) for different γ and β. We conclude that the smaller γ is, the sharper the decay rate is at
the beginning time, but more time consuming in the process of decaying to 0 at latter times, which conforms with
Figure10. The effects of β is similar, which are aligned with Figure 11. Finally, we choose a very fine grid mesh
(h = 0.03278) to observe the discrete L2 error of Mxy for different h. The corresponding numerical results are given
in Table 5 exhibiting the convergence order of O(h2), which shows the effectiveness of the method on the coupled
fractional Bloch-Torrey equation.

Table 5: The L2 error and convergence order of Mxy for different h with β = 0.8, γ = 0.95, τ = 1/20 at t = 50.

Ne h L2 error Order
221 1.3485E-01 4.0010E-04 –
882 6.9427E-01 9.9154E-05 2.10
1777 5.1856E-02 5.5050E-05 2.02

Example 4 To further demonstrate the flexibility and effectiveness of our method, we consider the following
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Figure 9: The unstructured triangular meshes used in the calculation for h = 0.11624, 0.06943 and 0.03278.
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Figure 10: Plots of Mx(x, y, t), My(x, y, t) at point (x
∗, y∗) = (0.5702, 0.8548) for different γ with β = 1.0,

h = 0.06943.

2D TSRFDE without a source term on a multiply-connected domain (see Figure 13)8<: C
0 D

γ
t u(x, y, t) =

∂2αu(x,y,t)

∂|x|2α
+ ∂2βu(x,y,t)

∂|y|2β
, (x, y, t) ∈ Ω× (0, T ],

u(x, y, 0) = 10 cos(π2xy), (x, y) ∈ Ω,
u(x, y, t) = 0, (x, y, t) ∈ ∂Ω× (0, T ].

Figure 14 illustrates the behaviour of u(x, y, t) at different times t = 0.2, 0.4, 0.8 on a multiply-connected
domain, which decays with increasing time. We also choose a very fine grid mesh (h = 0.0693) to observe the L2

error of u(x, y, t) for different h. The corresponding numerical results are given in Table 6 exhibiting the convergence
order of O(h2), which is in agreement with the analysis presented in Section 5.

Table 6: The L2 error and convergence order of h for α = β = 0.8, γ = 0.9, τ = 1/1000 at t = 1.0 on the
multiply-connected domain.

Ne h L2 error Order
418 1.7470E-01 3.4886E-03 –
714 1.3974E-01 2.0598E-03 2.36
1710 8.7473E-02 7.1365E-04 2.26

7. Conclusions

In this paper, we considered the Galerkin FEM to a class of two-dimensional time-space Riesz fractional diffusion
equation on irregular convex domains. We partitioned the irregular convex domain into a sum of unstructured
triangular meshes. Then utilising FEM, we obtained the variation formulation of the problem and the associated
discrete scheme with the accuracy of O(τ2−γ + h2). Furthermore, we reduced the computation of inner products
from the whole domain Ω to a single triangular element and evaluated it approximately by the Gauss quadrature
technique. Moreover, we derived a second order temporal numerical scheme for the problem. Finally, numerical
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Figure 11: Plots of Mx(x, y, t), My(x, y, t) at point (x
∗, y∗) = (0.5702, 0.8548) for different β with γ = 0.99,

h = 0.06943.
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Figure 12: Normalized decay of the transverse magnetization versus t at point (x∗, y∗) = (0.5702, 0.8548) for
different γ (with fixed β = 1.0) and β (with fixed γ = 0.99).

examples on irregular convex domains were conducted, which verified the effectiveness and reliability of the method.
Furthermore, with our numerical method, we are able to exhibit the effects of the time and space fractional indices
for the coupled two-dimensional fractional Bloch-Torrey equation. We concluded that the numerical method can
be extended to other arbitrarily shaped convex domains and even some non-convex domains. In future work, we
shall investigate the FEM to other fractional problems on irregular convex domains, such as the two-dimensional
FDE with variable coefficients.
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Appendix

In this section, we outline the numerical scheme for solving the coupled fractional Bloch-Torrey equation (29).
Assume that Xn

h ∈ Vh and Y n
h ∈ Vh are the approximations of Mx(x, y, t) and My(x, y, t) at t = tn, respectively.

Then the fully discrete scheme associated with the variational form of (29) is: find Xn
h ∈ Vh and Y n

h ∈ Vh for each
t = tn (n = 1, 2, ..., N) such that§

(∇γ
t X

n
h , vh)Ω +A(Xn

h , vh)Ω = λ2(tn)(Y
n, vh)Ω, ∀vh ∈ Vh,

(∇γ
t Y

n
h , vh)Ω +A(Y n

h , vh)Ω = −λ2(tn)(X
n, vh)Ω, ∀vh ∈ Vh,

(30)
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Figure 14: The diffusion profiles of u(x, y, t) on a multiply-connected domain at different t with γ = 0.9,
α = β = 0.80, τ = 1/1000 at t = 1.0.

where λ2(tn) =
λ1(tn)
ωγ−1 . Substituting Xn

h =
PNp

i=1 X
n
i li(x, y) and Y n

h =
PNp

i=1 Y
n
i li(x, y) into (30) with vh = lj(x, y)

leads to8>><>>: NpP
i=1

Xn
i

h
(li, lj)Ω + ω0A(li, lj)Ω

i
− ω0λ2(tn)

NpP
i=1

Y n
i (li, lj)Ω = −

NpP
i=1

n−1P
k=1

bnkX
k
i (lk, lj)Ω − bn0 (X

0, lj)Ω,

NpP
i=1

Y n
i

h
(li, lj)Ω + ω0A(li, lj)Ω

i
+ ω0λ2(tn)

NpP
i=1

Xn
i (li, lj)Ω = −

NpP
i=1

n−1P
k=1

bnkY
k
i (lk, lj)Ω − bn0 (Y

0, lj)Ω.

(31)

where ω0 = τγΓ(2 − γ). Equation (31) can be written in matrix form as8><>: (M + ω0B)Xn − ω0λ2(tn)MY n = −M
n−1P
k=1

bnkX
k −G0

X ,

ω0λ2(tn)MXn + (M + ω0B)Y n = −M
n−1P
k=1

bnkY
k −G0

Y .

(32)

where M is the mass matrix with elements Mij = (lj , li)Ω, B is the stiffness matrix with elements Bij =
A(lj , li)Ω, Xn = [Xn

1 , X
n
2 , ..., X

n
Np

]T , Y n = [Y n
1 , Y n

2 , ..., Y n
Np

]T . The vectors G0
X and G0

Y are given by G0
X =

bn0 [(X
0, l1)Ω, (X

0, l2)Ω, ..., (X
0, lNp

)Ω]
T and G0

Y = bn0 [(Y
0, l1)Ω, (Y

0, l2)Ω, ..., (Y
0, lNp

)Ω]
T respectively. Finally, e-

quation (32) can be recast into the form�
M + ω0B −ω0λ2(tn)M
ω0λ2(tn)M M + ω0B

��
Xn

Y n

�
=

�
−M

n−1P
k=1

bnkX
k −G0

X

−M
n−1P
k=1

bnkY
k −G0

Y

�
.

This linear system is then solved using general iterative methods.
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