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Abstract

Chlamydia trachomatis is a Gram-negative obligate intracellular bacterial pathogen that
infects the human genital tract and ocular epithelium. It is the most common bacterial
sexually transmitted infection worldwide. The control of the incidence of genital C. tra-
chomatis infection is a major public health challenge. At any point in time, over 100
million adults are infected with Chlamydia globally. C. trachomatis infection, often re-
ferred to as the ‘silent epidemic’, is asymptomatic in 85% of infected women, and 40% of
infected men. Consequently, it is commonly undiagnosed and untreated. Chlamydia tra-
chomatis infection in humans can also take several months before spontaneous clearance.
Despite the fact that Chlamydia is curable with antibiotics, it remains one of the major
preventable causes of disability and mortality.

Mathematical models are very useful in describing the interaction between Chlamydia
trachomatis and the host immune system, as they provide insights into the dynamics of
the infection process, related sequelae, and feasible intervention/control strategies. In this
study, we use ordinary differential equation models to provide qualitative insights into the
dynamics of Chlamydia trachomatis infection, the associated host immune response, and
the in vivo control or treatment of the infection. Some crucial mathematical and biological
questions are addressed by the thesis, especially those that pertain to the within-host
dynamics of the development and progression of chlamydial infection, and of the control
of the pathogen. The thesis examines optimal control/treatment strategies for genital
chlamydial infection. The effective treatment of chronic Chlamydia infections induced by
chlamydial persistence, and the subsequent host immune response on the dynamics of C.
trachomatis, are explored.

Model results suggest that the use of combination treatments/drugs may facilitate im-
proved clearance of genital chlamydial infection, while averting treatment failures and
the development of chlamydial persistence in vivo. A model that investigates vaccina-
tion strategies that may proffer protective immunity against Chlamydia infections is also
presented. Model results show that an imperfect C. trachomatis vaccine may proffer
protective immunity against chlamydial infection and also facilitate immune-mediated
clearance of intracellular Chlamydia forms. Qualitative results of the presented models
provide frameworks for the design of new and improved treatment strategies for genital
chlamydial infection.
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1 Introduction

Chlamydia trachomatis is a Gram-negative obligate intracellular bacterial pathogen that

infects the human genital tract and ocular epithelium [10, 87, 127]. It has 18 serovars of

which serovars A-C are responsible for trachoma (a leading cause of infectious blindness),

and serovars D-K and lymphogranuloma venereum (LGV) are majorly responsible for

bacterial sexually transmitted infections (STI) [10, 53]. C. trachomatis is the most com-

mon bacterial sexually transmitted infection worldwide [42,92,162]. It is also a major risk

factor in HIV transmission [175]. C. trachomatis is the most commonly reported notifi-

able disease in developed countries, with over 1.4 million chlamydial infections reported

in the United States in 2013 [22,164].

The control of the incidence of genital C. trachomatis infection continues to present as

a major public health challenge [164]. At any point in time, over 100 million adults are

infected with Chlamydia globally [162]. C. trachomatis infection, often referred to as

the ‘silent epidemic’, is asymptomatic in 85% of infected women, and 40% of infected

men. It is even more asymptomatic in men than asymptomatic gonorrhoea infection.

Consequently, it is commonly undiagnosed and untreated [42,162]. Chlamydia trachomatis

infection in humans can also take several months before spontaneous clearance [18, 61].

The incidence of C. trachomatis is more prevalent in young adults (15 to 25 years), and

much more prevalent in female adolescents (24.1%- 27%), [127]. Adolescent women are

at a greater risk of recurrent chlamydial infections [38].

Despite the fact that Chlamydia is curable with antibiotics, it remains one of the major

preventable causes of disability and mortality. During delivery, infected pregnant women

can pass the infection to their infants, possibly resulting in neonatal pneumonia and

opthalmia [22, 148]. Chlamydial genital infection has a more severe sequelae in women,

as they develop serious health problems such as chronic pelvic pain, sterility, urethritis,

and cervicitis. Untreated C. trachomatis plays a crucial causative role in severe sequelae

such as pelvic inflammatory disease (PID), tubal factor infertility (TFI), life threatening

ectopic pregnancy, and sepsis [42, 53, 61, 87, 164]. The infection can be associated with

epididymitis and urethritis in men, and proctitis in men who have sex with men [126].
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1.1 Motivation of the Thesis

A useful way of describing the interaction between Chlamydia trachomatis and the host

immune system is via mathematical models, as they provide insights into the dynamics

of the infection process, the succeeding effects and feasible intervention strategies [9,169].

The aims of this research are to provide qualitative insights into the dynamics of genital

Chlamydia trachomatis infections, the associated host immune response, and the in vivo

control or treatment of the infection. Some crucial mathematical and epidemiological

questions are addressed by the thesis, especially those that pertain to the within-host

dynamics of the development and progression of chlamydial infection, and of the control

of the pathogen. These questions include:

1. Why are there treatment failures in the control of genital chlamydial infection? In

particular, could existing treatment regimen be inhibiting intracellular Chlamydia

growth later than expected, thereby resulting in some of them thriving for repeat

infection? In the presence of antimicrobial treatments, what role does the different

component of the chlamydial developmental cycle play in the pathogenesis of the

disease? How can these treatment regimens be improved?

2. Are treatment failures consequences of sub-optimal treatment regimen? Under

what treatment conditions can the effective and efficient clearance of Chlamydia

be achieved in vivo? Do we need more therapeutic agents in the clearance of the

infection? How and when should such treatments be initiated in infected individu-

als?

3. How do we treat chronic chlamydial infections effectively? In particular, how can we

prevent, or even reverse, the development of severe sequelae of chlamydial infections

in the human population?

4. How would an imperfect Chlamydia vaccine impact on the dynamics and progno-

sis of a genital chlamydial infection in vivo? How efficacious should a Chlamydia

vaccine be if it must facilitate the prevention of the progression of a Chlamydia

infection?

1.1.1 Research Objectives

The objectives of this research program are enumerated below:

1. Construction of new mathematical models of (genital) chlamydial infection in hu-

mans or animals that better account for the complexity of the immune response

to infection, and importantly, reinfection events caused by chlamydial persistence,

than existing models.

2. Enhancement of the above and existing models, such that they are able to describe

the effects of existing treatments and of proposed vaccination strategies.

3. Formation of new hypotheses regarding repeated chlamydial infections based on

model analysis.
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4. Proposition of optimal treatment and vaccination strategies based on the above.

1.1.2 Methodology

In this research project, standard mathematical modelling approaches are used. Specifi-

cally:

• Relevant infectious diseases literature are surveyed to develop a knowledge in the

area of Chlamydia biology/immunology/vaccinology.

• The above understanding is used to develop informed and relevant mathematical

models of chlamydial infections and the immune response. These models use ordi-

nary differential equations.

• Necessary computational methods are developed and tested, to investigate and solve

the mathematical models developed as part of the research.

• Computational simulations and mathematical analysis are used to investigate the

predictions and outcomes of the mathematical models.

• Discussion of the results of analysis and simulations revolve around the relevance

and significance of findings to the formation of new hypotheses regarding the im-

mune response to repeated chlamydial infections of humans and/or animals, the

effective and efficient treatment of chlamydial infections, and in the development of

an effective vaccine.

1.2 Overview of Thesis

In Chapter 2, we give a brief introduction into the biology of Chlamydia and its devel-

opmental cycle. Interactions between Chlamydia and its infected host system are also

described. We also discuss existing treatment strategies for chlamydial infection. In

conclusion, some existing mathematical models of Chlamydia trachomatis are reviewed.

Chapter 3 presents our first attempt at modelling intracellular chlamydial infections by

investigating the interaction between Chlamydia body forms and the host cells. The

model aims at gaining a better understanding of the impact of an antibiotic treatment on

the within-host dynamics of chlamydial infections. In particular, the model investigates

the chlamydial developmental cycle, in order to identify the stages at which Chlamydia’s

intracellular growth can be best inhibited.

In Chapter 4, we present an ordinary differential equation model of the treatment of

Chlamydia infection, which describes the interaction between Chlamydia, host cells, and

the host immune response. The model uses methods of optimal control theory to explore

optimal strategies associated with different kinds of treatment of chlamydial infections.

Qualitative analysis of the model, including stability analysis of the Chlamydia-free equi-

librium, is presented. The model is numerically simulated and results are analysed and

interpreted.
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Chapter 5 presents another ordinary differential equation model, this time focusing on the

treatment of a chronic Chlamydia infection. In addition to accounting for the interaction

between Chlamydia, host cells, and the host immune response, the model also incorporates

host cells that are ‘persistently infected’. The model also uses methods of optimal control

theory to explore optimal treatment strategies for chlamydial infections. The chapter also

presents some qualitative results of the model. Numerical simulations of the model are

presented and results interpreted.

In Chapter 6, a deterministic model of an imperfect mucosal Chlamydia vaccine is pre-

sented. The model uses ordinary differential equations to describe the interactions be-

tween Chlamydia body forms, host cells, host immune cells, and secretions of the host

immune cells. The model assesses the potential role of an effective anti-Chlamydia vac-

cine on the within-host dynamics of Chlamydia trachomatis. Equilibrium solutions of the

model are presented, and the local and global stability analysis of the Chlamydia-free

equilibrium are investigated. The chapter also conducts uncertainty and sensitivity anal-

ysis on the presented model. Numerical simulations of the model are presented and the

concentrations of Chlamydia body forms and host cells, in the presence of the Chlamydia

vaccine, are tracked.

Finally, Chapter 7 summarises the major contributions of the thesis and some future work

is also discussed.



2 Literature Review

In this chapter, we provide a review of the current literature upon which the core chapters

(Chapters 3-6) are based. We begin with a review of the biology of Chlamydia trachoma-

tis and its pathogenesis. We then reviewed the current treatment guidelines for genital

Chlamydia infections before discussing the issue of treatment failures. Furthermore, we

discussed potential anti-Chlamydia treatments that are currently being developed before

covering recent progresses on the development of potential anti-Chlamydia vaccines. Fi-

nally, we gave a brief summary of existing within-host mathematical models of Chlamydia.

2.1 Chlamydial Biology

Chlamydiae spp.1 display a unique and complex biphasic developmental cycle involving

eukaryotic cells. Within host, they appear in two disctinctive morphological forms: the

extracellular, metabolically inert, infectious form, known as the elementary body (EB)

and the intracellular, metabolically active, and replicative form, known as the reticulate

body (RB). RBs are larger than EBs [10, 72, 178]. EBs are spore-like and are about 200

to 400 µm in diameter, while RBs are about 800 µm in diameter [66,175]. Being an obli-

gate intracellular pathogen, C. trachomatis infects its host by attaching to and invading

susceptible host-epithelial cells using its EB form. The interactions of EBs occur in a two-

stage process: the initial reversible attachment through electrostatic interactions of the

EB particle with heparan sulfate proteoglycans (HSPGs) containing glycosaminoglycans,

followed by their high-affinity irreversible binding to an unidentified secondary receptor,

using chemically mutagenized cell lines [10,178].

After the attachment of chlamydial EBs to the cell surface, within the first two hours

post-infection (hPI), they are internalised into plasma membrane-bound vacuoles of the

host cell called inclusions (see Figure 2.1). They then undergo morphological changes and

differentiate into RBs. Typically between 12-18 hPI, RBs undergo repeated binary fission

throughout this middle part of the chlamydial developmental cycle, thus replicating their

DNA content approximately every 2-3 hours [72,144,178].

1spp. is an abbreviation for species and it is often used when the discussion applies to Chlamydia
generally.

5
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Attachment and
entry of

infectious EB

RB

0− 2 hPI

Inclusion

RB fission and inclusion
growth, 2− 12 hPI

RB

RB replication and inclusion
maturation, 12− 18 hPI

EB→RB
differentiation

Abnormal growth
and persistence

Reactivation

Inclusion exocytosis and
cell lysis, 48− 72 hPI

Persistent
form

Asynchronous RB→EB differentiation
24− 48 hPI

Figure 2.1: A schematic representation of the developmental cycle of Chlamydia trachomatis. After the
internalisation of chlamydial elementary bodies (EBs) into the eukaryotic cell, they are internalised into
plasma membrane-bound vacuoles of the host cell called inclusions within the first 2 hours postinfection
(hPI). Between 2-6 hPI, the EBs commence differentiation into reticulate bodies (RBs). Until about
12-18 hPI, RBs undergo repeated binary fission. In the presence of growth inhibitors such as interferon-γ
(IFN-γ) (which induces the production of enzymes that trigger starvation of the pathogen of tryptophan
- an essential amino acid), nutrient deprivation, and antibiotic treatments, the development cycle of some
of the RB form is altered, thus indefinitely taking on a non-replicating, persistent form. Between 18 and
24 hPI, the RBs peak numerically and commence asynchronous differentiation back to EBs. The lysis of
the infected cell occurs at ∼ 48− 72 hPI, depending on the chlamydial species.

As RBs replicate, the inclusion expands, and after about 6-10 rounds of replication, some

RBs de-differentiate back into EBs while other RBs continue to replicate (signifying an

asynchronous de-differentiation stage). At the end of the cycle, Chlamydia is released

from the infected cell in two mutually exclusive pathways: (1) the lytic (exocytosis) exit

mechanisms, which occurs in an ordered sequence of membrane permeabilisations (inclu-

sion, nucleus, and plasma membrane rupture), and (2) the non-lytic/extrusion/reverse

endocytosis exit mechanism, which occurs when the inclusion slowly protrudes out of the

cell within a cell membrane compartment, followed by an eventual detachment from the

host infected cell [79, 175].

The lysis of Chlamydia-infected cells is a pervasive escape mechanism and it is a gen-

eral phenomenon that has been commonly observed experimentally. In comparison, the

chlamydial extrusion mechanism is an unusual escape pathway by intracellular bacte-

ria [79]. Thus, in the remaining part of this thesis, we shall only consider the lytic and

pervasive pathway of chlamydial release.
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At the end of the chlamydial developmental cycle, when most of the RBs have returned

to the EB form, the host cell lyses, after approximately 40-72 hours (depending on the

Chlamydia species) of cell infection. This signifies the end of a complete intracellular C.

trachomatis developmental cycle. The newly released EBs are then available to infect

surrounding healthy epithelial cells [10, 53,72].

In the subsections that follow, we discuss the different aspects of the immune system

and how they respond to genital chlamydial infections. We also discuss intracellular

chlamydial persistence and some mechanisms by which Chlamydia evade the activities of

its host immune system. Finally, we discuss the pathogenesis of chlamydial infections and

chronic chlamydial infections.

2.1.1 Immune response to chlamydial infections

Studies on human and animal models have shown that the immune response to C. tra-

chomatis infection usually takes between four and seven days [9, 87]. The female repro-

ductive tract has both innate and adaptive immune systems, which detect and respond

to invading microbial pathogens [110, 112]. Host epithelial cells initiate inflammatory

responses which dictate the pathogenesis of the infection. Inflammatory leukocytes are

engaged at the infection site by the chemokine secretions of the infected epithelial cells

and cellular inflammatory responses are elicited, due to the secretion of cytokines [61].

The inflammatory responses of these secretions is what promotes the recruitment of im-

mune cells, thus buttressing the development of the innate and adaptative immune re-

sponses [18]. In most cases the response of the innate and adaptive immune cells to

primary genital chlamydial infection is sufficient for the infection clearance [18].

The innate immune system, which is non-specific, is responsible for the first line of defense

against pathogens [110,112]. When Chlamydia infects the epithelial cells of the endocervix

of women, an intense inflammation occurs at the site of infection because the system is

resisting Chlamydia by recruiting protective cells of the female reproductive tract to the

infection site. These cells include neutrophils, dendritic cells, natural killer (NK) cells,

and inflammatory cells (such as macrophages), which causes the early release of pro-

inflammatory cytokines and chemokines [4, 105,110,112,127].

The adaptive immune system, which is pathogen-specific, is triggered in response to a

foreign antigen [61, 112]. Within-host, CD4+ T cells modulate the immune response to

an infection by differentiating into two distinct types: CD4+ T helper type 1 (Th1) cells,

which enhances the cell-mediated immune response to intracellular pathogen, and CD4+

T helper type 2 (Th2) cells, which enhances the humoral immune response to extracellular

pathogen [61]. Both immune responses to Chlamydia infection appear to be aimed at the

sites of infection [105,135].
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Role of the humoral immune response

The humoral immune response to extracellular Chlamydia is primarily enhanced by Th2

cells via anti-inflammatory Th2 cytokines, especially interleukin (IL)-4 and IL-10 [61]. As

noted by Schachter [135] and Loomis and Starnbach [105], the humoral arm of the immune

response is believed to offer some protection against reinfection in an immune host. It does

this by binding its mucosal and circulating antibodies to the pathogen, thus neutralising

the antigen of some of the pathogens by blocking the ability of the infecting EBs to

enter the mucosa. Antibodies also directly destroy the pathogen, thereby inactivating

extracellular EBs [105, 112, 135]. Natural killer (NK) cells have also been commonly

observed to lyse infected cells in a non-specific way [105,135]. Neutralising or bactericidal

antibodies secreted by B cells, and targeted against the major outer membrane protein

(MOMP) of Chlamydia, an important antigen in the clearance and control of Chlamydia

infections, play important roles in the clearance and control of Chlamydia infection [4,105,

135]. However, neutralising bodies have not been confirmed to be able to offer protective

immunity in human [135,176]. Their major known role is in the enhancement of T helper-

1 (Th1) activation [4,112]. We note that the immune responses of Th2 cells are implicated

in scarring resulting from chlamydial infections [112].

Role of the cell-mediated immune response

The cell-mediated immune response to intracellular Chlamydia, on the other hand, is pri-

marily enhanced by Th1 cells via proinflammatory Th1 cytokines, especially interferon-γ

(IFN-γ) (an antimicrobial, infiltrating cytokine which induces the production of enzymes

that trigger starvation of Chlamydia of tryptophan - an essential amino acid) and inter-

leukin (IL)-12, in humans [61]. The cell-mediated immune system removes established

infection (that is, when the organisms have become intracellular) [105,135,168]. Although

the mechanism behind the immuno-pathogenesis of Chlamydia infection is not fully un-

derstood [112], studies have, however, shown that the Th1-like CD4+ T cell-mediated

immune responses, as compared to the humoral immune response, plays the dominant

role in protective immunity [4, 68, 105, 135, 176]. They are recognised to be of immense

importance in the resolution (clearance) of the infection throughout the development cy-

cle [61, 87]. While mature dendritic cells can activate Chlamydia-specific naive CD8+

T cells, the optimal formation of Chlamydia-specific CD8+ memory T cells requires the

help of CD4+ helper T cells [105]. The CD8+ sequentially responds both by secret-

ing IFN-γ [129, 137]) and by specifically lysing Chlamydia-infected cells. This lysing of

Chlamydia-infected cells deprives them of their replicative niche, thereby disrupting their

developmental cycles [96,105]. This is the key mechanism by which CD8+ T cells control

Chlamydia replication. Nevertheless, CD8+ and CD4+ T cells infiltrate during chronic

or repeat infections driving a recurrent inflammatory response which eventually leads to

the pathological effects of chlamydial infections [112].
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In the clearance of a primary chlamydial infection, a wealth of data have shown that a

central role is played by IFN-γ in producing Th1 responses, which develops over time

during the infection [61, 106]. Besides lysing infected cells, IFN-γ also stimulates and

activates other elements of the immune system. It is a potent activator of macrophages.

IFN-γ-activated macrophages destroy elementary bodies phagocytosed at the site of in-

fection [96]. IFN-γ has been seen to inhibit chlamydial growth in vitro [105]. IFN-γ can

also destroy intracellular Chlamydia at the RB stage [96, 135]. Thus, the production of

IFN-γ by Chlamydia-specific CD4+ (primarily) and Chlamydia-specific CD8+ T cells is

of great importance to the resolution of, and protection of the host against Chlamydia

infections [4, 96,104,105,110,135].

2.1.2 Persistent chlamydial infection

Irrespective of the fact that the host immune system initiates an inflammatory response

during a primary infection, C. trachomatis still persists asymptomatically in many indi-

viduals [10]. Chlamydial persistence is a reversible state in which Chlamydia exists in

a viable but non-cultivable form, resulting in a long-term association between Chlamy-

dia and the infected host cell [75, 178]. These non-cultivable chlamydial forms, which

are developed in the presence of some inducers, are morphologically large, non-infectious,

non-replicating, and aberrant RBs, and are commonly referred to as the “persistent” form

of Chlamydia [10, 18, 61, 178]. In the presence of growth inhibitors, such as IFN-γ, nutri-

ent deprivation, iron deficiency, monocyte infection, phage infection, concomitant herpes

simplex virus infection, and penicillin, the chlamydial developmental cycle of some of the

intracellular Chlamydia (RB form) is altered (see Figure 2.1), thus assuming the persis-

tent form indefinitely [10, 18, 178]. However, once these growth inhibitors are removed,

the persistent bacteria differentiate back into infectious forms [18,61].

Chlamydial persistence is also a key contributor to treatment failures [123]. Indeed, it

has been reported that even after treatment, Chlamydia is able to exist in a persistent

state which is undetectable by cell culture and immunoassay [43,76,117]. These persistent

forms may allow subclinical progression of persistent Chlamydia infections [123].

In virtually all hosts of different Chlamydiae species, Chlamydiae also reside in the gas-

trointestinal (GI) tract chronically and asymptomatically [34, 128, 180]. It has been

demonstrated that in humans, persistent chlamydial infections may actually be (mainly)

caused by infection of the GI [128]. The innate and adaptive immune system is unable

to clear Chlamydia from the GI reservoir, just like other microbiota in the gut. Thus,

Chlamydia indefinitely remains in the gut, with continual shedding in feaces [128, 180].

Chlamydial infection of the GI tract is not a focus of this study, hence, it will not be

elaborated upon.
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2.1.3 Chlamydial evasion of the host defense system

Chlamydia has developed a number of mechanisms by which it protects infected cells

from the host defense system. One mechanism involves the release of certain proteolytic

enzymes. One such enzyme is the proteasome/protease-like activity factor (CPAF), which

is able to cleave DNA and many other cellular proteins [78,141,174]. Another such enzyme

is ChlaDub1, a protein encoded by Chlamydia trachomatis, which has deubiquitinating2

activity, and can inhibit the transcription factor NF-κB - a key signalling protein involved

in the regulation of the host inflammatory response [98].

CPAF plays a major role in Chlamydia pathogenesis, being a virulence factor. It plays a

major role in inhibiting the presentation of chlamydial antigens by major histocompatibil-

ity complexes (MHC) to immune cells [10]. CPAF aids in the modification of cytoskeletal

proteins that lead to cell lysis [175]. It is essential for Chlamydia replication [27]. Within

the cytoplasm of infected cells, CPAF protein accumulates as the chlamydial develop-

mental cycle progresses [78, 177]. The activity of CPAF peaks at about 36-48 hours

post-infection, when most intracellular Chlamydia must have differentiated into infec-

tious elementary bodies [78]. CPAF activity is indispensable in different stages of the

chlamydial developmental cycle, such as the reticulate body stage which is the replicat-

ing stage [27]. CPAF is also thought to aid the cell-to-cell spread and ascension of C.

trachomatis on its extracellular release from lysing infected cells [152].

Studies have also shown that genital serovars of Chlamydia trachomatis can escape IFN-

γ-mediated clearance by using indole provided by the local microbial flora of the female

genital tract to biosynthesise tryptophan [10, 18]. As discussed, Chlamydia exists in a

persistent form within its host. One way Chlamydia maintains its persistence within

host cells is by interferring with multiple proapoptotic pathways and potential necrotic

cell death in order to guarantee survival within its host. Chlamydia has also evolved a

mechanism whereby it limits the recognition of its pathogen-associated molecular patterns

(PAMPs) (by the innate immune system) by ascertaining that the inclusions are stable

during the intracellular stage of infections [10].

It has also been suggested that the extrusion mechanism of the release of Chlamydia bod-

ies from an infected cell may also provide protective benefits for Chlamydia. Chlamydia

bound by the extruded membrane may be shielded from pre-existing local immune re-

sponses. The ensuing lysis of the membrane, and release of free Chlamydia, may then

happen when the membrane has moved to a ‘safer’ location [79]. On the other hand,

the extrusion may be engulfed by macrophages, thereby promoting secondary infection

and spread of Chlamydia within the host [79]. Thus, chlamydial exit mechanisms are

suggested to be important determinants of chlamydial pathogenesis [175].

2A deubiquitinating enzyme is a protease that cleaves ubiquitin - a small regulatory protein found in
most tissues of eukaryotic organisms - from proteins and other molecules.
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2.1.4 Pathogenesis of genital chlamydial infection

It has been reported that severe pathological damages of Chlamydia infection are caused

by tissue scarring and inflammation. The aspects of the immune response and cytokine

levels that yield immunopathological disorders, such as pathological inflammation that

does not mediate the removal of intracellular Chlamydia, however remains unclear, and is

a crucial research priority [61]. Two main hypotheses of Chlamydia genital infection have

been put forward: (1) the immunological hypothesis which supports the notion that tissue

damages are central to pathogenesis, and they are induced by the host immune response.

In humans, the presence of a high density of Chlamydia-specific antibody is highly corre-

lated with severe sequelae such as tubal infertility; and (2), the cellular hypothesis which

suggests that tissue damages are caused by persistently infected cells which stimulate the

production of pro-inflammatory cytokines. These cytokines are deleterious and can cause

tissue damage and chronic inflamamtory cellular responses [18,131].

Another important issue that needs to be resolved in Chlamydia trachomatis infection

studies is whether immunity to reinfection develops naturally, and if so, the duration of

the immunity after a natural infection, and whether different time intervals of chlamydial

treatment can affect the development of this immunity [127]. While a lot of useful insights

into Chlamydia infection have been achieved with the use of animal models, limitations

still exist in extrapolating data from these models to make inferences on humans. As

Chlamydia trachomatis infection is to humans, so is Chlamydia muridarum (with its genes

mostly identical to those of Chlamydia trachomatis) infection to mice, and Chlamydia

caviae infection to guinea pig. However, Chlamydia infection in the latter two animal

models are gut parasites [61,127]. A fundamental difference between humans and animal

models is the duration of infection; for example, Chlamydia muridarum infection in mice

is mostly cleared in approximately 4 weeks while Chlamydia trachomatis infection in

humans can take several months before spontaneous clearance [18,61]. In addition, while

Chlamydia trachomatis can evade the IFN-γ-mediated defence mechanism, Chlamydia

muridarum cannot [18].

Some studies demonstrate that while Chlamydia innoculation in animal models generally

leads to an initial rapid peak of Chlamydia, followed by an extended plateau level, and then

a rapid clearance of Chlamydia in about 3-4 weeks, in humans, peak infection may not even

occur for months. In addition, the probability of the resolution of infection increases over

time, with about half of Chlamydia infections being spontaneously resolved approximately

a year after initial testing of studied individuals, while the other half persists (see [61]

and its references). Many studies actually report that chlamydial infection duration in

humans is probably in the order of years [61]. This fundamental difference, coupled with

the inavailability of precise data on the duration of the infection in humans, have been the

major challenges of chlamydial studies. Another limiting difference between the infection

in animal models and humans is that while animal models can be innoculated at controlled

times (and mostly not via the natural route - sexual transmission), Chlamydia infection
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in humans does not happen at just a single defined time. Rather, an individual may be

repeatedly innoculated because sexual activity with an infected person can happen several

times over a short period of time. The only animal model in which sexually transmitted

infection has been achieved is the guinea pig, where the animals were observed to be

immune to infection, which suggests that “sexual transmission elicits a protective immune

response” [127].

2.1.5 Chronic or recurrent chlamydial infections: repeat/persistent

infection

Chronic (or recurrent) chlamydial infections, which are consequences of either chlamydial

persistence, or repeat infection (re-infection), are more precarious than acute infections

[106]. Experimental studies indicate that the presence of the same chlamydial serovar

(after a previously cleared infection) suggests chlamydial persistence, while a new serovar

suggests reinfection [38]. Human epidemiological studies have also shown that with repeat

chlamydial infection comes a higher risk of disease [35]. It has been observed that when

chlamydial antigens give a chronic or recurrent stimulatory action, delayed hypersensitiv-

ity reactions or rare type 3 hypertensitivity reactions (Arthus reaction) are given off [106].

Animal models also show that there is a rapid and large infiltration of CD4+ and CD8+

T cells, as compared to neutrophils, during repeat oviduct infections [35]. This higher

infiltration of cytotoxic cells, in comparison to what happens during a primary infection,

leads to a robust inflammatory response [35]. Consequently, the recurrent inflammatory

reactions, and other processes which occur during chronic chlamydial stimulatory actions,

lead to fibrosis, tissue scarring, and cicatrisation within the organ affected [35, 106]. All

these have been associated with severe sequelae such as pelvic inflammatory disease, ec-

topic pregnancy, infertility, and many other reproductive diseases [38,106].

Although a single infection can elicit a long-term partial protective immune response or

a short-term complete immunity, animal models have revealed no evidence of enhanced

immunity as a consequence of multiple exposures [127]. Importantly, it has been reported

that protective immunity does not remove the severe sequelae of the infection in the upper

genital tract of its host [127]. Tissue damage at the level of the oviduct is the primary

cause of the chronic morbidities of chlamydial infections. Since the goal of chlamydial

control programs is to prevent complications in the reproductive tract, there is a need

for the development of more effective (or alternative) treatment regimen for (chronic)

chlamydial infections, especially before the oviduct becomes infected, or to shorten the

duration of the infection of the oviduct [35,38].
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2.2 Antibiotic treatment of Chlamydia trachomatis

genital infection

Chlamydia infection is treatable with antibiotics. Some antibiotics exert their antimicro-

bial activity on Chlamydia through the inhibition of its protein synthesis. The Chlamydia

form that synthesises proteins is the reticulate body. Hence, for a successful and effective

antimicrobial inhibition of Chlamydia, Chlamydia must be in the reticulate body stage

of growth [129]. A class of antibiotics which is one of the most clinically important an-

tibiotics are macrolides [58]. Macrolides inhibit protein synthesis, and consequently stall

cell growth, by binding to the large ribosomal subunit which is inside the nascent peptide

tunnel and in the vicinity of the peptidyl transferase centre [58,90,103,122].

A study by Peuchant et al. [123], on the effects of antibiotics on the viability of C. tra-

chomatis, has revealed that antibiotics such as azithromycin, doxycycline, moxifloxacin,

and ofloxacin are only bacteriostatic, even at concentrations much higher than the min-

imum inhibitory concentration (MIC) [123]. The study, which used a quantitative real-

time PCR assay to monitor the temporal accumulation of chlamydial chromosomal DNA,

defined the antibiotic MIC as the concentration for which no chlamydial RNA was tran-

scribed [123]. Several other studies have also confirmed that macrolides are typically

bacteriostatic on Chlamydia [90, 123].

Azithromycin is an effective antimicrobial agent against sexually transmitted pathogens.

It is the prototype of a subclass of macrolides (antibiotics) known as azalides [119]. It is

a broad spectrum antibiotic, in that it is highly active against several Gram-positive and

negative organisms [56,119]. Numerous in vitro studies have confirmed that azithromycin

is highly active against several strains of C. trachomatis, as it successfully inhibits their

growth [3,119,139]. It is effective in the treatment of uncomplicated genital C. trachomatis

infections [99,111]. In additon, azithromycin is expected to concentrate intracellularly in

organelles with a low pH, such as lysosomes and phagosomes [119]. This implies that even

pathogens that survive inside phagocytic cells, such as Chlamydia, can still be inhibited

intracellularly by azithromycin.

The pharmacokinetic properties of antibiotics that inhibit Chlamydia can be highly vari-

able. While azithromycin is transported to infection site via phagocytic cells (which are

products of the host immune response to the infection), doxycycline, which has a high

lipid solubility, is rapidly distributed into tissue and infection site [91]. In the treatment of

upper reproductive tract infection, azithromycin reduces inflammation and may be more

efficacious than doxycycline in this regard [126]. This is likely because azithromycin

specifically accumulates at inflammation sites, due to its high cellular concentration,

particularly in phagocytes [122]. Several studies have compared the effect of different

antibiotics, which include a single 1 -g oral dose of azithromycin and the 1-week long

course of 200 mg/day of doxycycline, on C. trachomatis. The former has been observed

to be as effective for the treatment of uncomplicated C. trachomatis infections as the
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latter [3, 99, 111]. Ninety percent of cases of C. trachomatis infection have been seen to

be inhibited by 0.5µg/mL of azithromycin [119]. Some studies have however shown lower

efficacy for azithromycin in comparison to doxycycline [92,126].

Steingrimsson et al. [150], in a randomised third-party blinded two-phase study of 182

patients, compared three regimens of azithromycin and a standard regimen of doxycy-

cline in the treatment of some sexually transmitted diseases (STDs), in order to test for

their clinical efficacy and safety. The STD cases treated include Neisseria gonorrhoeae,

Ureaplasma urealyticum, and C. trachomatis. The three oral doses of azithromycin ad-

ministered were; a single-dose 1 g of azithromycin, a 500 mg twice a day dose for one day,

and a 500 mg dose on the first day, followed by 250 mg on the second and third day. A

standard regimen of doxycycline is 100 mg bd for seven days. Genital pathogens were

isolated from 172 patients, of which 89 had C. trachomatis only, 19 had N. gonorrhoeae

only, and nine had U. urealyticum only. The result of their study, which excludes those

patients who had positive cultures during their follow-up visits (at one, two, and four

weeks), and those that did not go for their follow-up visits, shows that azithromycin was

highly effective in the treatment of their patients with C. trachomatis, of which 95% were

cured. Azithromycin was also observed to be as effective or more effective than doxycy-

cline. Their report concludes that azithromycin is close to being “an ideal antibiotic for

the treatment of sexually transmitted diseases than any of the antibiotics now commonly

in use”.

One of the major factors to be considered in the administration of multiple-dose regimens

of antimicrobials to a patient, in the treatment of sexually transmitted diseases, is the pa-

tient’s compliance to the drug regimen [150]. The fact that a single dose of azithromycin

is effective in the treatment of many sexually transmitted infections makes it a great alter-

native to other effective antimicrobials [56,150]. A good guide for predicting the efficacy

of a drug is the drug’s concentration at the tissue site of infection [119]. Azithromycin has

been reported to achieve a high serum and (prolonged) tissue level sustenance [139]. It

also has a high serum half-life, with its tissue concentrations being about 400 times that

of its serum concentration [150]. Azithromycin’s long half-life of about 2-4 days in most

human tissue contributes to its being an efficient single-dose antibiotic in the treatment

of chlamydial infections [56,150]. Its tissue levels are higher than the minimum inhibitory

concentration (MIC) for many common pathogens.

Azithromycin’s MIC for C. trachomatis is 0.25µg/mL, but it requires 1.0µg/mL for in-

clusion formation to be absolutely inhibited [43, 56, 150]. Azithromycin has also been

reported to be well tolerated in most patients [150]. Its tissue concentration in the lung,

tonsil, genital tissues, and many other tissues is > 3 mg/kg (or mg/L) [56,119]. Standard

susceptibility testing for azithromycin reveals that organisms susceptible to its antimicro-

bial efficacy are those with MICs ≤ 2.0 mg/L, which is one that azithromycin can easily

attain in tissues. Azithromycin has also been shown to be competent in treating infections

in animal models and its efficacy with respect to its high tissue concentrations has also

been established in animal models [56,150]. Thus, treatment guidelines for uncomplicated
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urogenital C. trachomatis infection recommend the first line of treatment to be a single 1

g oral dose of azithromycin [91]. Another commonly recommended regimen is the twice

daily 100 mg of doxycycline taken for 7 days, but this regimen is less preferred due to

compliance issues [92,126].

2.2.1 Chlamydial infection treatment failures

Despite azithromycin’s in vitro efficacy of about 85-95% [3, 111], there have been several

debates as to whether azithromycin is actually the ideal antibiotic treatment for chlamy-

dial infections [67]. This is because treatment failures are sometimes recorded even when

azithromycin was appropriately administered and this is increasingly becoming a con-

cern [15,44,91,92], with some studies suggesting that higher organism load in individuals

treated with azithromycin may be related to azithromycin treatment failure [15,76,92].

Moreover, although earlier studies have indicated that azithromycin has an efficacy of

more than 95%, there is emerging evidence that significant proportions of repeat in-

fections (>5%), that exclude reinfection, are consequences of treatment failures (see

[76, 77, 92, 138], and their references). Treatment failures have often been attributed to

reinfection but there is increasing evidence that relapses could be the results of chlamydial

recurrence/persistence in treated patients [38,43,60,76,77,117].

In women not at risk of reinfection, two studies have observed a treatment failure rate

of approximately 8% [11, 60, 77]. These studies do not have the limitations of previous

studies that report high (>95%) cure rates. Such limitations include short follow-up

durations and the use of cultures or immunoassays rather than sensitive nucleic acid

amplification testing (NAAT). In in vitro cell cultures, the lack of detection of chlamydial

infection does not imply the absence of viable Chlamydia which can be revived after the

removal of antibiotics [123]. Thus, previous high cure rates may have been overestimated

[11, 67, 76, 77, 92]. On the contrary, evidence exist that persistent Chlamydia may not be

detected by even NAAT if the sampled cells are from the mucosal surface only [38,76].

These data suggest that regardless of the acceptance of a single-dose treatment with

azithromycin, there is a need for improved treatment regimens to be sought [11,67,76,77,

92]. Although treatment failure has been reported, chlamydial drug resistance have not

been established [91,126]. It is also worthy of note that more treatment failure has been

observed with azithromycin administration than with doxycycline [59,91].

Chlamydia infection of the GI tract may also largely contribute to chlamydial treatment

failures. In animal models, it has been demonstrated that azithromycin is far less effective

in the treatment of chlamydial GI infection than against genital chlamydial infections

[128]. Thus, there is a possibility that women successfully treated of genital chlamydial

infections remain infected in the GI tract, and can become genitally re-infected with

Chlamydia by auto-innoculation from the GI tract [128,180].
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Treatment failure promotes ongoing transmission and is likely to put women at increased

risk of developing chronic severe sequelae [76, 77]. Thus, in the clearance of chlamydial

infections treated with bacteriostatic antibiotics, antibiotic activity alone does not suffice

but also the ability of the host immune system to eradicate the remaining pathogen [123].

2.3 Potential anti-Chlamydia treatments

In this section, we discuss two potential anti-Chlamydia treatments that are currently

being developed according to the literature.

2.3.1 The use of Tryptophan supplementation in the clearance of

chlamydial persistence

As previously discussed in Subsection 2.1.1 and Subsection 2.3.1, IFN-γ inhibits bacterial

growth by inducing indoleamine 2,3-dioxygenase (IDO), an enzyme regulated by the im-

mune system, which depletes or metabolises L-tryptophan [131,136]. This IDO-mediated

depletion of intracellular pools of tryptophan starves Chlamydia trachomatis, which is a

tryptophan auxotroph [80], of this essential amino acid, thereby inducing bacteriostasis

and leading to the development of persistent chlamydial forms [61, 131, 136]. A rapid

re-differentiation of these persistent forms occurs when the pool of tryptophan returns to

normal levels [131].

1-DL-Methyl-tryptophan (1-MT) is a biosynthetic analog of tryptophan (methylated tryp-

tophan) [14, 20, 26, 31]. It is obtained from tryptophan (Trp) by the replacement of the

hydrogen atom on the indole nitrogen of Trp by a methyl group [20]. In vitro experi-

ments have shown that the addition of 1-MT is able to reverse or inhibit indoleamine 2,3-

dioxygenase (IDO)-mediated tryptophan metabolism and its other antimicrobial or im-

munoregulatory functions, by directly permitting the growth of parasites or T cells [136].

While several in vitro models using different cell lines or cancer cells report that the L

(but not D) isomer of 1-MT was able to abrogate the IDO-mediated arrest of T cell

proliferation, and IDO activity in (IFN)-γ-treated HeLa cells, the D isomer of 1-MT was

significantly more effective in the reversal of IDO-induced tumour growth in vivo [136].

An in vitro study by Schmidt et al. [136] reports that IDO-mediated antimicrobial effects

(such as inhibition of bacterial growth) caused by tryptophan depletion can be abrogated

by 1-L-MT. They also show that 1-L-MT can reinstate the immunoregulatory effects

of IDO [136]. Another in vitro study by Ibana et al. [80] also reports that the use of

levo-1-methyl-tryptophan (L-1MT), a specific IDO inhibitor (which can accumulate to

equilibrium levels needed for adequate inhibition of IDO in vivo), in an in vitro model

of IFN-γ-induced chlamydial persistence, delayed the depletion of tryptophan induced by

the activity of IFN-γ until the late stage of the chlamydial developmental cycle. This

delay caused a blockage of IFN-γ-induced chlamydial persistence. They also observed
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that L-1MT reactivates established persistent Chlamydia forms, thereby becoming ac-

tively replicating RBs intracellularly. Ibana et al. [80] also reports that the addition of

L-1MT to their IFN-γ-exposed infected HeLa cell culture does not support the productive

replication of Chlamydia intracellularly, as the number of EBs produced by lysing infected

cells was significantly reduced. The efficacy of antibiotics (doxycycline in particular) in

the clearance of persistent Chlamydia was also improved. Singla [145] also suggested this,

reporting that a better therapeutic treatment of chronic Chlamydia infection, if there is a

sufficient supply of tryptophan, at about 48-72 hours post-infection, before, and with an-

tibiotic treatment, persistence may be eradicated, thereby effectively treating the chronic

infection. It was also suggested that this therapy may be useful even in acute infections

as the treatment strategy would increase Chlamydia’s susceptibility to antibiotics, while

also decreasing the production of persistent Chlamydia [145]. These results are promising

and they point to the fact that a tryptophan and antibiotic combination treatment may

facilitate an improved treatment of chronic Chlamydia infections.

2.3.2 The inhibition of CPAF activity in anti-Chlamydia drug

development

The inhibition of CPAF activity can potentially play a role in the development of anti-

Chlamydia drugs. [27, 78]. The inhibition of CPAF function is expected to restore the

ability of Chlamydia-infected host cells to express their major histocompatibility complex

antigen, which will in turn allow the presentation of chlamydial peptides to T cells [141].

Its inhibition can also prevent intracellular replication of Chlamydia in humans [27]. The

proteolytic activity of CPAF cannot be blocked by protease inhibitors except the irre-

versible proteasome-specific inhibitor lactacystin [27, 30, 78, 141]. A modified tetrapep-

tide, z-WEHD-fmk (WEHD-fmk) also inhibits CPAF-dependent proteolysis [27]. These

inhibitors provide opportunities for the development of anti-Chlamydia drugs [78]. In the

reduction of chlamydial pathogenesis and burden, blocking CPAF may be an effective

therapeutic strategy [27,78].

2.4 The development of a Chlamydia trachomatis vaccine

Although no Chlamydia vaccine has been approved for use in humans, a number of can-

didate vaccines have been previously identified and tested in various delivery systems

[4, 47, 48, 68, 82]. These candidate vaccines are largely based on the use of defined re-

combinant proteins (proteins whose codes are expressed by recombinant DNA) [104].

Tested vaccine candidates include inactivated, live whole organisms, subunit vaccines,

various chlamydial antigens, recombinant proteins and peptide vaccines [4, 68, 86, 104].

The most promising subunit vaccine candidates are C. trachomatis outer membrane pro-

teins such as MOMP, Outer membrane protein 2 (Omp2), and polymorphic membrane

proteins (Pmps) amongst many others [46, 48, 63, 104]. More recent and promising vac-

cine candidates include, but are not limited to, live, attenuated (plasmid-free) strain of C.
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trachomatis [84, 104] and Vibrio cholerae ghost (VCG; empty V. cholerae cell envelopes

devoid of cytoplasmic contents and cholera toxin)-based chlamydial vaccines [45–48].

The types of potential anti-Chlamydia vaccines recommended by the World Health Or-

ganisation (WHO) are those with high efficacy and that confer long-term protection [163].

In other words, the ideal Chlamydia vaccine would be one that can reduce or eliminate

infection significantly and confer sterilising immunity, while also reducing, or eliminating,

the adverse pathology of the disease in the upper genital tract of females in particu-

lar [63, 81, 104]. Such a vaccine mimics, and should even be better than, the natural

immune response to the infection, while not inducing the severe inflammatory reactions

often associated with Chlamydia infection [110]. It has been suggested that for the de-

velopment of such an efficacious chlamydial vaccine, more effective delivery systems need

to be advanced, and effective immunomodulation should be used [48,68,82,86,110]. This

is because effective delivery systems are expected to boost the induction of adequate

levels of mucosal T-cells and antibody responses that mediate long-term protective im-

munity [48,68]. Studies have shown that Chlamydia vaccines delivered via mucosal routes

are promising (as they (locally) induce high levels of Chlamydia-specific IFN-γ, and con-

sequently, an enhanced protective immunity) [4, 48, 68, 82, 149]. However, while most

Chlamydia vaccine trials have only evaluated protective immunity up to 4 weeks post

vaccination [63], a recent experimental study by Stary et al. [149], which constitutes a

major advancement in C. trachomatis immunobiology [17], have been able to identify some

bio-profiles of a vaccine that can confer long-lived protective immunity [17,48,63,149].

Stary et al. [149] report that mucosal vaccination of mice with ultraviolet light-inactivated

C. trachomatis conjugated to charge-switching synthetic adjuvant nanoparticles (UV-

Ct-cSAPs) brought about a robust C. trachomatis-specific antibody response that was

equivalent to that elicited by C. trachomatis infection. This response was also twice

as robust as vaccination with just ultraviolet light-inactivated C. trachomatis (UV-Ct).

They stressed the fact that the vaccination route in eliciting long-lived protection is

important, irrespective of the kind of vaccine given. The UV-Ct-cSAPs vaccine induces

a wave of effector T cells (TEFF) which seeded the uterine mucosa during the first week

after vaccination. These TEFF then established tissue-resident memory cells (TRM) (in

both resting and inflamed mucosal surfaces) thereafter, which persisted for at least six

months even in the absence of local Chlamydia antigens. These cells were also referred

to as first wave of mucosal-tropic memory cells. Non-mucosal vaccines do not induce this

first wave.

There was also a second wave of vaccine-induced circulating memory T cells (TCM) which

preferentially resided in blood and lymphoid tissues, from where they survey the body for

Chlamydia antigens. The concentration of these TCM is more than that of TRM. These

TCM were produced irrespective of the mucosal route. They however do not traffic to

resting uterine mucosa. In the absence of pre-existing TRM, they were slow to access

the uterus when vaccinated mice were rechallenged with C. trachomatis via the uterus.

However, in mucosal-vaccinated mice, upon Chlamydia rechallenge, uterine-TRM instantly
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responds to chlamydial infection and they initiate the speedy recruitment of Chlamydia-

specific TCM [149] to peripheral tissues, including uterine mucosa. For optimal clearance

of C. trachomatis, TRM must be established, otherwise, the clearance would be sub-

optimal even in the presence of abundant circulating memory cells. The two waves of

memory T cells are however crucial to optimal clearance of C. trachomatis infection.

Interestingly, when humanised mice (mice that have been genetically reconstituted with

a human immune system) who were vaccinated (via mucosal routes) with UV-Ct-cSAP

were rechallenged with intrauterine C. trachomatis infection, a vigorous mucosal TH1

response that cleared C. trachomatis infection was elicited. This suggests that such a

vaccine may also elicit such protective immunity in humans [149].

2.5 Mathematical models of Chlamydia trachomatis

The ultimate goal of chlamydial control programs is to prevent reproductive tract com-

plications. Because of this, it is imperative that an understanding of how chlamydial

infection leads to sequelae be established [35]. Mathematical models are very useful in

describing the within-host dynamics of C. trachomatis [9, 169], and they have become

central tools used to comprehend infectious disease transmission and the epidemiological

processes that underlies it. They also aid the design of effective control strategies [159].

Despite this fact, only a few (within-host) mathematical models of Chlamydia have been

developed. In this section, we give a brief summary of such mathematical models to date,

followed by a comprehensive review of selected models related to our study.

Wilson and colleagues have presented a number of models of the within-host dynamics

and developmental cycle of C. trachomatis. Wilson et al. [170] developed a within-host

model of the chlamydial developmental cycle (CDC) that fits a real-time polymerase chain

reaction (PCR) technology data. Their model predicted an average RB generation time of

2.6 h for the CDC. In another in-host model, an expression for the valence (number of sites

available for binding by antibodies) was developed [171]. Also incorporated into the model

is the tracking of the aggregation of antibody fragment antigen-binding (Fab fragment)

and host cell receptors over extracellular EBs. A mathematical model based on a contact-

dependent type III secretion (TTS) system hypothesis has also been presented [167]. Their

model showed that within an infected host cell, there is an optimal number of inclusions

that are able to attain maturity and thus produce further progeny EB.

Several mathematical models have been used to describe the dynamics of Chlamydia tra-

chomatis in humans. Many such recent models have their basic structure and derivation

in Wilson’s model [169]. Hoare et al. [72] developed a model of the CDC, under the

assumption of an hypothesis (and which eventually confirmed the hypothesis) that tried

to explain the mid-to-late stages of the CDC. The hypothesis states that an increase

of the RB radius, and/or the number of inclusions per infected cell contributes to the

development of persistent chlamydial infection. Mallet et al. [107] also proposed a one

dimensional spatiotemporal mathematical model of chlamydial infection, which uses the
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structure of the model proposed by Wilson [169], and it incorporates the host immune re-

sponse and the movement of infectious Chlamydia in the host genital tract. Furthermore,

another study by Bagher-Oskouei et al. [9], which is an extension of the model proposed

in [107], proposed a two dimensional mathematical model that investigates the interac-

tion between Chlamydia trachomatis and the host immune system. This model describes

the ascension process of the pathogen up the female genital tract via diffusion and the

migration of the host immune cells towards infected epithelial cells via chemo-tactic move-

ments, with pro-inflammatory cytokine such as diffusable IFN-γ acting as the chemical

(concentration) signals to which immune cells move (i.e. a region of higher concentration

of IFN-γ molecules). The model allows for spatio-temporal variation in the biological

species in question. Vickers and Osgood [159] also proposed an immuno-epidemiological

model of Chlamydia transmission dynamics with an emphasis on how treatment impacts

transmission. They used prototypical networks to group individuals in order to show how

the population are evolving dynamically and the interdependencies present within, and

between hosts. Other models have also been developed, looking at dynamics of cell pop-

ulations and infectious Chlamydia forms [9, 19, 32, 107–109, 142, 160, 169], however these

are not directly relevant in the present study.

In the subsections that follow, we present a comprehensive review of the literature on a few

selected mathematical models of the within-host dynamics of Chlamydia trachomatis and

the immune response. The reviewed models investigated the role of the immune system,

both the humoral and cell-mediated immune responses, in the chlamydial development

cycle. Wilson and colleagues used a mathematical model to understand the impact of the

cell-mediated arm (adaptive immunity) of the immune system on the pathogenesis and

clearance or control efficiency of chlamydial infections [168]. Wilson [169] also investi-

gated chlamydial infection dynamics by presenting a mathematical model that describes

the changes in the iterative processes between Chlamydia and the host cells. The study

presented a mathematical framework upon which most mathematical models of Chlamy-

dia to date are based. Sharomi and Gumel [142] also proposed two deterministic ordinary

differential equations model of the transmission dynamics of Chlamydia in vivo. They

incorporated the effects of the humoral immune response and the cell-mediated immune

response. Vickers et al. [160] developed two ordinary differential equation models to in-

vestigate the dynamics of the host immune response under repeated chlamydial infection.

These models shall be discussed shortly.

2.5.1 Mathematical model for the Th1 cell-mediated immune response

against Chlamydia

In order to comprehend the impact of the cell-mediated arm (adaptive immunity) of

the immune system on the pathogenesis and clearance or control efficiency of chlamydial

infections, Wilson et al. [168] did a theoretical investigation by developing a mathemat-

ical model. To the best of our knowledge, this is the first mathematical model of the
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within-host dynamics of Chlamydia (and the immune response). The model investigates

the effect of varying T helper-1 (Th1) cell-mediated response against infected cells over

the chlamydial developmental cycle. Their within-host model incorporates the inter-

conversion between RB and EB forms (the replicating and infectious forms of Chlamydia

respectively) and tracks the population of Chlamydia inside one inclusion over a single

developmental cycle. They also separately modelled the dynamics of cellular immunity

and its efficiency was studied. Their model assumed that an immune response is triggered

once RB replication commences, and the response is most effective when RB reaches its

maximum intracellular population. It also assumed that the presence of Chlamydia pep-

tides is in proportion to the number of RB forms and that lysing host cells contain EBs

predominantly.

In their model, C(t) represents the concentration of extracellular Chlamydia in the sys-

tem under consideration, A(t), the concentration of host cells on which Chlamydia have

attached, and those already infected, E(t), the concentration of infected cells in which

EBs are converting to RBs, while Φ(t) and B(t) are the concentrations of lysing host cells

and cells in the persistent phase respectively. R(t) and I(t) are the total concentrations of

host cells containing purely replicating RBs, and of host cells in which RBs are replicat-

ing (whilst RBs in other cells in this phase are differentiating to EBs) respectively. Since

during one chlamydial development cycle, replicating or differentiating Chlamydia mature

asynchronously and immune response varies at different ages of a phase, they introduced

the concept of different stages of maturity into the model using a time parameter r (a

continuous variable). r, r0 ≤ r ≤ r3 (stages), denotes the maturity of an infected cell,

where; EB-to-RB differentiation occurs during the time/maturity from r = r0 to r = r1,

an original RB triggers purely binary and successive waves of replication for r1 ≤ r ≤ r2,

and RB-to-EB differentiation occurs from r = r2 to r = r3. The maturity of an infected

cell is determined by the phase of the Chlamydia within its inclusion.

The population of RBs of maturity r within a single inclusion is denoted by RB(r), P is

the burst size (number of EBs) of a lysed infected cell, and kjs are rate constants that

specify the speed with which the development stage they represent (determined by their

subscripts) progresses. The natural mortality rate of extracellular Chlamydia is denoted

by λ and α is the proportion of ‘burdened’ host cells that enter into the lysis stage from

ρ(r2) (0 ≤ α ≤ 1). The effect of attachment blocking of EBs by antibodies is denoted by

θ, with (0 ≤ θ ≤ 1), where θ = 1 implies that that the host cell could not be infected

(absolute blocking). The rate that models feedback from the persistent phase to the lytic

cycle is denoted by β. The cytotoxic effect of the immune system against an infected cell

of maturity r is denoted by µ(r), while η is the rate at which the immune system responds

to one intracellular RB particle.

The dynamics of intracellular Chlamydia during one developmental cycle was described.

In order to determine the within-inclusion RB and EB population during a Chlamydia

developmental cycle, some essential assumptions were made. They assumed that by the

time of lysis of infected cells, the differentiation of all RBs to EBs have commenced.
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This does not exclude the likelihood of a significant number of RBs of being in the

transformation process. Let the constant k̂ be the RB binary fission rate and parameter

l(r), the conversion rate at which an RB commences differentiation to an EB. If the RB

doubling time is an average of T hours, then k̂ = (1/T ) ln 2. The number of differentiating

RB-to-EB bodies (at time/progression r, r2 ≤ r ≤ r3) that have progressed a maturity χ,

0 ≤ χ ≤ r∗, is denoted by τ(χ, r). A fully mature EB is represented by τ(r∗ = r1 − r0 =

r3− r2). The relation r1− r0 = r3− r2 implies that EB-to-RB differentiation and RB-to-

EB differentiation have the same time period. The total number of existing EBs at some

time r through the developmental cycle is denoted by EB(r). Thus, the following system

of equations determine the within-inclusion RB and EB population during a Chlamydia

developmental cycle:

dRB
dr

=

k̂RB(r), r1 ≤ r ≤ r2,

k̂RB(r)− l(r)RB(r), r2 ≤ r ≤ r3,
(2.1)

∂τ

∂r
= −∂τ

∂χ
, (2.2)

EB(r) =

∫ r

r2

τ(χ = r∗, ζ)dζ. (2.3)

Equation (2.1) describes the change in RB population within an inclusion. Equation

(2.2) is based on the assumption that RB-to-EB transformation progresses through the

spectrum of chlamydial forms with time (that is an age-structured representation). It

describes how the RB-to-EB transforming forms are maturing and it is simply states

that the “species time rate of change is given by the rate at which the population gets

older (matures).” Equation (2.3) describes the total existing EB population at some

progression r through the developmental cycle. The initial condition of equation (2.1) is

RB(r1) = 1, where l(r) = a(r−r2)/(r3−r) and a is the rate at which RBs stop replicating

but commences differentiation into EBs. The boundary condition of equation (2.2) is

dτ(χ = 0, r)/dr = l(r)RB(r) − kττ(χ = 0, r), which is supplied by no-longer-replicating

RBs. The burst size (total EB population) upon host cell lysis, EBT = EB(r3).

An age-structured model, which could be solved in closed analytic form, was derived for

equations that describe the species characterised by the variable r. If ρ(r, t) and i(r, t)

are the concentrations of host cells containing purely replicating RBs, and of host cells in

which RB forms are differentiating to EBs at time t respectively, but at a maturity stage

between r and r + ∆r, then,
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R(t) =

∫ r1

r0

ρ(r, t)dr and (2.4)

I(t) =

∫ r2

r1

i(r, t)dr. (2.5)

Based on the assumption that the immune system is slow to respond to the presence

of RBs (in one development cycle), they modelled µ(r) using a constant population of

immune cells. Thus,

µ(r) = ηRB(r). (2.6)

Nevertheless, they derived an equation that models a varying immune (cytotoxic T) cell

population. If Ps represents a constant source of immune cells, δT is the natural death

rate of the cells, and kT is the rate at which peptides activate immune cells, then T (t),

the population of immune cells attacking infected cells (at time (t) is given by

dT

dt
= Ps − δTT (t) + kTT (t)

(∫ r2

r1

RB(r)ρ(r, t)dr +

∫ r3

r2

RB(r)i(r, t)dr

)
. (2.7)

Thus, the system of equations that describes the impact of the Th1 immune response

against Chlamydia-infected cells over the Chlamydia developmental cycle is given by:

dC

dt
= Pk1B(t)− k2C(t)− λC(t), (2.8)

dA

dt
= (1− θ)k2C(t)− k3A(t), (2.9)

dE

dt
= k3A(t)− k4E(t), (2.10)

∂ρ

∂t
= −∂(kρ(r)ρ(r, t))

∂r
− µ(r)ρ(r, t), r1 ≤ r ≤ r2, (2.11)

dΦ

dt
= αkρ(r2)ρ(r2, t)− βΦ(t)− δΦ(t), (2.12)

∂i

∂t
= −∂(ki(r)i(r, t))

∂r
− µ(r)i(r, t), r2 ≤ r ≤ r3, (2.13)

dB

dt
= k6i(r3, t)− k1B(t), (2.14)

with initial conditions C(0) = C0, A(0) = E(0) = R(0) = I(0) = B(0) = 0. C(0) = C0

means that there is an inoculum of EBs of density C0 introduced into the system at time

t = 0. The boundary conditions for ρ and i in equations (2.11) and (2.13) respectively

are given by
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ρ(0, t) = k4E(t) and
di(r2, t)

dt
= (1− α)kρ(r2)ρ(r2, t) + βΦ(t). (2.15)

See [168] for full derivation of the equations. Using equations (2.1)-(2.3), Wilson et al were

able to numerically track the number of RBs and EBs within a Chlamydia-infected cell’s

inclusion throughout one developmental cycle. System (2.8)-(2.14) was numerically solved

and finite difference algorithms were employed. The critical behaviour of the numerical

solution was shown to depend on the basic reproduction number, a threshold denoted by

R0, which they obtained to be

R0 =
Pk5k2(1− θ)(β + δ − αδ)
(k2 + λ)(k5 + η)(β + δ)

exp

(
−
∫ r2

r0

µ(ζ)

k(ζ)
dζ

)
. (2.16)

The usual R0 interpretation was implemented, that is; R0 > 1 implies that all the diseased

species will increase boundlessly with time, indicating an active disease state; R0 = 1 im-

plies an equilibrium set up that ensures a continuing developmental cycle but a controlled

infection; and R0 < 1 implies that the infection can be asymptotically cleared as the

population level diminishes. As opposed to equation (2.6) where η, the rate at which the

immune system responds to one intracellular RB particle, is modelled as a constant, they

investigated the secondary memory-induced Th1 response by modelling η as a function of

time. This is in order to ensure that the strength of the maximum Th1 immune response

increases in effectiveness with time. Let η0 represent the naive lymphocyte strength prior

to infection, ηmax, the maximum strength increase from primary to secondary response,

and t1/2, the time it takes for an half-increase in the maximal increase in strength after

primary contact with the antigen. Thus η, now the maximum immune response and which

increases with time, is given by

η = η(t) =
ηmaxt

t1/2 + t
+ η0. (2.17)

Using this secondary Th1 immune response, three possible outcomes for long-term patho-

genesis of an infected individual or cell culture were arrived at. Solutions of the proposed

model (system (2.8)-(2.14)) show that an increase in immune response will exponentially

decrease the population of host cells within which Chlamydia are progressing through

the replicating phase. This is an indicator of the importance and strength of the cell-

mediated immunity in the clearance of secondary infections. The mathematical factors of

the obtained R0 in equation (2.16) were used to make useful inferences and to summarise

the factors critical to disease progression. It was suggested that effectively decreasing the

attachment of extracellular Chlamydia on host cells by antibodies, their clearance due to

natural death and wash out will assist in the clearance or control of the pathogen. It was

also suggested that in order to reduce secondary infection, persistent Chlamydia should

be induced and ensured that they do not return to the lytic cycle. This will prevent fresh
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bouts of infections. This can be done by proven ways such as nutrient deprivation, IFN-γ

production, etc. In conclusion, it was also suggested that inclusions be maintained for

longer periods, that is extend the length of the time of the lytic cycle, by slowing down

the progression through the RB replicating phase. This will enhance the opportunity for

immunological attacks on intracellular Chlamydia (which will lead to their clearance) and

will thus not require a high efficiency from the Th1 immune response. Nevertheless, their

model did not investigate the adverse effects of inducing persistent Chlamydia (which

they admitted) and of lengthening the lytic cycle, which can lead to serious sequelae in

the host’s body [12,61,168].

2.5.2 Mathematical model for the interaction between Chlamydia and

host cells

Wilson developed a simple mathematical model of the cellular (within-host) dynamics of

Chlamydia by using parameters to describe the change in the interactive processes between

Chlamydia, uninfected epithelial cells and Chlamydia-infected epithelial cells [169]. This

is the model upon which many other mathematical models of the within-host dynamics of

Chlamydia are based upon. The proposed model also investigates the role of the humoral

and cell-mediated immunity in the Chlamydia development cycle. He proposed the system

of ordinary differential equations

dC

dt
= Pk2I(t)− µC(t)− k1C(t)E(t),

dE

dt
= PE − δEE(t)− k1C(t)E(t),

dI

dt
= k1C(t)E(t)− γI(t)− k2I(t),

(2.18)

where C(t) is the concentration of free extracellular Chlamydia, E(t), the number of

uninfected mucosal epithelial cells, and I(t), the number of Chlamydia-infected epithelial

cells at time t. At a rate of k2, P Chlamydia bodies are released from infected cells.

The rate of clearance by macrophages is denoted by µ while the rate of epithelial cell

infection (which may be reduced by antibodies) is denoted by k1. The rate of production

of epithelial cells is denoted by PE while δE represents natural death rate of epithelial cells.

The rate of clearance of infected cells, courtesy of cell-mediated immunity, is denoted by

γ.

One of the main goals of epidemiology of infectious diseases is to eradicate the disease

in question. For Chlamydia infection to be eradicated in the infected host, free extracel-

lular Chlamydia and Chlamydia-infected epithelial cells have to be eliminated. Thus, to

investigate the conditions under which this can be achieved, these quantities are set to

zero.

Wilson [169] evaluated the disease free equilibrium of the model system (2.18), for which

he obtained
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C̄ = 0, Ē = PE/δE , Ī = 0, (2.19)

and a non-trivial steady state (endemic equilibrium)

C̄ =
PE [(P − 1)k2 − γ]

µ(γ + k2)
− δE
k1
,

Ē =
µ(γ + k2)

k1[(P − 1)k2 − γ]
,

Ī =
PE

γ + k2
− δEµ

k1[(P − 1)k2 − γ]
.

(2.20)

Utilising the threshold parameter called the basic reproduction number (or ratio) [41], he

investigated some features that impact the pathogenesis of Chlamydia infection. The basic

reproduction number (often denoted by R0) is the “expected number of secondary cases

produced, in a completely susceptible population, by a typical infected individual during his

entire period of infectiousness” [40]. In order to determine whether a disease can invade

and persist in a (new host) population (or host body) when one infected individual (or

cell) is introduced into the wholly susceptible population (or host body) [70, 157], the

basic reproduction number (or ratio) plays a very indispensable role.

The threshold criterion states that “the disease can invade the population (or host body)

if R0 > 1, whereas, it cannot if R0 < 1” [40]. This is because the threshold parameter has

the property that if R0 < 1, the disease-free equilibrium (DFE) is locally asymptotically

stable and the disease cannot invade the population (or host body), but if R0 > 1,

then, the DFE is unstable and the disease can always invade the population (or host

body) [70, 157]. In the computation of R0, the state variables appraised are those that

pertain to the infected cells (or individuals), in which new infections are differentiated

from all other change in state among infected cells (or individuals) [40,41,157].

Thus, evaluating the basic reproduction ratio R0 of the model system (2.18) when the

profusion of infected epithelial cells are at pre-infection level, Wilson [169] obtained

R0 =
P

(1 + γ/k2)(1 + µ/(k1E0))
, (2.21)

where E0 = PE/δE . As a consequence of the threshold criterion, Chlamydia infection will

be cleared, and the DFE (2.19) will be locally asymptotically stable when R0 < 1. On

the other hand, the infection will remain endemic in its host, and the DFE (2.19) will be

unstable when R0 > 1.

Using the analysis of this R0, the report reveals that the three most important factors to

be considered in the clearance of Chlamydia trachomatis infection are P , the number of

Chlamydia released from the lysis of infected epithelial cells, µ, the rate of macrophage
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engulfment of free extracellular C. trachomatis (a consequence of the humoral immunity

response), and γ, the rate of clearance of infected cells, (a response of cytotoxic cells to

intracellular C. trachomatis, courtesy of the cell-mediated immunity).

Hence, to facilitate an upswing in the clearance of infection of C. trachomatis, the following

should be regarded:

1. Macrophage engulfment of antibodies-bound pathogen (mediated by B lympho-

cytes), before pathogen entry into healthy epithelial cells has occured (µ/k1),

2. Cytotoxic T cell clearance of infected epithelial cells prior to lysis of the infected

cell (γ/k2), or

3. Reduction in the number of new Chlamydia forms (elementary bodies) released by

the lysis of an infected cell (P ).

The parameter estimates used in the report (as shown in the table below) also reflect the

relative importance of these factors.

Parameters Description Value

P Burst size per infected cell 200-500

k1 Rate of cell infection 0.02 mm3/day/cell

k2 Rate of infected cells burst 0.33-0.6 days−1

PE Rate of production of mucosal epithelial cells 40 cells/mm3/day

δE Rate of natural death of epithelial cells 2 days−1

γ Effectiveness of cell-mediated immunity 2-10 days−1

µ Effectiveness of humoral immunity 2-10 days−1

Table 2.1: Parameter values and ranges used in numerical simulation [169].

2.5.3 Mathematical model for the transmission dynamics of

Chlamydia in vivo and the immune response

Sharomi and Gumel [142] proposed two deterministic ordinary differential models to de-

scribe the transmission dynamics of Chlamydia in vivo. The first model was referred to

as the ‘basic model’, while the second model was referred to as the ‘extended model’. The

models account for five different stages of the chlamydial developmental cycle (CDC),

while also incorporating the effect of the host immune response in the extended model.

The basic model included Eb(t), the density of Chlamydia EB form, Rb(t), the density

of Chlamydia RB form, He(t), the density of host epithelial cells, and Ij(t), the density

of Chlamydia-infected cells in Stage j, (j = 1, 2, 3, 4, 5) of the CDC, before infected cell

lysis. The stages of the CDC within infected cells are described below.

• Stage 1: Attachment and inclusion of an EB to the surface of the host epithelial

cell (t : 2− 4 hours).

• Stage 2: Intracellular differentiation of EB forms to RB forms (t : 8− 12 hours).

• Stage 3: Intracellular replication of RB forms (t > 20 hours).
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• Stage 4: Intracellular de-differentiation of RB forms to EB forms (t : 30−40 hours).

• Stage 5: Lyses of infected epithelial cells to produce more EB forms (t : 48 − 72

hours).

Basic model

Healthy epithelial cells are produced by the host at a rate Πh, and are infected by Chlamy-

dia at a rate β, which is the effective contact rate. It is assumed that newly infected

cells are in Stage 1. Infected cells in Stage j, (Ij) progress to Stage j + 1 at a rate αj

(j = 1, 2, 3, 4). The rate at which infected cells in Stage 5 disintegrate or lyse to release

Nc Chlamydia bodies is γ, where Nc ∈ [200, 500]. It is assumed that a portion N1 ≥ 1 of

Nc are Chlamydia EBs while the remaining portion N2 = Nc−N1 ≥ 1 are non-infectious

and remain in the Rb class. Healthy epithelial cells have a natural death rate of µh, while

EB and RB forms have natural death rates of µe and µr, respectively. Based on the

described dynamics, the following system of equations are proposed:

dHe

dt
= Πh − βHeEb − µhHe,

dI1

dt
= βHeEb − α1I1,

dIj
dt

= αj−1Ij−1 − αjIj , j = 2, 3, 4,

dI5

dt
= α4I4 − γI5,

dEb
dt

= γN1I5 − βHeEb − µeEb,
dRb
dt

= γN2I5 − µrRb,

(2.22)

The model system (2.22) was extensively analysed. Equilibrium solutions and stability

analysis were presented. The threshold quantity R0, the basic reproduction number, for

the system, was also estimated. The model is shown to have a globally asymptotically

stable Chlamydia-free equilibrium (CFE) whenever R0 < 1. The Chlamydia-present

equilibrium (CPE) exists whenever R0 > 1. Conditions under which the CPE is unique

were also presented (see [142]).

Extended Model: Model with immune response

In their extended model, Sharomi and Gumel [142] incorporated the effect of the hu-

moral and cell-mediated immune response in order to assess the impact of these immune

responses on the in vivo dynamics of Chlamydia trachomatis. New compartments and

parameters are introduced into the model system (2.22) to capture these responses. Let

the density of healthy epithelial cells protected from chlamydial infection by the humoral

immune response be Hi(t). They modelled IFN-γ as immune cells and the density of

these are denoted as Ac(t). The model assumes that the rate at which IFN-γ cells are
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produced is proportional to the number of newly infected epithelial cells in Stage 1 of the

CDC, and this rate ie denoted by ω2, ω2 > 0. IFN-γ cells are assumed to die at a rate µa.

The humoral immune response protects healthy epithelial cells at a rate φ, with efficacy

ε, 0 < ε < 1, and the protection wanes at a rate ω2. It is assumed that the natural

death rate of protected and unprotected epithelial cells are the same, and is denoted by

µh. It is assumed that IFN-γ cells are produced in the presence of a chlamydial infection,

when the CDC is at the RB stage. The infected epithelial cells are disintegrated by the

IFN-γ cells in Stage j (j = 2, 3, 4, 5), at a rate ρj (j = 2, 3, 4, 5). Based on the described

dynamics, the following system of equations are proposed:

dHe

dt
= Πh + ω1Hi − βHeEb − k1He,

dHi

dt
= φ(1− ε)He − k2Hi,

dAc
dt

= ω2I1 − µaAc,
dI1

dt
= βHeEb − α1I1,

dIj
dt

= αj−1Ij−1 − αjIj − ρjIjAc, j = 2, 3, 4,

dI5

dt
= α4I4 − γI5 − ρ5I5Ac,

dEb
dt

= γN1I5 − βHeEb − µeEb,
dRb
dt

= γN2I5 − µrRb,

(2.23)

where k1 = φ(1− ε) + µh and k2 = ω1 + µh.

The model system (2.23) was also extensively analysed. Its equilibrium solutions and

stability analysis were also presented. The model’s associated R01, the basic reproduction

number was estimated and the model is shown to have a globally asymptotically stable

Chlamydia-free equilibrium (CFE) wheneverR01 < 1. It is also shown that the chlamydial

infection persists whenever this threshold quantity R01 > 1.

Numerical simulations of the model suggest that in the clearance of a Chlamydia infection,

the cell-mediated immune response is more effective than the humoral immune response,

as the humoral immune response only delivers a marginal effect in reducing Chlamydia

burden. The study also suggests that in curtailing Chlamydia burden in vivo, a Chlamydia

vaccine that boosts the cell-mediated immune response may be instrumental.

2.5.4 Mathematical model for the immunobiological outcomes during

multiple chlamydial infections

Vickers et al. [160] presented two simple ordinary differential equations models to inves-

tigate the role of CD4+ T cell and the responses of anti-Chlamydia antibodies under
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different exposures and re-exposure histories. Their first and second models were referred

to as the ‘basic’ and ‘extended’ models respectively. The basic model included X, unin-

fected endothelial cells (EnCs), Y , infected EnCs, E, infectious EBs, and Z, TH1 CD4+

cells. Uninfected EnCs were produced at a constant rate λ, and die at a rate δX. Infected

cells are produced at rate βXE, recover at rate γZY , and die at a rate αY . Activated

chlamydia-specific CD4+ T cells proliferate and differentiate at a rate cY , and die at a

rate σZ. The rate of production of EBs from infected cells is εY and the decay rate of

free EBs is qE.

The resulting equations are

Ẋ = λ+ γZY − δX − βXE, (2.24)

Ẏ = βXE − αY − γZY, (2.25)

Ż = cY Z − σZ, (2.26)

Ė = εY − qE. (2.27)

In order to incorporate antibody responses, they extended the basic model. They did not

model immune memory explicitly. Rather, they were modelled by allowing the immune

cells’ (CD4+ cells or antibody) populations die off slower than other cells post-infection.

Another state variable, U , the chlamydia-specific antibody, was introduced. Denoted by ξ

is the antibody production rate, which was assumed to be proportional to the number of

CD4+ cells. φ is the number of antibodies consumed in the formation of an EB-antibody

complex , k is the efficacy of antibody-induced EB neutralisation, and η is the natural

decay rate of the antibody population. The modifications to the basic model yielded an

additional equation and a redefined Equation (2.27), which are

Ė = εY − kUE − qE, (2.28)

U̇ = ξZ − φkUE − ηU. (2.29)

The models were numerically solved and results obtained. They examined the long-term

in-host dynamics under four different re-exposure scenarios (see [160] for details). Their

models were observed to reproduce experimentally-observed kinetics of primary and sec-

ondary chlamydial infections. Simulation results showed that a proportional antibody

and CD4+ cell responses may have important roles in the resolution of primary infec-

tion, and in addition, an individual’s immunity against reinfection. Their results also

suggested that when reinfection occurs after being re-exposed in relatively rapid succes-

sion, the resulting infection is less severe and produces a decreased bacterial load. They

also suggested that short term frequent chlamydial exposures allows partial immunity to

decline up to near baseline levels. In addition, frequent re-exposure was suggested to have

a possibility of yielding a stable and persistently raised immune memory.
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2.5.5 Significance of Research

As the literature review has shown, quite a number of mathematical models have been de-

veloped to understand the dynamics of Chlamydia trachomatis within-host, which includes

the influence of the humoral and cell-mediated responses [142, 168, 171] and the spatio-

temporal progression [9,108,109] of Chlamydia body forms. However, none of these math-

ematical studies have considered the effects of repeated Chlamydia challenges induced by

the intracellular persistence of Chlamydia, and the subsequent immune response on the

within-host dynamics of Chlamydia trachomatis. In addition, no mathematical study

has been developed to extensively investigate the impact of antibiotic treatment on the

within-host (both intercellular and intracellular) dynamics of Chlamydia.

Furthermore, the developed models have not been able to address the concern of vac-

cination strategies that should be put in place in order to combat genital infections of

Chlamydia. This project seeks to address this lack of understanding theoretically through

the development of new mathematical models and the improvement of existing models of

chlamydial infection.



3 Could late inhibition of chlamydial growth be

contributing to treatment failures? An intra-

cellular mathematical model of the chlamydial

developmental cycle

It is obvious that several gaps exist in our understanding of the treatment of Chlamydia

trachomatis infection, and of its efficacy. Thus, it is still an open area of study [67,76,91].

The pathogenesis, low virulence, and long-term persistence of Chlamydia trachomatis

infections are not well understood [10, 132, 153]. Furthermore, as noted in Section 2.2,

antimicrobial treatment failures exist. There is therefore a need for a further investigation

of the role of the different components of the complex chlamydial developmental cycle

(CDC) in chlamydial infections, in order to stimulate new therapeutic treatments of the

disease [178].

In this chapter, we investigate the optimal timing of the inhibitory activity of antibiotic

treatments in a typical chlamydial infection, and how this activity affects the net repli-

cation of Chlamydia over the chlamydial developmental cycle (CDC). We do this on a

cellular level, by examining what happens within an infected epithelial cell. Our aim is

to use mathematical modelling to gain a better understanding of the impact of antibiotic

treatment on the within-host dynamics of Chlamydia trachomatis infection. We do this by

investigating how different timing of the commencement of antibiotic inhibitory activity

(in an active antibiotic delivery of an in vitro testing), within the CDC and on a single

cell level, will impact on the prognosis of the disease.

Candidate vaccines and therapeutic drugs that can attack pathogens at different stages

of their developmental cycle have been previously identified. Antiretroviral drugs used

to treat HIV are good examples of antimicrobial drugs that target different stages of

a pathogen’s (here, HIV) life cycle, in order to abate the pathogen’s growth [6]. In

the bid to combat the malaria parasite Plasmodium falciparum, which has multiple life

stages, several new candidate vaccines have been identified and are at different clinical

stages [49, 62, 165, 166]. These vaccines/therapeutic drugs’ developments are being made

possible because potential biological targets, such as biomarkers, were recognised. An

32
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example is the RTS,S, a malaria vaccine, which is currently undergoing advanced clinical

trials. It targets the infectious phase (pre-erythrocytic stage) of the malaria parasite in

order to prevent the infection of, or attack infected, host liver cells. The design of this

vaccine was made possible because its developers identified a protein (antigen) on the

surface of the parasite, at the pre-erythrocytic stage, which was engineered to stimulate

immunogenic responses from the host [2, 118, 165]. Similarly, we investigate the intra-

cellular/intercellular developmental stages of Chlamydia in order to identify the stage(s)

at which its intracellular growth can best be inhibited, with the goal of more completely

and efficiently clearing the infection. In the development of more effective anti-Chlamydia

drugs, this study has the potential to influence the identification of biomarkers for such

stage(s).

We develop a prototype mathematical model for this theoretical investigation. We use

azithromycin as a prototype antibiotic treatment, because it is a recommended treatment

for (genital) Chlamydia infection and because of its pharmacokinetic and pharmacody-

namic properties (long tissue half-life, lysosomotrophic, bacteriostatic) on chlamydial in-

fections, in order to determine the CDC stage(s) its effect will be ‘most efficient’. In

particular, we consider a dosage equivalent to a single 1-g oral dose. By ‘most efficient’,

we mean the effective and efficient inhibition of chlamydial growth (replication and dif-

ferentiation) and the inhibition of inclusion maturation (see Section 2.2). The CDC, as

described by our model, commences with so many synchronised infected epithelial cells

that are at the RB stage of growth. The infection process is normally initiated by the

attachment of chlamydial EBs to the eukaryotic cell surface (mucosal epithelial cell).

However, our chlamydial model’s developmental cycle bypasses this stage, commencing

instead at the point of EB-to-RB differentiation, since as discussed in Section 2.2, the

inhibitory activity of azithromycin (and any other recommended anti-Chlamydia antibi-

otic in general) only becomes effective at the RB stage. The model, which mimics an in

vitro chlamydial innoculation, considers the intracellular RB/EB developmental cycle and

assumes that a single EB infects an epithelial cell at a time. Our model assumes that if

chlamydial protein synthesis (which occurs at the RB stage as discussed in Section 2.2) is

effectively inhibited, RB replication is also hindered, and formation of infectious progenies

is drastically reduced or blocked consequently.

We present a list of parameters and their corresponding biologically plausible values in

Table 3.1. Parameter estimation is discussed in Section 3.2. Our model is numerically

implemented and preliminary numerical results from simulations of the mathematical

model are presented in Section 3.3. Finally, we present a discussion on the implications of

the findings of our mathematical model of intracellular chlamydial infection in Section 3.4.

3.1 Model Formulation

Here, we present a stripped-down ordinary differential equation (ODE) model to describe

the dynamics of RB and EB populations within a single infected epithelial cell. The model
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tracks the number of intracellular Chlamydia body forms within an inclusion, throughout

the CDC (as defined for our model), similar to previous models developed by [168, 170],

and [167] (see Section 2.5 and its subsections). Since the model was built at a cellular

level, it conceptualises chlamydial infection kinetics in the female reproductive tract, when

azithromycin is transported to the site of a vacuole which initially contains one RB form.

In this vacuole, replication of the RB form occurs, which de-differentiates into EB forms at

a latter stage of the developmental cycle (see Figure 3.2). These EB forms are eventually

released into the surrounding genital mucosa on lysis of the infected host cell.

At time t post infection, we denote by RB and EB, the number of RB and EB forms

of Chlamydia within an inclusion, respectively, and Z, the concentration of azithromycin

transported to the site of the infected host cell. Zmic is the minimum inhibitory concen-

tration (MIC) of azithromycin for C. trachomatis. We let t0 represent the time of the

initial EB-RB differentiation, t∗, the time at which RB forms commence differentiating

back into EB forms (de-differentiation), tl, the time of lysis, tz, t0 ≤ tz ≤ tl, the time

at which the inhibitory activity of azithromycin on chlamydial growth commences, and

δ, the rate of RB-to-EB differentiation. A simple mathematical representation of the

described phenomena is given by the following system of ordinary differential equations:

dRB
dt

=


(

ln(2)

td

)
RB, t0 ≤ t < t∗

1

2

(
1− tanh

(
Z − Zmic

Z̄

))(
ln(2)

td

)
RB − δRB, t∗ ≤ t ≤ tl

(3.1)

dEB
dt

=

0, t0 ≤ t < t∗

δRB, t∗ ≤ t ≤ tl
(3.2)

dZ

dt
= −KZ, t ≥ 0, (3.3)

with initial conditions EB(t0) = 0, RB(t0) = 100, and Z(t0) = Z0 = 7.28×10−8 mg/cell.

Zmic = 2×10−8 mg/cell (see Section 3.2 for discussion on these values). In order to appeal

to the continuum assumption of the use of a deterministic framework, we use large sample

sizes. Thus, we track the number of EB and RB forms of Chlamydia in a collection of

healthy epithelial cells, each infected by one and only one EB. In particular, we track the

changes within 100 infected epithelial cells, thus R(t0) = 100, implies that there is only

one RB form in each infected epithelial cell.

The model assumes that RB replication (through repeated binary fission) occurs expo-

nentially at the start of the infection with doubling time of RB forms represented by td

in the first term of equation (3.1) in the presented model system. Thus, the RB binary

fission rate is ln(2)/td. In order to account for the slowing down of the replication of RB

forms by azithromycin, we consider a switch modelled by
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T (Z) =
1

2

(
1− tanh

(
Z − Zmic

Z̄

))
. (3.4)

In the above expression, the magnitude of the scaling factor 1/Z̄ determines the sensitivity

of the switch T (Z) to Z. It also makes the argument of tanh dimensionless. The term T (Z)

implies that when the concentration Z(t) of the administered drug exceeds its Zmic, that

is 0 < T (Z) < 1/2, then RB replication is inhibited; when concentration Z(t) = Zmic,

that is T (Z) = 1/2, then RB replication is slightly inhibited; and when concentration

Z(t) < Zmic, that is 1/2 < T (Z) < 1, then RB replication may only be slightly inhibited

or even delayed. We illustrate the effect of the slowing down of RB replication by the

switch T (Z), by plotting its graph, as shown in Figure 3.1. Figure 3.1 also shows the

sensitivity of the switch to the magnitude of the scaling factor 1/Z̄. It shows that the

higher the scaling factor (or the lower the value of Z̄), the faster the switch slows down

RB replication.

Treatment failure of azithromycin occurs when it fails to effectively inhibit chlamydial

growth. It rather inhibits inclusion formation by inducing the formation of temporarily

metabolically inert (aberrant) persistent RBs [43, 128]. We assume that the maximum

reduction achieved by azithromycin in the inhibition of RB replication is about half. The

elimination rate constant of azithromycin is denoted by K. We assume that lysing host

cells may contain some aberrant RB forms, but predominantly EB forms. We expect that

several immunological processes, innate, and specific host immune responses will intervene

in the clearance of Chlamydia body forms. However, these have not been captured in this

model and we leave that for future work. In the subsection to follow, we vary tz, and

as such, Equations (3.1), (3.2), and (3.3), also vary slightly to cater for the presence or

absence of azithromycin, Z. Parameter ranges, values, and sources are shown in Table 3.1.

Table 3.1: Variables, parameters, chosen values, and reported ranges used in the model and
simulations.

Variables Description Values Ranges

RB Number of RB forms of Chlamydia RB(t0) = 100
RB Number of EB forms of Chlamydia EB(t0) = 0
Z Concentration of azithromycin Z(t0) = Z0

Parameter

t0 Time of initial EB-RB differentiation 0∗

td Intracellular RB doubling time 2.6 1.45-2.6 hPI [167]
t∗ Inception time of RB-to-EB differentiation 15 12-28∗ hPI [9, 10]
tl Time of infected cell lysis 55 36-60∗ hPI [9, 10]
δ Rate of RB-to-EB differentiation 0.333 0.333 h−1 [167]
K Elimination rate constant of azithromycin 0.0072 0.0072-0.0144 mgh−1

Zmic MIC of azithromycin for C. trachomatis 2 × 10−8 2 × 10−8 mg/cell
Z̄ Scaling factor in the expression for T (Z) 7.28 × 10−8 7.28 × 10−8 mg/cell

Parameter estimation is briefly described later in this chapter. MIC = minimum
inhibitory concentration. Asterisked values/ranges are further explained in
Section (3.3). For the estimation of K, Z0, and Zmic values, see Section 3.2.
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Figure 3.1: A graph that illustrates the potential effect of the switch function T (Z) (Equation (3.4)) on
the RB binary fission rate ln(2)/td. Z̄ and Zmic are in mg/cell.

3.1.1 Time of Treatment Scenarios

Using the model equations (3.1)-(3.3), we investigate the effects of introducing azithromycin

at different times in the cycle. We refer to these times as the times at which azithromycin’s

chlamydial inhibition commences. The five treatment time scenarios that we consider are

tz = t0, tz ∈ (t0, t∗), tz = t∗, tz ∈ (t∗, tl), and tz = tl, which we refer to as intervals I1, I2,

I3, I4, and I5 respectively, as shown in Figure 3.2.

ttlt∗t0

I1 : tz = t0

I2 : t0 < tz < t∗

I3 : tz = t∗

I4 : t∗ < tz < tl

I5 : tz = tl

Figure 3.2: Schematic showing intervals for tz, the time at which azithromycin’s chlamydial
inhibition commences within the CDC. t0 indicates when the first EB form differentiates to an RB
form, t∗ is the point at which RBs commence differentiation back to EB form, and tl is the time of infected
host cell lysis.



Chapter 3. Could late inhibition of Chlamydia be contributing to treatment
failures?

37

3.1.2 Treatment coincides with initial EB-RB differentiation (I1)

When the time at which azithromycin’s chlamydial inhibition commences coincides with

the initial differentiation of an EB to an RB, tz = t0. This means that the inhibitory

effects of the antibiotic acts on the system at all times of interest (that is from t0 → tl),

until it is totally eliminated from the system or when it is no longer potent enough to

combat the pathogen. The model is therefore comprised of two parts: the RB replication

phase from t0 to t∗ and the RB-EB differentiation phase from t∗ to tl. For tz = t0 ≤ t < t∗,

we have

dRB
dt

=
1

2

(
1− tanh

(
Z − Zmic

Z̄

))(
ln(2)

td

)
RB,

dEB
dt

= 0,

dZ

dt
= −KZ,

(3.5)

where initially, RB(t0) = 100, EB(t0) = 0, and Z(t0) = Z0.

Then for t∗ ≤ t < tl, we have

dRB
dt

=
1

2

(
1− tanh

(
Z − Zmic

Z̄

))(
ln(2)

td

)
RB − δRB,

dEB
dt

= δRB, (3.6)

dZ

dt
= −KZ,

where we match solutions at t∗, so RB(t∗), EB(t∗), and Z(t∗) are given by the solutions

to equations (3.5) at t∗.

3.1.3 Treatment occurs during the RB replication phase (I2)

Here, the time at which azithromycin’s chlamydial inhibition commences is after RB

replication has commenced. This implies that for this treatment scenario, tz ∈ (t0, t∗).

The model for this treatment scenario is in three parts: the RB replication phase from t0

to tz, the latter RB replication phase from tz to t∗, and the RB-EB differentiation phase

from t∗ to tl. For t0 ≤ t < tz, we have

dRB
dt

=

(
ln(2)

td

)
RB,

dEB
dt

= 0,

dZ

dt
= 0,

(3.7)
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with initial conditions RB(t0) = 100, EB(t0) = Z(t0) = 0.

The solutions of system (3.7) are

RB(t) = 100exp

(
ln(2)

td

)
t,

EB(t) = EB(t0), and

Z(t) = Z(t0),

(3.8)

respectively.

For tz ≤ t < t∗, we have

dRB
dt

=
1

2

(
1− tanh

(
Z − Zmic

Z̄

))(
ln(2)

td

)
RB,

dEB
dt

= 0,

dZ

dt
= −KZ,

(3.9)

with initial conditions RB(tz), EB(tz), and Z(tz), which are given by solutions to equa-

tions (3.7), that is,

RB(tz) = 100exp

(
ln(2)

td

)
tz,

EB(tz) = EB(t0) = 0, and

Z(tz) = Z(t0) = 0.

(3.10)

For t∗ ≤ t ≤ tl, we again have equations (3.6), but with initial conditions RB(t∗), EB(t∗),

and Z(t∗), which are given by solutions to equations (3.9).

3.1.4 Treatment occurs at the start of RB-EB differentiation (I3)

For this treatment scenario, the time at which azithromycin’s chlamydial inhibition com-

mences coincides with when RB-EB differentiation commences. This implies that for this

treatment scenario, tz = t∗. The model for this treatment scenario is in two parts: the

RB replication phase from t0 to t∗ and the RB-EB differentiation phase from t∗ to tl.

For t0 ≤ t < tz = t∗, the first part of this model has the same equations as equations

(3.7), also with initial conditions RB(t0) = 100, EB(t0) = 0, and Z(t0) = 0. While for

tz ≤ t ≤ tl, we have equations (3.6), but with initial conditions RB(tz), EB(tz), and
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Z(tz), which are given by solutions to the equations of the first part of the model for this

treatment, that is,

RB(tz) = 100exp

(
ln(2)

td

)
tz,

EB(tz) = EB(t0) = 0, and

Z(tz) = Z(t0) = 0.

(3.11)

3.1.5 Treatment occurs during the RB-EB differentiation phase (I4)

In this treatment scenario, the time at which azithromycin’s chlamydial inhibition com-

mences is between the time RB-EB differentiation commences and the time the infected

cell lysis. This implies that for this treatment scenario, tz ∈ (t∗, tl). The model for this

treatment scenario is divided into three parts: the RB replication phase from t0 to t∗,

the first part of the RB-EB differentiation phase from t∗ to tz, and the second part of the

RB-EB differentiation phase from tz to tl.

For t0 ≤ t < t∗, we have equations (3.7), with initial conditions RB(t0) = 100, EB(t0) = 0,

and Z(t0) = 0.

For t∗ ≤ t < tz, we have

dRB
dt

=

(
ln(2)

td

)
RB − δRB,

dEB
dt

= δRB,

dZ

dt
= 0,

(3.12)

with initial conditions RB(t∗), EB(t∗), and Z(t∗), which are given by solutions to equa-

tions (3.7). Note that ln(2)/td − δ < 0. Substituting for t = t∗ in Equation (3.8), we

have

RB(t∗) = 100exp

(
ln(2)

td

)
t∗,

EB(t∗) = EB(t0) = 0, and

Z(t∗) = Z(t0) = 0.

(3.13)

Thus, the solutions of system (3.12) are
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RB(t) = RB(t∗)exp

(
ln(2)

td
− δ
)
t,

EB(t) = EB(t∗) + δRB(t∗)/
(

ln(2)

td
− δ
)(

exp

(
ln(2)

td
− δ
)
t− exp

(
ln(2)

td
− δ
)
t∗

)
, and

Z(t) = Z(t∗), respectively.

(3.14)

Finally, for tz ≤ t ≤ tl, we have equations (3.6), with initial conditions RB(tz), EB(tz),

and Z(tz), which are given by solutions to equations (3.12), that is

RB(tz) = RB(t∗)exp

(
ln(2)

td
− δ
)
tz,

EB(tz) = EB(t∗) + δRB(t∗)/
(

ln(2)

td
− δ
)(

exp

(
ln(2)

td
− δ
)
tz − exp

(
ln(2)

td
− δ
)
t∗

)
, and

Z(tz) = Z(t∗).

(3.15)

3.1.6 Treatment is delivered on cell lysis (I5)

In this treatment scenario, the time at which azithromycin’s chlamydial inhibition com-

mences is at the time of the infected cell’s lysis. Consequently, for this treatment scenario,

tz = tl. The model for this treatment scenario is divided into three parts: the usual RB

replication phase from t0 to t∗, the RB-EB differentiation phase from t∗ to tl, and the

point of cell lysis at time t = tl.

For t0 ≤ t < t∗, the first part of this model also has the same equations as the system

(3.7), with initial conditions RB(t0) = 100, EB(t0) = 0, and Z(t0) = 0. For t∗ ≤ t < tl,

the second part of this model uses system (3.12), with initial conditions RB(t∗) = RB∗3,

EB(t∗) = EB∗3, and Z(t∗) = Z∗3, which are given by solutions to the equations for the

first part of this model. For the point tl = tz, the third part of this model uses equations

(3.6), but with initial conditions RB(tl) = RBl, EB(tl) = EBl, and Z(tl) = Zl, which are

given by the solutions to the equations that constitute the second part of this model.

3.2 Parameter Estimation

Several studies have isolated purified epithelial cells (EC) from the tissues of the fallopian

tube, vaginal mucosa, endocervix, ectocervix and uterine endometrium of the human

female reproductive tracts (HFRT). These cells have been successfully re-established in

cultures on cell inserts (in cell chambers), and have been used to prepare purified epithelial

sheets with high transepithelial resistance (TER) (an indicator of tight junction formation
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in columnar epithelial cells, which maintains the integrity of the epithelial cell monolayers)

[50, 51, 172, 173]. Using experimentally obtained data, and ensuring that the data are

products of experimental methods that used the optimal way of seeding isolated purified

ECs, we assume that 2ml of epithelial sheet weighs about 2.08g, and this contains about

8 × 105-to-1 × 106 viable uterine epithelial cells [50, 51, 161, 172]. We further assumed

that about 7.28 × 10−8 mg of azithromycin is transported to the site of a single epithelial

cell on administration of the standard single 1 g oral dose of azithromycin to a patient

[56,119,121,134,140,151,156], that is, Z0 = 7.28× 10−8mg.

The MIC of azithromycin for the inhibition of inclusion formation in C. trachomatis infec-

tion is 1.0µ g/mL. Hence we take Zmic = 2× 10−8 mg/cell. Azithromycin has an half-life

of about 2-4 days [56,150]. The decay constant k of any substance undergoing exponential

decay is related to its half-life t1/2 by the relation k = ln(2)/t1/2. Thus, the elimination

rate constant K of azithromycin is drawn from the interval [0.0072, 0.0144]. The presented

results are for K = 0.0072. We assume the mean time of RB-EB differentiation to be 3

h [167], thus, the rate of RB-EB differentiation, δ = 0.333.

3.3 Results

We numerically implement the submodels presented in Subsections 3.1.2-3.1.6, along with

the parameter values sampled from the ranges in Table 3.1 using MATLAB ’s one-step

solver ode45. Following the assumption that one EB form infects one vacuole at a time,

after an EB form infects a healthy epithelial cell at time t = 0, the vacuole-bound EB

form differentiates into an RB form after about 2-12 hours [9, 10, 178]. However, the

chlamydial developmental cycle of our mathematical model starts at this time, and we

thus take the time here to be t0 = 0. Furthermore, the time (t∗) of asynchronous RB-to-

EB differentiation has been reported in the literature to occur between 24-40 hours [9,10].

By virtue of our model’s starting point, this time frame will be taken as between t = 12

and t = 28 hours. Furthermore, the actual time of lysis ranges between 48 and 72 hours,

and so our model’s time of lysis (tl) ranges between t = 36 and t = 60 hours.

We first considered the case where there was no azithromycin administered, confirm-

ing that the burst size produced by our model simulation coincides with published re-

ports (that about 200-500 new EBs are produced from the lysis of a chlamydial infected

cell [167, 168]). Using our model, we numerically investigate the effect of altering the

times at which azithromycin’s chlamydial inhibition commences throughout the chlamy-

dial developmental cycle. We considered five distinct scenarios of these times throughout

the cycle as defined. These time scenarios are represented by the five time frames and a

schematic of this is shown in Figure 3.3. Figure 3.4 shows the chlamydial developmental

cycle in the absence of azithromycin. It can be seen that before the differentiation of RBs

to their EB form (0 ≤ t < t∗), RB forms were purely replicating, but EBs emerged after

the differentiation commenced.
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As previously mentioned in Section 3.1, we track the number of EB and RB forms of

Chlamydia in a collection of healthy epithelial cells, each infected by one and only one EB.

In particular, we track the changes within 100 infected epithelial cells, thus R(t0) = 100,

implies that there is only one RB form in each infected epithelial cell. Thus, the results

of Figure 3.5-3.12 should be interpreted with regards to this. Figures 3.5-3.12 show the

chlamydial developmental cycle in the presence of azithromycin.

In Figure 3.5, the number of EB forms contained within an infected cell is only approx-

imately one (EB(tf ) ≈ 1). When one RB form within an infected cell gives rise to one

and only EB form, an equilibrium condition is established. We define this state of equi-

librium as a controlled infection. This is because, intuitively, the infected cell does not

lyse (thereby continuing the infection process) as it is not expected to be burdened by

the presence of one inclusion containing only one (metabolically inert and small) EB form

which does not compete for its essential proteins. Such an infected epithelial cell will

eventually die; at about the natural death rate of healthy epithelial cells, or cleared by

the host immune response.

In the results presented in Figures 3.6 and 3.7, the time at which azithromycin’s chlamy-

dial inhibition commences is also at the RB stage of growth. As shown in Figures 3.6-

3.7, for the different times at which azithromycin’s chlamydial inhibition commences

(0 ≤ tz ≤ 15), it is observed that the burst sizes (number of infectious EB forms re-

leased on cell lysis) of lysing cells are strictly less than 7 and 55 EB progenies per lysing

infected epithelial cell, respectively. However, when azithromycin’s chlamydial inhibition

commenced when most RB forms have replicated (that is when chlamydial protein syn-

thesis has largely been concluded), while some RBs are asynchronously differentiating to

EBs (15 < tz ≤ 55), it can be seen (as shown in Figures 3.8-3.12) that the effectiveness of

the antibiotic in inhibiting chlamydial growth and inclusion formation was drastically re-

duced. This is made evident by the formation and survival of very significant numbers of

EBs (greater than 190 EB progenies per lysing infected epithelial cell) that were released

to the surrounding host cells on cell lysis, for further rounds of the infection process.

As expected, when the time at which azithromycin’s chlamydial inhibition commences

coincides with the hour of host cell lysis, azithromycin has no effect on the inhibition of

chlamydia replication, differentiation, or inclusion formation (see Figure 3.11). We note

that the concentrations of the drug decay linearly in each treatment scenario since it is

described by a linear separable variable differential equation as shown in Equation (3.3),

whereas, the numbers of EBs and RBs decay exponentially, as shown, for example, by

the solutions in Equations (3.8) and (3.14). We also note that in Figures 3.4-3.12, the

number of RBs have essentially decayed to (approximately) zero1.

1The number of cells are not technically zero in finite time, but for practical purposes, the number of
cells are zero. Throughout this thesis, all references to zero concentration or number of cells at final time
are simply approximations of numbers strictly less than unity.
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t
tl = 55 hPIt∗ = 15 hPIt0 = 0

I1 : tz = 0

I2 : 0 < tz < 15

I3 : tz = 15

I4 : 15 < tz < 55

I5 : tz = tl

Figure 3.3: A diagrammatic representation of the chlamydial developmental cycle, highlight-
ing the times (tz) at which the inhibitory effects of azithromycin on Chlamydia commences.
The time values on the schematic are typical values used in the simulation. hPI means hours postinfection.
t0 indicates when the first EB form differentiates to an RB form, t∗ is the point at which RBs commence
differentiation back to EB form, and tl is the time of infected host cell lysis.
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Figure 3.4: RB and EB developmental cycle curves with no azithromycin administered. t∗ is
the time at which RBs commence differentiation back to EB form.
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Figure 3.5: RB and EB developmental cycle curves with azithromycin’s chlamydial inhibition
commencing at time tz = t0 = 0. With respect to the model in Subsection 3.1.2, azithromycin’s
chlamydial inhibition commenced at the beginning of the chlamydial developmental cycle. t∗ is the point
at which RBs commence differentiation back to EB form.
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Figure 3.6: RB and EB developmental cycle curves with azithromycin’s chlamydial inhibition
commencing at time tz = 7 hPI. This simulation was produced by numerical solutions of the submodel
in Subsection 3.1.3. t∗ is the point at which RBs commence differentiation back to EB form. hPI means
hours postinfection.
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Figure 3.7: RB and EB developmental cycle curves with azithromycin’s chlamydial inhibition
commencing at time tz = t∗ = 15 hPI. This simulation was produced by numerical solutions of the
submodel in Subsection 3.1.4. t∗ is the point at which RBs commence differentiation back to EB form.
hPI means hours postinfection.
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Figure 3.8: RB and EB developmental cycle curves with azithromycin’s chlamydial inhibition
commencing at time tz = 30 hPI. This simulation was produced by numerical solutions of the submodel
in Subsection 3.1.5. t∗ is the point at which RBs commence differentiation back to EB form. hPI means
hours postinfection.
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Figure 3.9: RB and EB developmental cycle curves with azithromycin’s chlamydial inhibition
commencing at time tz = 45 hPI. This simulation was produced by numerical solutions of the submodel
in Subsection 3.1.6. t∗ is the point at which RBs commence differentiation back to EB form. hPI means
hours postinfection.
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Figure 3.10: RB and EB developmental cycle curves with azithromycin’s chlamydial inhibition
commencing at time tz = 54 hPI. This simulation was produced by numerical solutions of the submodel
in Subsection 3.1.5. t∗ is the point at which RBs commence differentiation back to EB form. hPI means
hours postinfection.
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Figure 3.11: RB and EB developmental cycle curves with azithromycin’s chlamydial inhibition
commencing at time tz = tl = 55 hPI. This simulation was produced by numerical solutions of the
submodel in Subsection 3.1.6. t∗ is the point at which RBs commence differentiation back to EB form.
hPI means hours postinfection.

3.4 Discussion

We constructed a model of the chlamydial developmental cycle (CDC) to investigate how

different timing of active antibiotic delivery (and consequently the inhibitory activity of

the treatment), within the CDC and on a single cell level, will impact on the prognosis of

chlamydial infections. We used azithromycin as a prototype antibiotic treatment due to

its pharmacokinetic and pharmacodynamic properties on chlamydial infections. In order

to clear Chlamydia, our model, which describes an in vitro investigation, attempts to use

the in vivo equivalence of a single 1-g oral dose treatment. The presented model was

investigated under five different treatment scenarios: the time at which azithromycin’s

chlamydial inhibition commences (1) coincides with EB-RB differentiation; (2) occurs

during RB replication; (3) coincides with RB-EB differentiation; (4) occurs during asyn-

chronous RB-EB differentiation and RB replication; and (5) occurs at cell lysis.

Using numerical simulations, the model was able to generate the clearance of intracellular

RBs, depending on the time at which azithromycin’s chlamydial inhibition commences.

A graphical illustration of the burst size of (number of infectious EBs released by) a

lysing infected cell with respect to the time at which azithromycin’s chlamydial inhibition

commences within the CDC can be seen in Figure 3.12. Figure 3.12 shows that when

azithromycin’s chlamydial inhibition commenced, for example, at times tz = 0, tz = 15,

and tz = 55 (the time of cell lysis), the burst sizes were 1, 54, and 253 EB progenies

per lysing infected epithelial cell, respectively. Thus, our model suggests that the later

the time at which azithromycin’s chlamydial inhibition commences within the CDC, the

greater the burst size of lysing infected cells.
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Figure 3.12: A graphical representation of the times at which azithromycin’s chlamydial
inhibition commences (within the chlamydial developmental cycle (CDC)) against the burst
size of lysing cells. It can be seen that the later the time at which azithromycin’s chlamydial inhibition
commences within the CDC, the greater the burst size of lysing cells. t0 indicates when the first EB form
differentiates to an RB form, t∗ is the point at which RBs commence differentiation back to EB form, and
tl is the time of infected host cell lysis. hPI means hours postinfection.

Chlamydia has a complex contact-dependent type III secretion (TTS) system for deploy-

ing its proteins which modulate host cell pathways. The chlamydial TTS is involved

in the release of virulence proteins from intracellular Chlamydia into the host cell cy-

tosol [27,52,167]. Since an EB infecting a host cell enters into a tightly closed membrane-

bound vacuole, there is contact between it and the vacuole (inclusion). Even when the

EB differentiates into an RB, the contact is intact [167]. However, it is hypothesised that

a trigger for the later RB to EB differentiation is the detachment of the RB from the

surface of the inclusion membrane, which is due to TTS inactivation [52,167]. Thus, the

EBs produced in the late CDC accumulate mostly in the lumen of the inclusion [167].

As previously noted in Subsection 2.1.3, in a normal intracellular chlamydial development,

the Chlamydia protease-like activity factor (CPAF), an important chlamydial virulence

factor which may aid the expansion of chlamydial inclusion, accumulates in the mid-late

CDC [27, 78]. CPAF activity is concentration-dependent [78]. We suppose that in the

presence of only a few intracellular Chlamydia during the mid-late CDC, relatively fewer

CPAF would be secreted. The lack of critical concentration of CPAF protein, needed

for CPAF activity to be triggered, would cause the not-yet-secreted CPAF to remain

dormant [78]. Thus, we suppose that the singular EB produced at the end of the cycle,

when azithromycin’s inhibitory activity commenced at the beginning of the cycle, does

not cause the inclusion to grow or expand to a limit that cannot be contained within the
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host cell [167]. Hence, there is no apoptosis of host infected cell because of a controlled

CPAF activity, which is indeed a precursor for persistent infection condition [71,78].

Model results suggest that for the effective antibiotic inhibition of Chlamydia, the effi-

cient inhibitory activity of the drug should at least commence at the start of the cellular

infection. A stronger and faster intracellular penetration of antibiotics may achieve this.

We hypothesise that the discovery and development of more effective routes of antibiotic

administration, through the targeted delivery of antibiotics, may bring about the effective

treatment of a chlamydial infection. Targeted delivery of drugs is a treatment strategy

that aims to selectively deliver antibiotics to the pathogen of interest at the infection site,

where they can best exert their therapeutic effect [155]. Such a targeted drug delivery

for chlamydial infection has been recently explored. In an in vitro system, Hai et al. [64]

treated C. trachomatis by using transferrin as a carrier for targeted delivery of amoxi-

cillin into the vacuole of Chlamydia trachomatis. The strategy proved to be significantly

more effective in the suppression of Chlamydia more than the amoxicillin alone. At low

concentrations, the transferrin-amoxicillin combination was observed to be bactericidal

on Chlamydia as compared to the use of amoxicillin alone. The targeted drug was also

observed to be targeted at the chlamydial inclusion as compared to free amoxicillin [64].

Such a result as this is promising and it suggests that targeted drug delivery, which may

facilitate a faster and higher delivery of antibiotics to the intracellular pathogen before its

developmental cycle progresses, may be a solution to the effective treatment of chlamydial

infections.

Despite the known complexity of the CDC, we have kept the model simple. The use

of such simple models can often lead to important insights of a general nature into the

factors or processes that shape epidemiological patterns [57]. As such, the proposed

hypotheses and insights presented in this study should be considered in context and used

to simulate further theoretical and experimental research [107]. However, this model

can be built upon for the development of more complicated models that capture more

of the processes that are fundamental to chlamydial infection. Possible extension of the

presented model include (1) the use of a suitable Heaviside function in the switching

function; (2) the investigation of the impact of treatment/drugs that boost or strengthen

the immune system’s response to chlamydial infections; (3) the investigation of the impact

of an enhanced cell-mediated immune response; and (4) the execution of uncertainty and

sensitivity analyses because there can be significant uncertainty in the determination of

(biological) parameter values (which may be patient-specific) related to a disease such as

Chlamydia.



4 Optimal control of the treatment of Chlamydia

trachomatis infection within-host

Whereas in the preceding chapter we considered the timing of antibiotic delivery, relative

to the chlamydial developmental cycle (CDC), and its effect on chlamydial replicative

potential (burst size), we now pursue a more comprehensive mathematical picture of

the optimal timing of antibiotic delivery. In particular, we investigate the intracellular

interactions between Chlamydia and host epithelial cells, in order to determine optimal

treatment strategies needed for the clearance of an in vivo chlamydial infection.

The quest for improvements to therapeutic regimens for C. trachomatis infection remains

an area of open research [67, 77]. As discussed in Section 2.2, some antibiotics, such

as azithromycin and doxycycline (which are recommended antibiotics for treatment of

Chlamydia infection), are bacteriostatic on intracellular Chlamydia. Data from in vitro

testing also suggest that prolonged exposure of C. trachomatis to an antimicrobial is

required for optimum efficacy [76, 77]. As previously discussed in Section 2.1.3, the

proteasome/protease-like activity factor (CPAF), an enzyme released by Chlamydia for

the evasion of the host defense system, is a major virulence factor in chlamydial infections.

The inhibition of CPAF, which is a potential anti-Chlamydia therapeutic strategy (as dis-

cussed in Section 2.3.2), is expected to inhibit intracellular Chlamydia growth [27] and

also restore the presentation of chlamydial peptides to T cells [141]. Consequently, these

are expected to facilitate clearance of the infection by the host immune cells. Wilson [169]

also suggested that there will be an increased ability to clear Chlamydia infection if the

cytotoxic immune response clears infected epithelial cells prior to lysis of the cells.

Hence, based on the literature, we propose that alongside antibiotic activity, the pres-

ence of a proteasome-specific inhibitor, such as lactacystin, may enhance the capacity of

the cell-mediated immune response in the clearance of Chlamydia infection. We also hy-

pothesise that treatment failures are perhaps the consequences of sub-optimal treatment

regimens. Thus, we explore optimal strategies for such treatments using optimal control

techniques.

Optimal control theory is a source of very useful and flexible tools for research activities

in optimal therapies in medicine, optimal strategies in economics, and in many other

50
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fields of applied sciences [7, 125]. It is a powerful mathematical tool that can be used to

make decisions involving complex biological situations. Its use has thus been on the rise in

epidemiological and biological models [100]. The impacts of optimal control on the spread

of infectious diseases have been studied in many epidemiological models (see [33, 54, 143,

154] and references within). In particular, several within-host models of infectious diseases

have used optimal control to predict optimal therapeutic intervention strategies [33, 54,

83, 85, 89]. However, to the best of our knowledge, no within-host mathematical model

has been developed to study optimal intervention strategies for Chlamydia infections.

In this chapter, we present a deterministic mathematical model of C. trachomatis infec-

tion, within-host, with a particular focus on determining the optimal scheme(s) for the

treatment of (genital) chlamydial infections, that is, when and how treatment should be

initiated. Our work aims to determine hypothetical optimal treatment strategies that

not only minimise the production of free extracellular Chlamydia, but possibly enhance

the cell-mediated immune response (that is, cytotoxic immune response) in the clearance

of chlamydial infection. The presented model also aims to maximise the concentration

of healthy epithelial cells. In Section 4.1, we develop a model for the optimal control of

Chlamydia infection and present a mathematical analysis of the model. In particular,

using an existence result, we guarantee the existence of an optimal control pair with finite

objective functional in Section 4.2. In Section 4.3, we use Pontryagin’s Maximum Prin-

ciple to characterise the optimal control pair. We present numerical results of simulation

of the model system in Section 4.4. Our conclusions are discussed in Section 4.5.

4.1 Model Formulation

We develop a mathematical model of the cellular (within-host) dynamics of Chlamydia, to

investigate the impact of treatment on the within-host dynamics of chlamydial infection.

The model has its basic structure and derivation in Wilson’s model [169]. Ordinary dif-

ferential equations were used to model the cellular dynamics of the interactive processes

between extracellular Chlamydia, uninfected epithelial cells and Chlamydia-infected ep-

ithelial cells. The model also describes the role of the humoral and cell-mediated immunity

in the Chlamydia developmental cycle.

We denote by C(t), the concentration of free extracellular Chlamydia (elementary body

form of Chlamydia, in particular), by E(t), the concentration of uninfected mucosal ep-

ithelial cells, and by I(t), the concentration of Chlamydia-infected epithelial cells at time

t. Thus, the model presented by Wilson [169], which we shall refer to as the “basic

Chlamydia model” is described by the following system of ordinary differential equations:



Chapter 4. Optimal control of Chlamydia trachomatis infection 52

dC

dt
= Pk2I − µC − k1CE, (4.1)

dE

dt
= PE − δEE − k1CE, (4.2)

dI

dt
= k1CE − k2I − γI, (4.3)

with initial conditions C(t0) = C0, E(t0) = E0, and I(t0) = I0, where t0 is the initial time.

The model assumes that at a rate of k2, P Chlamydia bacteria are released from infected

cells. The rate of clearance by macrophages is µ, the rate of epithelial cell infection (which

may be reduced by antibodies) is denoted by k1, the rate of production of epithelial cells

is denoted by PE , the natural death rate of epithelial cells is denoted by δE , and the

rate of clearance of infected cells, due to of cell-mediated immunity is denoted by γ. See

Table 4.1 for a concise presentation of the variables and parameters described.

We apply techniques of optimal control theory to the model system (4.1)-(4.3), and ex-

plore optimal control strategies associated with different kinds of treatment of chlamydial

infections.

Thus, the following system of equations is proposed:

dC

dt
= (1− u1)Pk2I − µC − k1CE, (4.4)

dE

dt
= PE − δEE − k1CE, (4.5)

dI

dt
= k1CE − k2I − (γ + u2)I, (4.6)

with initial conditions C(t0) = C0, E(t0) = E0, and I(t0) = I0, where t0 is the initial

time.

The functions u1 and u2 represent two different treatment strategies. The functions u1 and

u2, respectively, represent, the bio-available and deliverable amount of drugs that reduce,

or possibly eliminate, the production of viable Chlamydia (bacteriostatic or bactericidal

agents, respectively), and of drugs that act as proteasome-specific inhibitor, which may

enhance the cell-mediated immune response in the clearance of chlamydial infection prior

to the lysis of infected epithelial cells. The functions u1 and u2 are bounded Lebesgue

integrable functions satisfying 0 ≤ u1(t) ≤ 1 and 0 ≤ u2(t) ≤ m ≤ 1, where m is

the maximum attainable amount/proportion of treatment u2(t) (and 1 is the maximum

attainable amount/proportion of treatment u1(t)) at the site of infection. The use of a

Chlamydia proteasome-specific inhibiting treatment/drug is hypothetical, that is, it not

a clinically tested treatment. Consequently, there is a lot of gap in our knowledge of its

potential in vivo spatio-temporal dynamics, such as its serum and tissue concentrations,

and its half-life. Thus, we assume that the maximum amount of the treatment that
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concentrates at the site of infection, that is m, is lesser than or equal to its maximum

tolerable amount, that is 1.

The coefficient (1− u1(t)) in Equation (4.4) is a linearly decreasing factor in the control

u1 for the production of more infectious progeny (extracellular Chlamydia) by bursting

infected cells as a result of the administration of bacteriostatic treatments. The factor

aims to reduce the concentration of extracellular Chlamydia that are being released by

infected cell lysis for the continuity of the infection process.

The control functions are defined on fixed time intervals since the treatment of chlamydial

infections (or antibiotics generally) are not expected to be administered for an infinite

period of time. Thus the controls are defined for tinitial ≤ t ≤ tfinal, that is t0 ≤ t ≤ tf ,

where for current recommended treatment guidelines, tf − t0 ≤ 7 days [3, 99, 111] (Also

see Section 2.2).

The concentrations of C, E, and I cells are per millimetre cube of human (genital) tissue,

for example, the female reproductive tract. Thus the units of C, E, and I are cells/mm3.

For the dimensions in Equations (4.4)-(4.6) to be correct and biologically sensible, the

model parameters should have the following units: P , no unit (it is just a number- of

cells); k1, mm3/day/cell; k2, day−1; PE , cells/mm3/day; δE , day−1; γ, day−1; µ, day−1;

u1 and u2, no units (they are concentrations of drugs/treatments that have been scaled

by the largest tolerable drug dosage, in concentration, of each treatment. Thus, they are

proportions/amounts of drugs); and m, no unit (it is a proportion/amount of treatment).

Our goal is to minimise the concentration of Chlamydia, infected cells, and systemic costs

of treatment/drug to the body, and to maximise the concentration of healthy epithelial

cells present at the end of a therapeutic intervention strategy. Hence, we seek an optimal

control pair (u∗1, u
∗
2), such that

J(u∗1, u
∗
2) = min

u1,u2∈Γ
J(u1, u2), (4.7)

where Γ, the set of admissible controls is defined as

Γ = {(u1, u2)|u1 and u2 are Lebesgue measurable, 0 ≤ u1 ≤ 1, 0 ≤ u2 ≤ m ≤ 1, t ∈ [0, tf ]}.
(4.8)

The objective functional to be minimized is

J(u1, u2) =

∫ tf

t0

[
C(t) +A1I(t) +

A2

2
u2

1 +
A3

2
u2

2

]
dt+A4C(tf )−A5E(tf ), (4.9)

where tf is the final time of the therapeutic intervention strategy, and the positive constant

weights A1, A2, A3, A4, and A5, measure the relative costs of implementing the respective



Chapter 4. Optimal control of Chlamydia trachomatis infection 54

treatment strategies over the period [0, tf ]. Their values will depend on the relative

importance of each of the control measures in the treatment of the disease.

Costs are chosen to be quadratic functions because they need to be twice differentiable.

Thus, the relationship between drug quantities and the concentration of interacting species

takes the specified form.

We assume that the controls are quadratic in the cost functions because they need to be

twice differentiable. Thus, the relationship between the effects of the treatments and the

interacting species (Chlamydia and host cells) takes the a nonlinear form. This is in line

with several other literatures [5, 83,85,143,154].

The terms C(t) and A1I(t) represent the costs of the clearance of viable Chlamydia, and

that of the infection of healthy epithelial cells, respectively. The terms A2
2 u

2
1 and A3

2 u
2
2

describe the costs associated with administering the respective intervention strategies.

The terms A4C(tf ) and A5E(tf ) are terminal costs associated with the minimisation of

the concentration of Chlamydia, and the maximisation of the concentration of healthy

epithelial cells, respectively, by the end of the treatment.

Variables Description Values

C Free extracellular Chlamydia C0 = 50 cells/mm3

E Healthy mucosal epithelial cells E0 = 200 cells/mm3

I Chlamydia-infected epithelial cells I0 = 0 cells/mm3

Parameters

P Burst size per infected cell 200-500 [169]
k1 Rate of cell infection 0.02 mm3/day/cell [169]
k2 Rate of infected cells burst 0.33-0.6 day−1 [169]
PE Rate of production of mucosal epithelial cells 40 cells/mm3/day [169]
δE Rate of natural death of epithelial cells [0.25-0.26] day−1 [8, 21]
γ Effectiveness of cell-mediated immunity 2-10 day−1 [169]
µ Effectiveness of humoral immunity 2-10 day−1 [169]
m Maximum attainable amount of control u2(t) [0.1-0.9] [estimated]

Table 4.1: Variables, parameters, and values used in numerical simulations.

4.1.1 Basic Properties

In this section, we present some basic qualitative results for the basic Chlamydia model

(4.1)-(4.3), in order to ascertain that the problem is mathematically and biologically well

posed.

Positivity of solutions

First, a plausible biological model requires non-negative populations. Since the model

system (4.1)-(4.3) describes the dynamics of cell populations, it is essential that all its

state variables remain non-negative for all time. This implies that the solutions of the

system will remain positive for all t > 0 when given positive initial conditions. We

establish this important condition via the following lemma:
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Lemma 4.1.1. Given non-negative initial values of the state variables in Equations (4.1)-

(4.3), non-negative solutions are generated for all time t > 0.

Proof. Let (C(0), E(0), I(0)) be a positive initial condition and denote by [0, tmax], the

maximum interval of existence of the corresponding solution. In order to prove that the

solution is positive in [0,+∞], it suffices to show that it is positive in [0, tmax].

Let ts = sup{0 < t < tmax : C(t) > 0, E(t) > 0, I(t) > 0 on [0, t]}.

ts > 0 since C(0), E(0), and I(0) are non-negative. Suppose ts < tmax.

From Equation (4.1),

dC

dt
+ (µ+ k1E)C = Pk2I.

Thus,

d

dt

[
C(t) exp

{
µt+ k1

∫ t

0
E(τ)dτ

}]
= Pk2I(t)

(
exp

{
µt+ k1

∫ t

0
E(τ)dτ

})
,

so that

C(ts) exp

{
µts + k1

∫ ts

0
E(τ)dτ

}
− C(0)

=

∫ ts

0

[
Pk2I(τ̂) exp

{
µτ̂ + k1

∫ τ̂

0
E(τ)dτ

}]
dτ̂ .

Hence,

C(ts) = C(0) exp

{
−
(
µts + k1

∫ ts

0
E(τ)dτ

)}
+ exp

{
−
(
µts + k1

∫ ts

0
E(τ)dτ

)}∫ ts

0

[
Pk2I(τ̂) exp

{
µτ̂ + k1

∫ τ̂

0
E(τ)dτ

}]
dτ̂

> 0.

It can be shown by a similar argument that E(ts) > 0 and I(ts) > 0.

This contradicts the fact that ts is the supremum because at least one of the state variables

should be equal to zero at ts. Therefore ts = tmax. Thus, C(t) ≥ 0, E(t) ≥ 0 and I(t) ≥ 0,

for all time t > 0. This completes the proof.

Invariant region

We consider the long term behaviour of the system (4.1)-(4.3) in an apposite biologically

feasible region D.
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Since all the parameters and state variables of model system (4.1)-(4.3) are non-negative

for all t ≥ 0, from Equation (4.1), it follows that

dC

dt
= Pk2I − µC − k1CE − u1Pk2I

≤ Pk2I − µC.

This implies that
dC

dt
+ µC ≤ Pk2I.

Thus,

C(t) ≤ C(0)e−µt + e−µtPk2

∫ t

0
I(τ)eµτdτ.

Since the interval [0, t] is compact, and since the integrand, I(τ)eµτ , is continuous on that

interval, the corresponding integral is finite. Therefore

C(t) ≤ e−µt(C(0) + Pk2m1) = m̄1,

where m1 =
∫ t

0 I(τ) eµτdτ .

From Equation (4.2),
dE

dt
≤ PE − δEE.

This implies that
dE

dt
+ δEE ≤ PE .

Thus,

E(t) ≤ E(0)e−δEt +
PE
δE

(1− e−δEt),

= E(0)e−δEt + E∗(1− e−δEt),
= E∗ − (E∗ − E(0))e−δEt.

E(t) either approaches E∗ asymptotically or there exists some finite time after which

E(t) ≤ E∗.

From Equation (4.3),
dI

dt
≤ k1CE − k2I,

that is
dI

dt
+ k2I ≤ k1CE.

Using a standard comparison theorem by Lakshmikantham et al. [95], it can be shown that
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I(t) ≤ I(0)e−k2t + e−k2tk1

∫ t

0
C(τ)E(τ)ek2τdτ.

Again, the integral is finite since a continuous function, C(τ)E(τ)ek2τ , is integrated over

a compact interval. Therefore

I(t) ≤ I(0)e−k2t + e−k2tk1m2 = m̄2,

where m2 =
∫ t

0 C(τ)E(τ)ek2τdτ .

Hence, the region D =
{

(C(t), E(t), I(t)) ∈ R3
+ : C(t) ≤ m̄1, E(t) ≤ E∗, I(t) ≤ m̄2

}
is

positively invariant and attracting for the model system (4.1)-(4.3), that is, every fea-

sible solution of the model with initial conditions in D, will remain in D, for all t ≥ 0.

We establish this result via the following lemma:

Lemma 4.1.2. The biologically feasible region D is positively invariant and attracting

with respect to the model system (4.1)-(4.3) with initial conditions in R3
+.

It is clear that the right hand sides of the model equations (4.1)-(4.3) are smooth. Hence,

initial value problems have unique solutions on the regionD. Also, since paths are confined

in D, solutions exist for all time t ≥ 0. It follows that solutions to system (4.1)-(4.3) exist

in D and are unique. Having thus confirmed that the model system is mathematically

and biologically well posed, we proceed to study the dynamics of the flow induced by the

model system (4.1)-(4.3) in D.

4.1.2 Existence and stability of equilibria

Basic reproduction number

The most important and widely used quantity in infectious disease epidemiology is the

basic reproduction number, denoted by R0 [69]. It is a quantity that measures the

expected number of new or secondary cases produced by one typical individual in a

completely susceptible population, during its entire infectiousness period [40, 70, 157].

From the definition of R0, one can deduce that if R0 < 1, each infected individual

averagely produces less than one secondary case, and the infection will be cleared from

the population. However, if R0 > 1, each infected individual would averagely produce

more than one secondary case, and the infection will invade the population [69]. This is

referred to as the threshold criterion, which summarily states that “the disease can invade

if R0 > 1, whereas it cannot if R0 < 1” [40]. The R0 threshold also has the property

that if R0 < 1, the disease-free equilibrium (DFE) of the system is locally asymptotically

stable, but if R0 > 1, the DFE is unstable [70,157]. Thus, R0 is considered the threshold
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quantity that plays the vital role of determining when an infection will invade and persist

in a new host population [69,70].

In the computation of R0 for models with more than one class of infectives, the general

method used in the literature is the next generation method (NGM) [69]. The NGM is

a standard procedure used to evaluate the R0 expression in models that include multiple

classes of infected species/individuals [69,101,157]. The method is a generalisation of the

Jacobian method of estimating R0 whereby the nonlinear system of differential equations

is linearised around the DFE equilibrium [40].

In this method, for the computation of R0, the only states regarded are those that apply

to infected individuals/species [41, 157]. Equations matching this criterion in the ODE

system, which are referred to as the infected subsystem [41], are those that describe the

production of new infections and other changes in state among infected species/individuals

[41, 157]. The first step is the linearisation of the infected subsystem, which must have

been distinguished into new infections, and the transfer of species/individuals in and out

of the infected compartments.

Consider the following general autonomous system:

ẋ = f(x), x ∈ Rn. (4.10)

Let there be m infected compartments out of all n compartments. Sort the compartments

so that the first m compartments correspond to infected individuals/species. Define

Xs = {x ≥ 0|xi = 0, i = 1, . . . ,m} as the set of all disease free states. Let Fi(x) be the

rate of appearance of only new infections in compartment i, V+
i (x), the rate of transfer of

species/individuals into compartment i by all other means, and V−i (x), the rate of transfer

of species/individuals out of the ith compartment. Then,

ẋi = fi(x) = Fi(x)− Vi(x), (4.11)

where Vi(x) = V−i (x)−V+
i (x). Each of the functions satisfies the assumptions in Section

2 of [157] (see Appendix for the assumptions). Then, the next generation operator FV −1

can be formed from matrices of partial derivatives F and V as described below.

F =

[
∂Fi(x0)

∂xj

]
and V =

[
∂Vi(x0)

∂xj

]
, (4.12)

where 1 ≤ i, j ≤ m, and x0 is the disease-free equilibrium of the ODE system (4.10).

Thus, R0 is evaluated as the spectral radius (dominant eigenvalue) of matrix FV −1, that

is ρ(FV −1) [41,69,157]. The entries of the linear operators F , V , and V −1 have biological

meanings. For example, in the matrix −V −1, the (−V −1)ij entry is the expected time
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that a specie presently at stage j will spend in stage i during its entire future ‘life’ (in an

epidemiological sense) [41]. Hence the (i, j) entry of the operator FV −1 gives the rate at

which the infected individual/specie originally introduced into compartment j produces

new infections in compartment i [69, 157].

Remark: In many mathematical models of diseases, especially models with more than

one disease state (such as those with an intermediate host, e.g. mosquito-borne disease),

the R0 value generated from the NGM, like from most other method of estimating the R0,

is not actually the number of (new) infectives produced by one infected specie/individual

in a wholly susceptible population. The R0 obtained from this method also does not

always produce the mean number of secondary infections. Nevertheless, the R0 threshold

estimated from the method is a measure of disease spread, mostly satisfying the threshold

criterion. [101].

Due to this shortcoming of the NGM, in the context of the basic Chlamydia model (4.1)-

(4.3), the basic reproduction number R0 shall simply be referred to as a disease outbreak

threshold with the (true) property that the chlamydial infection will invade the host

(reproductive) system if R0 is greater than unity, but will be cleared if R0 is less than

(or can be brought below) unity.

Local stability of the Chlamydia-free equilibrium

The Chlamydia-free equilibrium (CFE) can be obtained by the setting the right-hand

sides of the basic Chlamydia model (4.1)-(4.3) to zero and then choosing solutions where

C = I = 0. This CFE is given by F0,

F0 = (C∗, E∗, I∗) = (0, Ê, 0), (4.13)

where Ê =
PE
δE

.

The linear stability of this equilibrium F0 can be established using the next generation

method described in Subsection 4.1.2, on the model system (4.1)-(4.3).

The class of infectives in the model system (4.1)-(4.3) are Chlamydia (C) and Chlamydia-

infected host cells (I), since these two classes facilitate the chlamydial infection process.

Thus, the infected subsystem of the model system (4.1)-(4.3) is given by Equations (4.1)

and (4.3), that is, (Ċ, İ). Hence we sort the model system (4.1)-(4.3) so that the first two

compartments correspond to the class of infectives, that is (Ċ, İ, Ė).

Preserving notations, the rate of appearance of new infections in the three compartments,

is denoted by F ,
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F =

 0

k1CE

0

 , (4.14)

while the rate of transfer of each of the interacting species in and out of the three com-

partments is denoted by V,

V = −

 Pk2I − µC − k1CE

−(k2 + γ)I

PE − δEE − k1CE

 . (4.15)

Hence, the matrices of partial derivatives F and V , for the infected subsystem, are re-

spectively given by

F =


∂F1(F0)

∂C

∂F1(F0)

∂I

∂F2(F0)

∂C

∂F2(F0)

∂I

 =

(
0 0

k1Ê 0

)
, (4.16)

and

V =


∂V1(F0)

∂C

∂V1(F0)

∂I

∂V2(F0)

∂C

∂V2(F0)

∂I

 =

(
µ+ k1Ê −Pk2

0 k2 + γ

)
. (4.17)

The operator V −1 is given by

V −1 =
1

(µ+ k1Ê)(k2 + γ)

(
k2 + γ Pk2

0 µ+ k1Ê

)
. (4.18)

Hence, the spectral radius of FV −1, which is the basic reproduction number R01 of the

basic Chlamydia model (4.1)-(4.3), is given by

R01 =
Pk1k2Ê

(µ+ k1Ê)(k2 + γ)
. (4.19)

By inspecting the basic reproduction number R01, one can track the contribution of the

infected and infectious classes (infected epithelial cells and elementary bodies, respec-

tively) to the infection process. It can be seen from the expression in (4.19), that the

basic reproduction number R01 is the product of the infection rate of healthy epithelial
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cells by Chlamydia, k1Ê, the number of infectious progenies released by a lysing infected

cell, P , the duration of infectiousness of an EB,
1

µ+ k1Ê
, and the proportion of infected

cells that survive up to the stage of lysis,
k2

k2 + γ
.

We establish the following result by implementing Theorem 2 of van den Driessche and

Watmough [157].

Lemma 4.1.3. The Chlamydia-free equilibrium (CFE) F0, of the basic Chlamydia model

(4.1)-(4.3), is locally stable whenever R01 < 1 and unstable if R01 > 1.

Lemma 4.1.3 implies that when R01 < 1, the in vivo clearance of Chlamydia body forms

can be achieved if the initial sizes of the subpopulations of the model (C,E, I) are in the

basin of attraction of the CFE F0.

In order to ensure that the therapeutic effects of an effective Chlamydia infection treat-

ment regimen in an in vivo or in vitro setting system does not depend on either the

initial size of Chlamydia bodies or innoculum, respectively, or the initial sizes of other

subpopulations of the model (E and I), we show that the CFE is globally asymptotically

stable (GAS) when R01 < 1.

Global stability of the Chlamydia-free equilibrium

Theorem 4.1.4. The Chlamydia-free equilibrium (CFE) F0, of the basic Chlamydia

model (4.1)-(4.3), is globally asymptotically stable in D, whenever R01 < 1 and unstable

otherwise. The CFE F0 is the only equilibrium when R01 ≤ 1.

Proof. Consider the candidate Lyapunov function

Y = Pk2I + (γ + k2)C, (4.20)

with Lyapunov derivative (where a dot represents differentiation with respect to t) given

by

Ẏ = Pk2İ + (γ + k2)Ċ

= Pk2(k1CE − k2I − γI) + (γ + k2)(Pk2I − µC − k1CE)

= Pk1k2CE − (k2(µ+ k1E) + γ(µ+ k1E))C

= (k2 + γ)(µ+ k1E)

(
Pk1k2E

(k2 + γ)(µ+ k1E)
− 1

)
C

≤ (k2 + γ)(µ+ k1E
∗)
(

Pk1k2E
∗

(k2 + γ)(µ+ k1E∗)
− 1

)
C (since E(t) ≤ E∗ in D)

= (k2 + γ)(µ+ k1E
∗)(R01 − 1)C ≤ 0, when R01 ≤ 1.
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Since all the model parameters and variables are non-negative, it follows that Ẏ ≤ 0 for

R01 ≤ 1, with equality if R01 = 1 or C = 0. Moreover, for R01 < 1, Ẏ = 0 if and only

if C = 0. Hence, Y is a Lyapunov function on D. Furthermore, D is a compact and

absorbing subset of R3
+, and the largest compact invariant set in {(C,E, I) ∈ D : Ẏ = 0},

when R01 ≤ 1, is the singleton F0. Therefore, F0 is the only steady state when R01 ≤ 1.

Thus, by LaSalle’s invariance principle [65, 94] (See Section A.1 for the principle), I → 0

and C → 0 as t→∞. Substituting I = C = 0 into the model equations (4.1)-(4.3) shows

that E → E∗ as t → ∞. Hence, every solution of the basic Chlamydia model system

(4.1)-(4.3), with initial conditions in D, approaches the CFE F0 as t → ∞ (that is, the

CFE F0 is GAS in D) whenever R01 < 1 and unstable otherwise.

Existence of the Chlamydia-present equilibrium

We show that the basic Chlamydia model system (4.1)-(4.3) has a unique Chlamydia-

present equilibrium (CPE), that is the equilibrium for which Chlamydia persists within-

host, if and only if R01 > 1. In order to obtain the CPE, we set the right hand sides of

the model equations (4.1)-(4.3) to zero, and solve for all its non-zero state variables. We

also express the state variables in terms of the force of infection

Λ∗∗ = k1C
∗∗, (4.21)

of model system (4.1)-(4.3). Thus, the right hand sides of the model system (4.1)-(4.3)

at steady states gives

C∗∗ =
Λ∗∗PE(Pk2 − k2 − γ)

µ(δE + Λ∗∗)(k2 + γ)
, (4.22)

E∗∗ =
PE

δE + Λ∗∗
, (4.23)

I∗∗ =
Λ∗∗PE

(δE + Λ∗∗)(k2 + γ)
. (4.24)

Thus, the CPE of the basic Chlamydia model (4.1)-(4.3) is given by

F1 = (C∗∗, E∗∗, I∗∗). (4.25)

Substituting (4.22)-(4.24) into the expression for Λ∗∗ in (4.21), and simplifying, we obtain

a quadratic expression that the non-zero CPE F1 of model system (4.1)-(4.3) satisfies, that

is
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Λ∗∗(µ(k2 + γ)Λ∗∗ + δEµ(k2 + γ)− k1PE(Pk2 − k2 − γ)) = 0. (4.26)

The solutions of Equation (4.26) are either

Λ∗∗ = 0 (4.27)

or

Λ∗∗ =
(k2 + γ)(µ+ k1E

∗)(R01 − 1)

µ/δE(k2 + γ)
. (4.28)

The trivial solution (4.27) implies the disease-free steady state which corresponds to the

CFE described by (4.13). This is not our equilibrium of interest at this point. Thus, the

unique and non-trivial solution (4.28) is valid.

From (4.28), it follows that if R01 < 1, then Λ∗∗ < 1, which is biologically meaningless.

In addition, if R01 = 1, then Λ∗∗ = 0, which again corresponds to the CFE described by

(4.13). Thus, the model system (4.1)-(4.3) has no positive CPE in these two cases. It can

be clearly seen that the unique solution (4.28) of (4.26) is positive if and only if R01 > 1,

since all the model parameters are positive.

Hence, the three components C∗∗, E∗∗, and I∗∗ of the CPE F1, can be explicitly deter-

mined by substituting (4.28) into (4.22)-(4.24), to obtain

C∗∗ =
PE(k2(P − 1)− γ)

µ(k2 + γ)
− δE
k1
, (4.29)

E∗∗ =
µ(k2 + γ)

k1(k2(P − 1)− γ)
, (4.30)

I∗∗ =
PE

k2 + γ
− µδE
k1(k2(P − 1)− γ)

, (4.31)

which is exactly the same CPE expressions presented by Wilson [169]. These results are

summarised below.

Theorem 4.1.5. The basic Chlamydia model (4.1)-(4.3) has a unique CPE given by F1,

whenever R01 > 1 and no CPE otherwise.

Local stability of the Chlamydia-present equilibrium (CPE)

Theorem 4.1.6. The unique CPE F1 is locally asymptotically stable in D when R01 > 1.

Proof. The Jacobian matrix of system (4.4)-(4.6) at F1 is given by
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J(F1) =

 −(µ+ k1E
∗∗) −k1C

∗∗ Pk2

−E∗∗k1 −(δE + k1C
∗∗) 0

Ek1 C∗∗k1 −(γ + k2)

 . (4.32)

The characteristic equation is

λ3 + a1λ
2 + a2λ+ a3 = 0, (4.33)

where

a1 = k1C
∗∗ + k1E

∗∗ + δE + γ + k2 + µ,

a2 = k1k2(C∗∗ + E∗∗ − PE∗∗) + γk1(C∗∗ + E∗∗) + k1(µC∗∗ + δEE
∗∗) + δE(γ + k2 + µ)

+ µ(γ + k2)

a3 = δEµ(γ + k2) + (Pk2 − k2 − γ)k1E
∗∗(k1C

∗∗ − δE).

(4.34)

It is easy to see that a1 > 0. Using the mathematical relations in Equations(4.4)-(4.6)

and (4.29), it can be seen that (Pk2 − k2 − γ) = µ(k2 + γ)/k1E
∗∗ > 0 and k1C

∗∗ > δE .

Thus a3 > 0. By direct calculation, we have that a1a2 > a3 for R01 > 1. Then, by the

Routh-Hurwitz criterion, it follows that the Chlamydia-present equilibrium F1 is locally

asymptotically stable.

As Theorems 4.1.4 and 4.1.5 imply, it suffices to explore therapeutic strategies that can

drive the disease outbreak threshold R01 below unity. In order to demonstrate how the

two proposed treatment strategies (controls u1 and u2) affect the expression for the basic

reproduction number, we derive the expression for the basic reproduction number in the

presence of the two controls. Using the NGM, as described above, on the model system

(4.4)-(4.6), we obtain

R0U =
Pk1k2Ê(1− u1)

(µ+ k1Ê)(k2 + γ + u2)
. (4.35)

In Equation (4.35), it can be clearly seen that for u1 ≡ 1,R0U = 0.

We differentiate R0U with respect to control u1. This gives
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∂R0U

∂u1
= − Pk1k2Ê

(µ+ k1Ê)(k2 + γ + u2)
. (4.36)

Equation (4.36) shows that R0U is a decreasing function of control u1, which implies

that high quantities of bacteriostatic treatment u1 may reduce the value of the disease

outbreak threshold R0U , thereby driving it below unity.

We differentiate R0U with respect to control u2. This gives

∂R0U

∂u2
= −Pk1k2Ê(1− u1)(µ+ k1Ê)

((µ+ k1Ê)(k2 + γ + u2))2
. (4.37)

Equation (4.37) shows that R0U is a decreasing function of control u2, which implies that

high quantities of proteasome-specific inhibiting treatment u2 may reduce the value of the

disease outbreak threshold R0U , thereby driving it below unity.

Equations (4.36) and (4.37) suggest that the two controls u1 and u2, respectively, would

be instrumental to the clearance of a Chlamydia infection. From Equations (4.19) and

(4.35), it can also be seen that the infection would be cleared if the burst size P , of infected

epithelial cells, can be driven down to zero. Thus we proceed to study the dynamics of

the optimal control problem (4.4)-(4.6), and use the optimal controls to eradicate the

chlamydial infection.

4.2 Existence of an optimal control pair

In this section, we show that the existence of an optimal control pair with finite objective

functional is guaranteed for our optimal control model (4.4)-(4.6). We begin with a re-

statement of an established Theorem (Theorem 4.2.1 below) from Fleming and Rishel [55]

(refer to the conditions in III.2.4, Theorem III.4.1, and its corresponding Corollary III.4.1)

which gives sufficient conditions for the existence of an optimal control pair, for a given

model, and a given objective functional. We then show (Theorem 4.2.2) that our system

(4.4)-(4.6) and objective functional (4.9) meet the conditions of Theorem 4.2.1, thus

establishing the existence of an optimal control pair for our model.

Theorem 4.2.1 (from Fleming and Rishel [55]). Consider an optimal control problem

with system equations

ẋ = f(t, x(t), u1(t), u2(t)), t0 ≤ t ≤ tf , (4.38)

where the vector x ∈ Rn denotes the state system, (u∗1, u
∗
2) ∈ Γ as defined in (4.8), and

x(t0) = x0 are the initial conditions. Let the objective functional of the system be
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J(u1, u2) =

∫ tf

t0

G(t, x(t), u1(t), u2(t))dt+ φ(x(tf )), (4.39)

where φ(x(tf )), called the payoff term, is a goal with respect to the final state x(tf ).

Suppose that

1. The set of all solutions to state equations (4.38) with corresponding control functions

in Γ is non-empty.

2. The admissible control set Γ is closed and convex.

3. The right hand side of the state system, f , is continuous, and moreover, there exist

positive constants C1, C2 such that

(a) f is bounded above by a sum of the bounded control and the state, i.e.,

|f(t, x, u1, u2)| ≤ C1(1 + |x|+ |u1|+ |u2|);
(b) |f(t, x̂, u1, u1)− f(t, x, u1, u2)| ≤ C2|x̂− x|(1 + |u1|+ |u2|);
(c) f can be written as a linear function of the control variables with coefficients

depending on time and the state variables, i.e. f(t, x, u) = η(t, x) + ρ(t, x)u1 +

θ(t, x)u2;

4. The integrand of the objective functional is convex on Γ;

5. There exist constants c1 > 0, c2, and β > 1 such that the integrand G, of the

objective functional, satisfies

G(t, C, I, u1, u2) ≥ c1(|(u1, u2)|β)− c2, (4.40)

∀ t ∈ R, x, x̂ ∈ Rn, and (u∗1, u
∗
2) ∈ Γ. Then, there exist optimal controls u∗1 and u∗2

minimising J(u1, u2), with J(u∗1, u
∗
2) finite.

Remark: If f is C1, then conditions 3(a) and 3(b) are implied by suitable bounds on

partial derivatives of f and on f(t, 0, 0, 0).

Analysis of Super-solutions

In order to prove that the system (4.4)-(4.6) is bounded, we use the established approach of

[36,37]. We use the fact that the super-solutions C̄, Ē, and Ī of C, E, and I, respectively,

in (4.4)-(4.6) are bounded on a finite time interval. The sub-solutions are zero. Let Cmax,

Emax, and Imax be upper bound solutions associated with C, E, and I, respectively, and

with C(t) ≥ 0, E ≥ 0, and I ≥ 0.

Consider the system
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dC̄

dt
= Pk2Ī , (4.41)

dĒ

dt
= PĒ , (4.42)

dĪ

dt
= k1C̄Ē, (4.43)

with initial conditions C̄(0) = C̄0, Ē(0) = Ē0, and Ī(0) = Ī0, and solutions C̄, Ē, and Ī.

From Equation (4.41),

C̄(t) = Pk2

∫ t

0
Īdτ + C̄0. (4.44)

The integral in (4.44) is finite since the continuous function I(τ) is integrated over the

compact interval [0, t].

From Equation (4.42),

Ē(t) = PĒt+ Ē0. (4.45)

From Equation (4.43),

Ī(t) = k1

∫ t

0
C̄(τ)Ē(τ)dτ + Ī0. (4.46)

Again, the integral in (4.46) is finite since the continuous function C̄(τ)Ē(τ) is integrated

over the compact interval [0, t].

Hence, the solutions C̄, Ē, and Ī of system (4.41)-(4.43) are bounded over the finite time

interval [0, t]. By using the bounds Cmax = C̄(tf ), Emax = Ē(tf ) , and Imax = Ī(tf ), we

have formed a set of upper bound solutions for system (4.4)-(4.6).

Theorem 4.2.2. For the optimal control problem with state equations (4.4)-(4.6), there

exists an optimal control pair (u∗1, u
∗
2) ∈ Γ which minimises the objective functional

J(u1, u2) in equation (4.9).

Proof. To prove this theorem, we show that our optimal control model meets the five

conditions given in Theorem 4.2.1, being sufficient conditions for the existence of an

optimal control pair for our model.

1. To verify condition 1, we refer to Theorem 3.1 by Picard-Lindelöf [29,39]. Based on

the theorem, if the solutions of the state equations (4.4)-(4.6) are a priori bounded
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and if the state equations are continuous and Lipschitz-continuous in the state

variables, then there is a unique solution corresponding to every admissible control

pair in Γ. Since for all (C,E, I) ∈ D, the model states are bounded below and above

(see Section 4.1.1), then, the solutions to the state equations are bounded.

We have earlier shown that solutions of the state equations (4.4)-(4.6) are bounded.

The right sides of the state equations (4.4)-(4.6) are also continuously differentiable

functions of the dependent variables C,E, and I. These demonstrate the fact that

the system is locally Lipschitz-continuous with respect to the state variable [28].

Thus, condition 1 is fulfilled.

2. By the definition of the admissible control set Γ (Equation (4.8)), it is closed and

bounded. Let ‖·‖ be some norm in R2, for example, the Euclidean norm

‖~U‖2 = ‖(u1, u2)‖2 =
√
u2

1 + u2
2. (4.47)

Then, the set {~U |~U ∈ Γ, and ‖~U‖ ≤
√

2} is a convex set [93, Page 210]. To see

this, suppose ~U, ~V ∈ R2, with ‖~U‖ ≤
√

2, ‖~V ‖ ≤
√

2, and 0 ≤ θ ≤ 1. Let

~W = θ~U + (1− θ)~V . Then

‖ ~W‖ = ‖θ~U + (1− θ)~V ‖
≤ ‖θ~U‖+ ‖(1− θ)~V ‖ (triangle inequality)

= θ‖~U‖+ (1− θ)‖~V ‖ (positive homogeneity property of the norm)

≤
√

2.

(4.48)

Hence, condition 2 is fulfilled.

3. Let ~Θ(t, ~X) be a vector-valued function which represents the right hand side (RHS)

of system (4.4)-(4.6), except for the terms of ~U = (u1, u2)′, and define

~f(t, ~X, ~U) = ~Θ(t, ~X) +

 −u1Pk2I

0

−u2I

 , with ~X =

 C

E

I

 . (4.49)

Using the boundedness of the solutions, it can be seen that

∣∣∣~f(t, ~X, ~U)
∣∣∣ ≤

∣∣∣∣∣∣∣
 0 0 Pk2

0 0 0

k1Emax 0 0


 C

E

I


∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣
 0

PĒ
0


∣∣∣∣∣∣∣

≤ C1

(∣∣∣ ~X∣∣∣+
∣∣∣~U ∣∣∣) ,

(4.50)

where C1 depends on the coefficients of the system.

The right side of the model system (4.4)-(4.6) is Lipschitz-continuous. Thus, it is

obviously continuous and bounded. Furthermore, from Equation (4.49), it can be
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seen that
~f(t, ~X, ~U) = ~Θ(t, ~X) + ~Π(t, ~X)u1 + ~Ξ(t, ~X)u2,

where ~Π(t, ~X) and ~Ξ(t, ~X) represent coefficient vectors depending on time and the

state variables. Thus, the state system is bilinear in u1 and u2. Hence condition 3

is satisfied.

4. The integrand G(t, C, I, U1, U2) is convex if and only if its Hessian matrix (or the

quadratic form associated with it) is positive semidefinite [93, Page 211]. The Hes-

sian matrix of G is given by

H(G) =
∂2G

∂xi∂xj
=


GCC GCI GCu1 GCu2

GIC GII GIu1 GIu2

Gu1C Gu1I Gu1u1 Gu1u2

Gu2C Gu2I Gu2u1 Gu2u2



=


0 0 0 0

0 0 0 0

0 0 A2 0

0 0 0 A3


(4.51)

The eigenvalues of the diagonal matrix H(G) are the entries on its main diagonal,

that is 0, 0, A2, and A3. The weight parameters A2, and A3 are positive. Thus, the

Hessian matrix H(G) is positive semidefinite [13, Theorem 2.17, Page 20], which

implies that the integrand G of the objective functional is convex on the admissible

set Γ. Thus condition 4 is satisfied.

5. Let α = min(A2, A3), and κ =
1

2
α. Then,

G =
A2

2
u2

1 +
A3

2
u2

2 + C +A1I

≡ 1

2

{
α(u2

1 + u2
2) + ν1u

2
1 + ν2u

2
2

}
+ (C +A1I)

≥ κ(u2
1 + u2

2) + (C +A1I)

≥ κ(u2
1 + u2

2)− c2

= κ(|u1|2 + |u2|2)− c2,

for any c2 > 0, where 0 ≤ ν1 ≤ A2 and 0 ≤ ν2 ≤ A3. Note that α, κ ≥ 0. Hence the

integrand satisfies the inequality (4.40), with β = 2.

This completes the proof.
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4.3 Characterisation of the optimal control pair

In this section, we derive the conditions of optimality for the control problem (4.4)-

(4.9). Pontryagin’s Maximum Principle [125] provides the necessary conditions an optimal

control and corresponding state must satisfy. The principle converts the optimal control

problem (4.4)-(4.9) into one of minimising a Hamiltonian H, with respect to the control

(u1(t), u2(t)) [100, pg 14].

Theorem 4.3.1. Given optimal controls u∗1, u
∗
2 and solutions C∗, E∗, and I∗ of the cor-

responding state system (4.4)-(4.6), there exist adjoint variables λC , λE, and λI satisfying:

λ̇C = −1 + µλC + k1E
∗(λC + λE − λI), (4.52)

λ̇E = δEλE + k1C
∗(λC + λE − λI), (4.53)

λ̇I = −
[
A1 +

(
1−min

{
max

(
0,
λCPk2I

∗

A2

)
, 1

})
Pk2λC

−λI
(
γ + k2 + min

{
max

(
0,
λII
∗

A3

)
,m

})]
, (4.54)

with transversality conditions

λC(tf ) = A4, λE(tf ) = −A5, and λI(tf ) = 0. (4.55)

Furthermore, the control functions can be shown to satisfy the following, called the control

characterisations:

u∗1(t) = min

{
max

(
0,
λCPk2I

∗

A2

)
, 1

}
,

u∗2(t) = min

{
max

(
0,
λII
∗

A3

)
,m

}
.

Proof. Define the Hamiltonian H(C,E, I, u1, u2, λC , λE , λI) as

H = C(t) +A1I +
A2

2
u2

1 +
A3

2
u2

2

+ λC((1− u1)Pk2I(t)− µC(t)− k1C(t)E(t))

+ λE(PE − δEE(t)− k1C(t)E(t))

+ λI(k1C(t)E(t)− γI(t)− k2I(t)− u2k3I(t)). (4.56)

Using Pontryagin’s Maximum Principle [125],
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λ
′
C = −∂H

∂C
, λ
′
E = −∂H

∂E
, and λ

′
I = −∂H

∂I
. (4.57)

Using the Hamiltonian in (4.56) and the relations in (4.57), the adjoint system can be

written as

λ
′
C = −1 + µλC + k1E

∗(λC + λE − λI), (4.58)

λ
′
E = δEλE + k1C

∗(λC + λE − λI), (4.59)

λ
′
I = − (A1 + (1− u∗1)Pk2λC − λI(γ + k2 + u2)) , (4.60)

with transversality conditions (terminal conditions) expressed in the form provided in

(4.55).

The Hamiltonian H is minimised with respect to the controls at the optimal control

pair, thus we differentiate H with respect to u1 and u2 on the sets {t | 0 ≤ u1 ≤ 1} and

{t | 0 ≤ u2 ≤ m} respectively. Thus, the optimality equations are

∂H

∂u1
= A2u

∗
1 − λCPk2I

∗ = 0 at u∗1, (4.61)

∂H

∂u2
= A3u

∗
2 − λII∗ = 0 at u∗2. (4.62)

Solving for u∗1 and u∗2 on the interior sets, we obtain

u∗1 =
λCPk2I

∗

A2
, (4.63)

u∗2 =
λII
∗

A3
. (4.64)

By standard control arguments involving the bounds on the controls (see Sections 8.1 and

12.1 of [100]), we conclude that

u∗1 =



0 if
λCPk2I

∗

A2
≤ 0

λCPk2I
∗

A2
if 0 <

λCPk2I
∗

A2
< 1

1 if 0
λCPk2I

∗

A2
≥ 1

, (4.65)

which in compact notation can be characterised as
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u∗1(t) = min

{
max

(
0,
λCPk2I

∗

A2

)
, 1

}
. (4.66)

Similarly, we conclude that

u∗2 =



0 if 0
λII
∗

A3
≤ 0,

λII
∗

A3
if 0 <

λII
∗

A3
< 1

m if 0
λII
∗

A3
≥ 1

(4.67)

which in compact notation can also be characterised as

u∗2(t) = min

{
max

(
0,
λII
∗

A3

)
,m

}
. (4.68)

This completes the proof.

Utilising the control characterisations (4.66) and (4.68), the optimality system that char-

acterises the optimal control pair (u∗1, u
∗
2) is

Ċ =

(
1−min

{
max

(
0,
λCPk2I

∗

A2

)
, 1

})
Pk2I − µC − k1CE

Ė = PE − δEE(t)− k1C(t)E(t)

İ = k1C(t)E(t)− γI(t)− k2I(t)−min

{
max

(
0,
λII
∗

A3

)}
k3I(t)

λ̇C = −1 + µλC + k1E
∗(λC + λE − λI)

λ̇E = δEλE + k1C
∗(λC + λE − λI)

λ̇I = −
[
A1 +

(
1−min

{
max

(
0,
λCPk2I

∗

A2

)
, 1

})
Pk2λC

−λI
(
γ + k2 + min

{
max

(
0,
λII
∗

A3

)
,m

})]
,

(4.69)

subject to the initial conditions C(t0) = C0, E(t0) = E0, and I(t0) = I0, and terminal

conditions λC(tf ) = A4, λE(tf ) = −A5, λI(tf ) = 0.

Due to the a priori boundedness of the state and adjoint solutions, the right sides of

the state and adjoint equations become Lipschitz in those solutions. The uniqueness of

the solutions of the optimality system is guaranteed by this Lipschitz property, for a



Chapter 4. Optimal control of Chlamydia trachomatis infection 73

sufficiently small final time tf . This small time length restriction is due to the opposite

time orientation of the state equations (4.4)-(4.6), and the adjoint equations (4.52)-(4.54);

the state system has initial time conditions and the adjoint equations have final time

conditions. Uniqueness of solutions of the optimality system implies the uniqueness of

the optimal controls [100]. See Fisher et. al [54] for a uniqueness proof using Lipschitz

properties.

4.4 Numerical Results

4.4.1 Disease dynamics with no control

In this section, we present numerical results of the dynamics of the interacting species

(that is, Chlamydia, healthy epithelial cells, and infected epithelial cells). Setting the

controls u1 and u2 to zero, the model system (4.4)-(4.6) is reduced to the system of ODEs

in (4.1)-(4.3). Since the concentrations of C, E, and I cells are per millimetre cube

of human (female reproductive tract) tissue, we suppose that at the onset of an acute

Chlamydia infection, a millimetre cube tissue contains 200 healthy epithelial cells, 50

Chlamydia bacteria, and no infected epithelial cell, as shown on Table 4.1. Figures 4.1a-

4.1c show that in the presence of only the humoral and cell-mediated immunity, the

infection may not be abated. We observe that each of the interacting species approached

their endemic steady states. The final values for each interacting species are C(tf ) =

406, E(tf ) = 5, and I(tf ) = 7, which coincide with the numerical values of the analytical

Chlamydia-present steady states (4.29), (4.30), and (4.31), respectively. The parameter

values and initial conditions used in all the simulations are given in Table 4.1.

4.4.2 Optimal Control

In this section, we numerically study optimal treatment strategies of the model system

(4.4)-(4.6) and present numerical solutions of the optimality system (4.69). Numeri-

cal techniques for optimal control problems can be classified as either direct or indirect

(See [115] and [23, Pg. 161]). The initial solutions of the two-point boundary value

problem (4.69) were obtained by using an indirect method in which the differential-

algebraic system generated by Pontryagin’s Maximum Principle is numerically solved,

a numerical technique generally referred to as the Forward-Backward Sweep Method

(FBSM) [100, 115]. First, using a fourth order Runge-Kutta scheme, the state equations

are solved forward in time, with initial conditions (see Table 4.1) and initial guesses for

the controls. By virtue of the transversality conditions (4.55) being at the final time, the

adjoint equations are solved by a backward (in time) fourth order Runge-Kutta scheme,

using the current iteration solution of the state equations. The controls are then updated

by using a convex combination (u = 0.5(uprev+uchar)) of the previous controls (uprev) and

the value from the characterisations (4.66) and (4.68) (uchar). This process is repeated

and the iteration stops when convergence is achieved [100].
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Figure 4.1: Numerical simulation of the Chlamydia model (4.4)-(4.6) showing the time course plot of
(a) C(t), the concentration of Chlamydia, (b) E(t), the concentration of healthy epithelial cells, and (c)
I(t), the concentration of Chlamydia-infected epithelial cells, with no controls applied. Here, R0 > 1,
indicating active disease. Parameter values used are in Table 4.1.

The described iterative method of obtaining the optimal treatment strategy was used to

obtain solutions of the system when either controls was used. However, when both controls

were used, the simulations took several hours to run, which made variation of parameters

a time-consuming task. Thus, in addition to the method, the optimal control problem

(4.4)-(4.9) was solved using MATLAB’s in-built non-linear optimisation tool fmincon

[114]. fmincon is a constrained optimization toolbox that is based on a direct (sequential)

method in which the differential equations (4.4)-(4.6) and the integral (4.9) are discretised,

and the problem is converted into a nonlinear programming problem [23, 115]. We first

reformulate the optimal control problem into the Mayer form (see [24]) and then set it

up for fmincon [114]. In order to investigate the occurrence of any discrepancy in the

solutions obtained when either the FBSM or MATLAB’s fmincon was used, fmincon was
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used to regenerate some of the previous results obtained from the FBSM. We note that

there were no discrepancies.

We investigate and compare numerical results of three different optimal therapy scenarios:

(i) when u1, the drug that eliminates or reduces the production of viable Chlamydia,

is optimised while treatment u2 is set to zero (ii) when u2, the drug that acts as a

proteasome-specific inhibitor is optimised while treatment u1 is set to zero, and (iii) when

both treatments u1 and u2 are optimised. We only track the amount of bio-available

treatment/drug the system is supplied with, with respect to time. In this study, we

do not investigate the complete degradation of the drug/treatment to be administered,

but rather the bio-availability and delivery of the treatment into the system. We also

investigate the effect of how variation in weight factors affect drug dosages.

The model was simulated for different combinations of values of the weight parameters

A1, A2, A3, A4, and A5, which are the balancing cost factors due to scales (that is, they

adjust the balance between the benefit of clearing of Chlamydia, reduction of infected cells

and maximisation of healthy epithelial cells that do not get infected, and the systemic

cost of the treatments) and the importance of the six parts of the objective functional.

In all the presented figures, we use the same set of weight factors, A1 = 5, A2 = 50,

A3 = 50, A4 = 1, and A5 = 5, and initial state variables C(0) = 50, E(0) = 200, and

I(0) = 0, to illustrate the effects of different optimal therapies on a chlamydial infection.

The weight parameters were chosen to have the presented magnitudes (some on the order

of one and some a ten) because of the assumption that within a millimetre cube of human

tissue, the magnitude of the concentration of Chlamydia (hundreds) is much larger than

the magnitude of the concentrations of infected and healthy epithelial cells (tens), and the

magnitude of the concentrations of the two treatments (floating point numbers less than

one) in the objective functional in (4.9). Thus, this difference in magnitudes is balanced

by the orders of the weight parameters. For brevity, we have only presented results for one

parameter combination. This is particularly because when we varied the respective weight

parameters within the same order, there was no significant effect (with regards to clinical

outcomes) of the variation on the qualitative results of the optimal controls. However, in

Section B.1 of the Appendix, we have investigated and discussed in details, the effects of

different weight parameter combinations on the qualitative results of the optimal control

problem (this include the time series of interacting species, the optimal controls, and the

corresponding values of the objective functional). The duration of treatments, in number

of days, are varied for the three treatment scenarios considered, by varying the final time.

We also found that there was not much variation in the optimal solution of the model

system (with regards to clinical outcomes). These results are also not shown for brevity

but they are discussed in Section B.2 of the Appendix. We only show results for four and

a half days of treatment.
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Control with bacteriostatic agents (u2 ≡ 0)

We consider monotherapy with u1 alone. Numerical simulations are performed using the

FBSM and MATLAB’s fmincon as described in Section 4.4.2, for A3 ≡ 0 when u2 ≡ 0.

Then, the optimal control problem is defined by

J(u1) =

∫ tf

t0

G(t, x(t), u1(t))dt+ φ(x(tf )), (4.70)

subject to

ẋ = f(t, x(t), u1(t)), t0 ≤ t ≤ tf ,
x(t0) = x0,

(4.71)

where x = (C,E, I), f is the right side of the model (state) system (4.4)-(4.6), φ(x(tf )) =

A4C(tf )−A5E(tf ), and G(t, x, u1) = C(t)+A1I(t)+
A2

2
u2

1. Figures 4.2, 4.3, and 4.4 show

clear and significant differences between the concentration of free extracellular Chlamydia,

healthy epithelial cells, and Chlamydia-infected epithelial cells, respectively, between the

cases with control u1 (solid lines) and the cases without control (dashed lines). Figure 4.2

reveals a sharp decrease in the concentration of free extracellular Chlamydia, after which

the pathogen is no longer produced. Figure 4.3 reveals a slight decrease in the concen-

tration of healthy epithelial cells but a gradual increase thereafter, after which it attains

its maximum capacity. Figure 4.4 shows that on implementation of the control strategy,

there will be an increase in the concentration of Chlamydia-infected epithelial cells, but

a rapid decline thereafter. The optimal control function u1(t) in Figure 4.5 is continuous

and decreases with respect to increasing time. It reveals that for the treatment to be

optimal, it should be given at its highest tolerable concentration for the first two days

and then allowed to wane from the system. We observe in Figures 4.2-4.4 that accurate

application of a bacteriostatic treatment will be optimal in truncating the progression of

a Chlamydia infection. The value of the objective functional (4.9) for this investigation

is 136.0853.
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Figure 4.2: Time series of Chlamydia model (4.4)-(4.6) showing the effect of using control u1 (optimal
bacteriostatic treatment) only on C(t), the concentration of free extracellular Chlamydia.
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Figure 4.3: Time series of Chlamydia model (4.4)-(4.6) showing the effect of using control u1 (optimal
bacteriostatic treatment) only on E(t), the concentration of healthy epithelial cells.
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Figure 4.4: Time series of Chlamydia model (4.4)-(4.6) showing the effect of using control u1 (optimal
bacteriostatic treatment) only on I(t), the concentration of Chlamydia-infected epithelial cells.
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Figure 4.5: Optimal evolution for control u1.

Control with proteasome-specific inhibiting agents (u1 ≡ 0)

We again consider monotherapy, this time with the drug that acts as a proteasome-specific

inhibitor, represented by u2, with u1 ≡ 0. Numerical simulations are performed using the

FBSM and MATLAB’s fmincon as described in Section 4.4.2, for A2 ≡ 0 when u1 ≡ 0.

Then, the optimal control problem is defined by relations similar to (4.70) and (4.71), but

with u2 (0 ≤ u2 < m = 0.5) instead of u1, and G(t, x, u1) = C(t) +A1I(t) +
A3

2
u2

2.

Figure 4.7 shows some decrease in the concentration of free extracellular Chlamydia

when control u2 was used (C(tf ) = 371), as compared to when no control was used

(C(tf ) = 406). However, Figures 4.8 and 4.9 show no significant difference between the

concentration of healthy epithelial cells and Chlamydia-infected epithelial cells, respec-

tively, when either control u2 was used or when no control was used (E(tf ) = 5 in both

cases, but I(tf ) = 7 with no control, and I(tf ) = 6 with control u2). The optimal control

function u2(t) in Figure 4.5 is continuous but does not decrease with respect to increasing

time. It reveals that for the treatment to be optimal, it should be given at its highest

tolerable concentration until the end of the intervention. These results however show

that treatment of chlamydial infection with proteasome-specific inhibitors alone does not

suffice in clearing the Chlamydia infection. The value of the objective functional (4.9) for

this investigation is 3662.4.

Since the optimal control suggests that in the presence of u2 only, the Chlamydia infection

will not be abated, this suggests that R0U > 1 under this scenario. We investigate the

value of 0 < m ≤ 1, the maximum amount of treatment u2, which may force the basic

reproduction number R0U to be below unity in the presence of u2 only.

From Equation (4.35) Setting u1 ≡ 0, u2 ≡ m, and using other parameter values in

Table 4.1 we obtain the mathematical relationship between R0U and m. The relation is

R0U (m) =
768

40.32 + 7.2m
. (4.72)
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Figure 4.6: A graph of m, the highest tolerable amount of treatment u2 (optimal proteasome-specific
inhibitor), against the basic reproduction number R0U (m) in Equation (4.72).

As shown on Figure 4.6, even at the maximum concentration of treatment u2, R0U > 1.

This again confirms the results of the optimal control that treatment u2 alone does not

suffice for the clearance of the infection.
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Figure 4.7: Time series of Chlamydia model (4.4)-(4.6) showing the effect of using control u2 (optimal
proteasome-specific inhibitor) only on C(t), the concentration of free extracellular Chlamydia.
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Figure 4.8: Time series of Chlamydia model (4.4)-(4.6) showing the effect of using control u2 (optimal
proteasome-specific inhibitor) only on E(t), the concentration of healthy epithelial cells.
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Figure 4.9: Time series of Chlamydia model (4.4)-(4.6) showing the effect of using control u2 (optimal
proteasome-specific inhibitor) only on I(t), the concentration of Chlamydia-infected epithelial cells.
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Figure 4.10: Optimal evolution for control u2.



Chapter 4. Optimal control of Chlamydia trachomatis infection 81

4.4.3 A Comparative Effect of Using Either Controls on the Clearance

of a Chlamydia Infection

Figures 4.11-4.13 show (side-by-side graphical) comparative effects of using either control

u1 or u2 on the evolution of the Chlamydia infection. The figures clearly show that the use

of bacteriostatic agents alone is more effective in the clearance of a Chlamydia infection

than the use of only proteasome-specific inhibiting agents.
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Figure 4.11: Time course of Chlamydia model (4.4)-(4.6) showing the comparative effects of using either
control u1 (optimal bacteriostatic treatment) or u2 (optimal proteasome-specific inhibitor) on C(t), the
concentration of free extracellular Chlamydia.
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Figure 4.12: Time course of Chlamydia model (4.4)-(4.6) showing the comparative effects of using either
control u1 (optimal bacteriostatic treatment) or u2 (optimal proteasome-specific inhibitor) on E(t), the
concentration of healthy elementary bodies.
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Figure 4.13: Time course of Chlamydia model (4.4)-(4.6) showing the comparative effects of using either
control u1 (optimal bacteriostatic treatment) or u2 (optimal proteasome-specific inhibitor) on I(t), the
concentration of Chlamydia-infected epithelial cells.

Optimal combination treatment

With this treatment strategy, the bacteriostatic control u1 and proteasome-specific in-

hibiting control u2 are both used to optimise the objective functional J as in (4.9). In

Figure 4.14, it can be observed that there was a rapid decrease in the concentration

of free extracellular Chlamydia they were all cleared. Figure 4.15 shows that with the

combination regimen, the concentration of healthy epithelial cells hardly decreased but

rather attained their maximum (steady state) by the end of day one post-intervention,

and remained steady throughout the course of the intervention. Figure 4.16 also suggests

that only few naive healthy epithelial cell were infected throughout the course of the

intervention, and not one Chlamydia-infected epithelial cell remained by the end of the

treatment.

The optimal control functions u1(t) and u2(t) in Figure 4.17 are continuous and decrease

with respect to increasing time. Figure 4.17 suggests that for the combination therapy

to be optimal, u1, the bacteriostatic treatment, should be administered at its highest

tolerable concentration for the first three and a half days and then allowed to wane from

the (host) system. It also suggests that u2, the proteasome-specific inhibitor, should be

administered at its highest tolerable concentration for one day and then allowed to wane

from the system rapidly. These results reveal that the two therapies, when administered

efficiently, may be optimal in the total clearance and truncation of the progression of a

Chlamydia infection. The value of the objective functional (4.9) for this investigation is

126.8092.
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Figure 4.14: Time course of Chlamydia model (4.4)-(4.6) showing the effect of using controls u1 (optimal
bacteriostatic treatment) and u2 (optimal proteasome-specific inhibitor) on C(t), the concentration of free
extracellular Chlamydia.
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Figure 4.15: Time course of Chlamydia model (4.4)-(4.6) showing the effect of using controls u1 (optimal
bacteriostatic treatment) and u2 (optimal proteasome-specific inhibitor) on E(t), the concentration of
healthy epithelial cells.
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Figure 4.16: Time course of Chlamydia model (4.4)-(4.6) showing the effect of using controls u1 (optimal
bacteriostatic treatment) and u2 (optimal proteasome-specific inhibitor) on I(t), the concentration of
Chlamydia-infected epithelial cells.
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Figure 4.17: Optimal evolution for controls u1 (optimal bacteriostatic treatment) and u2 (optimal
proteasome-specific inhibitor), respectively.

Delayed Treatment

In real life scenarios, therapeutic treatments do not often commence at the onset of an

infection. Thus, we investigate the application of therapeutic interventions at 30 days PI.

For the first 30 days, numerical results are obtained by simulating the disease dynamics

(without control) which was set up as in Section 4.4.1, by setting the controls u1 and u2

to zero, with the model system (4.4)-(4.6) being reduced to the system of ODEs in [169].

For the days of therapeutic interventions which commenced at 30 days PI and lasted

for 4.5 days, numerical results are obtained by simulating the optimal control problem



Chapter 4. Optimal control of Chlamydia trachomatis infection 85

(4.4)-(4.9). The initial conditions for this second part of the simulation are the end

points (Chlamydia-present equilibrium) of the previous (treatment-free) simulation. For

this treatment strategy, both bacteriostatic control u1, and proteasome-specific inhibiting

control u2, are used to optimise the objective functional J as in (4.9).

Figures 4.18-4.20 reveal that even when the optimal treatments are delayed, the Chlamy-

dia infection can be stopped from progressing and eventually cleared if the treatments are

administered efficiently. Figure 4.21 shows that the optimal control functions u1(t) and

u2(t) are continuous and decrease with respect to time. It suggests that for the delayed

combination therapy to be optimal, u1, the bacteriostatic treatment, should be adminis-

tered at its highest tolerable concentration for the first four days post-intervention and

then allowed to wane from the system. It also suggests that u2, the proteasome-specific

inhibiting treatment, should be administered at the highest tolerable concentration for

the first one and a half days post-intervention and then allowed to wane from the system

quite rapidly. These results reveal that the two therapies, when administered efficiently,

even if not administered shortly after infection, may be optimal in the total clearance and

truncation of the progression of the Chlamydia infection.
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Figure 4.18: Numerical simulation of the Chlamydia model (4.4)-(4.6) showing the effect of delaying the
use of both the optimal bacteriostatic treatment u1 and the optimal proteasome-specific inhibitor u2, on
the time course plot of C(t), the concentration of Chlamydia. No control was applied for the first 30 days
post-infection. The treatments were applied on day 30 post-infection, and were administered for a period
of 4.5 days.
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Figure 4.19: Numerical simulation of the Chlamydia model (4.4)-(4.6) showing the effect of delaying the
use of both the optimal bacteriostatic treatment u1 and the optimal proteasome-specific inhibitor u2, on
the time course plot of E(t), the concentration of healthy elementary bodies. No control was applied
for the first 30 days post-infection. The treatments were applied on day 30 post-infection, and were
administered for a period of 4.5 days.
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Figure 4.20: Numerical simulation of the Chlamydia model (4.4)-(4.6) showing the effect of delaying the
use of both the optimal bacteriostatic treatment u1 and the optimal proteasome-specific inhibitor u2,
on the time course plot of I(t), the concentration of Chlamydia-infected epithelial cells. No control was
applied for the first 30 days post-infection. The treatments were applied on day 30 post-infection, and
were administered for a period of 4.5 days.
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Figure 4.21: Optimal evolution for both controls: Both controls u1 and u2 were used to treat the infection
30 days post-infection and were administered for a period of 4.5 days.

4.5 Conclusion

In this chapter, by extending a model of within-host Chlamydia infection, we have in-

vestigated the dynamics of interacting species with and without two different therapeu-

tic control strategies. We propose that alongside antibiotic activity, the presence of a

proteasome-specific inhibitor such as lactacystin may enhance the capacity of the cell-

mediated immune response in the clearance of Chlamydia infection. We hypothesise

that treatment failures are perhaps the consequences of sub-optimal treatment regimens.

Qualitative analysis of the model, including stability analysis of the Chlamydia-free equi-

librium, is presented. We use methods of optimal control to derive and analyse the con-

ditions for optimal control/treatment of the disease with agents that are bacteriostatic

on Chlamydia and with agents that are proteasome-specific inhibiting. Existence and

uniqueness of the optimal controls were proved. We also characterised the controls using

Pontryagin’s Maximum Principle and the resulting optimality system was numerically

solved.

Using numerical simulations, we explored the different impacts of these two optimal con-

trol strategies. We note that when both controls/treatments u1 and u2 are used, the

objective functional value was 126.8092. When control/treatment u1 alone was used, the

objective functional value was 136.0853. Whereas, when control/treatment u2 alone was

used, the objective functional value was 3662.4. These are very relevant observations. The
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results imply that although the use of either both treatments (u1 and u2) or treatment

u1 alone clears the chlamydial infection, the systemic cost of the treatments (toxicity) to

the host is minimal when both treatments are used, as opposed to when only treatment

u1 is used. These numerical results also show that when treatment u2 alone is used to

treat a chlamydial infection, the systemic cost (toxicity) of the treatment u2 to the host

is very high, despite the fact that the treatment does not result in the clearance of the

chlamydial infection.

Numerical results indicate that an optimal and effective clearance and truncation of the

progression of a Chlamydia infection may be achieved by the administration of a combined

chemotherapy of agents that are bacteriostatic on Chlamydia and of agents that are

proteasome-specific inhibiting. The results show that the optimal combination therapy

is a dynamic one, in that the treatment is adjusted over the course of the treatment

intervention whereby one begins with a (maximal) strong dosing scheme, followed by a

lessening of treatment over time, either by the reduction of drug dosage or strength. The

control problem however indicates that bacteriostatic agents that will increase the chances

of the survival of health epithelial cells are especially essential for timely reduction of free

extracellular Chlamydia and the overall clearance of a Chlamydia infection. We suggest

that therapeutic interventions that adhere to these control strategies may be very effective

in combating Chlamydia infections.

As previously discussed in Section 2.2, a major factor to be considered in the adminis-

tration of multiple-dose regimens of antimicrobials is patients’ compliance to the drug

regimen [150]. The optimal treatment strategies suggested by our model require that

strong doses of the two drugs - bacteriostatic agents and proteasome-inhibitors - be ad-

ministered and maintained within a therapeutic band for days. This could mean that

patients have to take multiple-doses of the treatment regimen. This is unrealistic because

of the issue of patience compliance. However drug delivery systems that can make such

treatment regimens a reality can be designed.

Effective drug delivery systems, that can ensure a controlled release/delivery of drugs,

while also maintaining the drugs’ concentration within a therapeutic band, over a partic-

ular period of time, have previously been engineered. One such application is the use of

polymer therapeutics, a system that can use polymer chain as the inert carrier to which

a drug is covalently linked. Such conjugation can be used to elicit in vivo spatiotem-

poral release of drugs designed to attain desired therapeutically effective concentration,

with other benefits including reduction in immunogenicity, protection of the drug from

proteolytic enzymes, potential for targeted delivery, and increased plasma half-life which

would imply that less frequent doses of the drug are required [97, 102]. Diseases for

which polymer conjugates have been successfully designed include hepatitis B and C, and

ischemia [102,158].

Such new and bio-compatible drug delivery system that can enhance the permeability

and spatiotemporal release of chlamydial antibiotics (such as azithromycin, which already
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has a long half-life) at concentrations higher than the minimum inhibitory concentration

(MIC) of Chlamydia, may facilitate its bioavailability at very high concentrations for

several days. The use of a transdermal patch to constantly deliver desired concentrations

of the drug over time may also be able to provide the therapeutically effective drug

concentration that suits our model’s suggested optimal treatment strategy.

We however note that there are several limitations to this study: (1) model parameters

that describe biological processes may not have been accurate. For example, the effects of

the immune response may have been over-emphasised, thereby resulting in an improved

clearance of a chlamydial infection as compared to what happens in vivo. In the case of

an infectious disease such as genital Chlamydia, it is not unreasonable to anticipate that

the values of some (biological) parameters are patient specific. Consequently, there can

be significant uncertainty in the determination of (biological) parameter values. Thus,

the presented model could be usefully extended by the carrying out of uncertainty and

sensitivity analyses; (2) Results of the optimisation of the treatments are subject to change

when weight parameters are varied. For example, while we observed that when systemic

cost of using the bacteriostatic treatment (A2) was increased, more of both treatments

were required over time. Despite this, the infection was not effectively cleared. However,

when the systemic cost of using the proteasome-specific inhibiting treatment (A3) was

increased, the treatments needed to be applied for only about 0.5 day more, but this does

not necessarily improve the prognosis of the infection (results shown in the Appendix).

We observed that the initiation of treatments at 30 days post-infection does not sig-

nificantly change the effect of the treatment as compared to when the treatments were

administered on infection. The only difference observed was that the starting strong dos-

ing scheme would be given for a longer time (about 0.5 days more) and also followed

by a lessening of treatment, either by the reduction of drug dosage or strength. We

also observed that the effects of the therapies on the disease dynamics does not depend

on the treatment duration, that is, increasing the length of the treatment interval does

not necessarily yield better outcomes. Numerical results for this are presented in the Ap-

pendix. Our approach provides a framework for the design of new protocols for chlamydial

infection treatment strategies.



5 An Optimal control model of the treatment of

chronic Chlamydia trachomatis infection using

antibiotic and tryptophan supplementation

In the preceding chapter, an optimal control model of the treatment of chlamydial in-

fection has been investigated. The model gave some insights into an optimal chlamydial

treatment strategy. However, the model does not address the concern of the development

of Chlamydia persistence in chronic infections. In order to account for the prevention, and

even reversal, of the development of Chlamydia persistence which causes severe sequelae

in chronic chlamydial infections, there is the need for us to investigate other treatment

strategies that can facilitate such objectives. As suggested in the literature (see Subsec-

tion 2.3.1), the combination of a tryptophan and antibiotic treatment may facilitate an

improved treatment of chronic Chlamydia infections characterised by chlamydial persis-

tence. Hence, we consider a mathematical model of the treatment of chronic Chlamydia

infections, using optimal control tools.

In this chapter, we present a deterministic mathematical model of C. trachomatis infec-

tion, within-host, with a particular focus on determining the optimal scheme(s) (that is,

when and how treatment should be initiated) for the treatment of chronic chlamydial in-

fections using antibiotics and tryptophan supplementation. Our work aims to determine

optimal treatment strategies that not only minimise the production of free extracellular

Chlamydia, but also minimise the production of persistent intracellular Chlamydia by

blocking the formation of persistent Chlamydia, and reversing already established per-

sistence into actively replicating Chlamydia forms, for clearance by the immune system

and antibiotics. In Section 5.1, we develop a model for the optimal control of Chlamydia

infection. We also present basic properties of the developed model in Section 5.1. Using

an existence result, we guarantee the existence of an optimal control pair with finite ob-

jective functional in Section 5.2. In Section 5.3, we use Pontryagin’s Maximum Principle

to characterise the optimal control pair. We present numerical results of simulation of

the model system in Section 5.4. Our conclusions are discussed in Section 5.5.
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5.1 Model Formulation

We develop a mathematical model of the cellular dynamics of Chlamydia and the infected

host system in order to investigate the impact of treatment on the within-host dynamics

of a chronic chlamydial infection. Ordinary differential equations were used to model the

cellular dynamics of the interactive processes between extracellular Chlamydia, uninfected

epithelial cells, Chlamydia-infected epithelial cells, and Chlamydia-infected epithelial cells

within which Chlamydia is in the persistent state. The model describes the role of the

humoral and cell-mediated immunity in the course of a Chlamydia infection, while also

capturing the effects of different treatment strategies in the clearance of a Chlamydia

infection. We apply techniques of optimal control theory to the resulting system of ordi-

nary differential equations and explore optimal control strategies associated with different

kinds of treatment of chlamydial infections.

We denote by C(t), the concentration of free extracellular Chlamydia, E(t), the concentra-

tion of uninfected mucosal epithelial cells, I(t), the concentration of Chlamydia-infected

epithelial cells, and IP (t), the concentration of Chlamydia-infected epithelial cells that

are in the persistent state. We shall refer to IP simply as persistently infected cells. The

functions u1 and u2 represent two different treatments. The function u1 represents the

bio-available and deliverable amount of tryptophan, in the form of 1-MT, which blocks the

intracellular formation of persistent Chlamydia, while also facilitating the ‘recovery’ of per-

sistently infected cells by reversing IFN-γ-induced persistence in intracellular Chlamydia

(thereby increasing the susceptibility of Chlamydia to antibiotic treatment). The function

u2 represents the bio-available and deliverable amount of bacteriostatic agents (which re-

duces the concentration of infected cells by blocking the intracellular growth of Chlamydia,

thereby inducing chlamydial persistence). The functions u1 and u2 are bounded Lebesgue

integrable functions satisfying 0 ≤ u1(t) ≤ m1 ≤ 1 and 0 ≤ u2(t) ≤ m2 ≤ 1, where m1 and

m2 are the maximum attainable amount/proportion of u1(t) and u2(t), respectively. Note

that treatments u1 and u2 are drug concentrations that have been scaled by the maximum

tolerable concentration of the respective treatments. Thus they are now proportions with

no units. We define the control functions on fixed time intervals since the treatment of

chlamydial infections (or antibiotics generally) are not expected to be administered for

an infinite period of time. Thus the controls are defined for tstart = t0 ≤ t ≤ tfinal, where

for current recommended treatment guidelines, tfinal − tstart ≤ 7 days.
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The following system of equations is proposed:

dC

dt
= Pk2I − µC − k1CE, (5.1)

dE

dt
= PE − δEE − k1CE, (5.2)

dI

dt
= k1CE + ρu1IP − γI − k2I − αu2I − cu1u2I, (5.3)

dIP
dt

= γ(1− cu1)I +Qαu2I − ρu1IP − δP IP , (5.4)

with initial conditions C(t0) = C0, E(t0) = E0, I(t0) = I0, and IP (t0) = IP0, where t0 is

the initial time. At a rate of k2, P Chlamydia are released from infected cells. The rate of

epithelial cell infection (which may be reduced by antibodies) is denoted by k1, the rate of

production of epithelial cells is denoted by PE , the natural death rates of healthy epithelial

cells and persistently infected (epithelial) cells are denoted by δE and δP , respectively.

We assume that infected cells either burst/lyse (after the maturation of their intracellular

chlamydial developmental cycle) or become persistently infected (either by the inhibitory

activity of IFN-γ or the bacteriostatic activity therapeutic treatments/drugs). Thus we

do not account for their natural deaths. The rate of clearance of infected cells, due to

cell-mediated immunity (predominantly by the secretion of IFN-γ) is denoted by γ.

We model two different processes into the parameter µ. When u1 ≡ 0, µ = µm, the rate of

clearance of extracellular Chlamydia by macrophages. When u1 > 0, µ = µm +µτ , where

µτ is the rate at which 1-MT facilitates the reduction in the amount of EBs produced on

lysis of infected epithelial cells. The rate at which 1-MT blocks the formation of IFN-

γ-induced persistence in intracellular Chlamydia is c, while the rate at which it reverses

already formed persistence in intracellular Chlamydia is ρ. The rate at which antibiotics

inhibit chlamydial growth, thereby reducing the pool of infected cells, is α. Persistence is

induced in a fraction Q (0 < Q < 1) of the infected cells within which chlamydial growth

has been inhibited by antibiotics.

In the absence of controls u1 and u1, the model system (5.1)-(5.4) reduces to the following

system of equations, which we shall refer to as the ‘basic Chlamydia persistence model’:

dC

dt
= Pk2I − µC − k1CE, (5.5)

dE

dt
= PE − δEE − k1CE, (5.6)

dI

dt
= k1CE − γI − k2I, (5.7)

dIP
dt

= γI − δP IP , (5.8)



Chapter 5. Optimal control of chronic Chlamydia trachomatis infection 93

also with initial conditions C(t0) = C0, E(t0) = E0, I(t0) = I0, and IP (t0) = IP0, where

t0 is the initial time.

As discussed, after treatment with 1-MT, those chlamydial forms that must have recovered

from persistence become more susceptible to the antimicrobial potency of antibiotics.

Thus, we model the increased susceptibility of Chlamydia to antibiotics, in the presence

of tryptophan, by the term cu1u2I. We have assumed that the rate at which this increased

susceptibility occurs is the same as the rate at which 1-MT blocks the formation of IFN-

γ-induced persistence in intracellular Chlamydia.

The goal of treatment is to minimise the concentrations of extracellular Chlamydia, in-

fected cells, and persistently infected cells, and the systemic costs of the treatments/drugs

to the body over the course of the treatment, while also minimising the concentrations

of extracellular Chlamydia and persistently infected cells present at the end of the thera-

peutic intervention strategy. Hence, we seek an optimal control pair (u∗1, u
∗
2), such that

J(u∗1, u
∗
2) = min

u1,u2∈Γ̂
J(u1, u2), (5.9)

where Γ̂, the set of admissible controls, is defined as

Γ̂ = {(u1, u2)|u1 and u2 are Lebesgue measurable, 0 ≤ u1 ≤ m1, 0 ≤ u2 ≤ m2, m1,m2 ≤ 1, t ∈ [0, tf ]}.
(5.10)

The objective functional to be minimized is

J(u1, u2) =

∫ tf

t0

(
C(t) +A1I(t) +A2IP (t) +

A3

2
u2

1 +
A4

2
u2

2

)
dt+A5C(tf ) +A6IP (tf ),

(5.11)

where tf is the final time of the therapeutic intervention strategy, and the positive constant

weights A1, A2, A3, A4, A5, and A6, measure the relative costs of implementing the

respective treatment strategies over the period [0, tf ]. Their values will depend on the

relative importance of each of the control measures in the treatment of the disease. We

assume that the weight factor A4 associated with control u2 is greater than or equal to

the weight factor A3, which is associated with control u1. This is because as u2 is an

antibiotic treatment/drug, which may be toxic to the human body if administered in

high doses whereas, u1, which is tryptophan, a harmless nutritional supplement, is not

expected to be toxic to the human body [145]. We suppose that the cost function is a

nonlinear function of u1 and u2 because of the fact it needs to be twice differentiable.

Thus, the relationship between the effects of the drugs on Chlamydia and host cells takes

the specified non-linear form. Thus, we assume that the controls are quadratic, which is

in line with several other literatures [5, 83,85,143,154].
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The terms C(t), A1I(t), and A2IP (t) represent the costs of the clearance of viable Chlamy-

dia, infected healthy epithelial cells, and persistently infected epithelial cells, respectively.

The terms A3
2 u

2
1 and A3

2 u
2
2 describe the costs associated with administering the respective

intervention strategies. The terms A5C(tf ) and A6IP (tf ) are terminal costs associated

with the minimisation of the concentrations of Chlamydia and persistently infected cells,

respectively, by the end of the treatment.

Variables Description Values Ranges

C Free extracellular Chlamydia C0 = 500 cells/mm3

E Healthy mucosal epithelial cells E0 = 5000 cells/mm3

I Chlamydia-infected epithelial cells I0 = 100 cells/mm3

IP Persistently infected epithelial cells IP0 = 1000 cells/mm3

Parameters

P Burst size per infected cell 200 [169] 200-500
k1 Rate of cell infection 0.02 cell/mm3/day [169]
k2 Rate of infected cells burst 0.33 day−1 [169] [0.33-0.6]
PE Rate of production of mucosal epithelial cells 44 cells/mm3/day [32,169] [30-60]
δE Rate of natural death of epithelial cells 0.25 day−1 [8, 21] [0.25-0.26]
δP Rate of natural death of IP 0.35 day−1

γ Effectiveness of cell-mediated immunity 2 day−1 [169] 2-10
µm Effectiveness of humoral immunity 2 day−1 [169] [2-10]
µτ Reduction of EB production as induced by 1-MT 1.5 day−1 [0.1-2]
ρ Rate at which Tryp. reverses persistence 1.7 day−1

c Rate at which Tryp. blocks the induction of persistence 1.43 day−1

α Rate at which antibiotics clear infection 6.5 day−1

Q Fraction of antibiotics-induced IP 0.8 (0,1)
m1 Maximum dosage of control u1(t) 0.7
m2 Maximum dosage of control u2(t) 0.9

Table 5.1: Variables, parameters, values, and ranges used in numerical simulations. Tryp. is tryptophan.

5.1.1 Basic Properties

In this section, we present some basic qualitative results for the model system (5.1)-(5.4),

in order to ascertain that the problem is mathematically and biologically well posed.

Positivity of solutions

The model system (5.1)-(5.4) describes the dynamics of cell populations. Hence, it is

essential that all its state variables remain non-negative for all time. This implies that

the solutions of the system will remain positive for all t > 0 when given positive initial

conditions. We establish this important condition via the following lemma:

Lemma 5.1.1. Given non-negative initial values of the state variables in Equations (5.1)-

(5.4), non-negative solutions are generated for all time t > 0.

Proof. Let (C(0), E(0), I(0), IP (0)) be a positive initial condition and denote by [0, tmax],

the maximum interval of existence of the corresponding solution. In order to prove that

the solution is positive in [0,+∞], it suffices to show that it is positive in [0, tmax].

Let ts = sup{0 < t < tmax : C(t) > 0, E(t) > 0, I(t) > 0, IP (t) > 0 on [0, t]}.

ts > 0 since C(0), E(0), I(0), and IP (0) are non-negative. Suppose ts < tmax.
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From Equation (5.1),

dC

dt
+ (µ+ k1E)C = Pk2I.

Thus,

d

dt

(
C(t) exp

{
µt+ k1

∫ t

0
E(τ)dτ

})
= Pk2I(t)

(
exp

{
µt+ k1

∫ t

0
E(τ)dτ

})
,

so that

C(ts) exp

{
µts + k1

∫ ts

0
E(τ)dτ

}
− C(0)

=

∫ ts

0

(
Pk2I(τ̂) exp

{
µτ̂ + k1

∫ τ̂

0
E(τ)dτ

})
dτ̂ .

Hence,

C(ts) = C(0) exp

{
−
(
µts + k1

∫ ts

0
E(τ)dτ

)}
+ exp

{
−
(
µts + k1

∫ ts

0
E(τ)dτ

)}∫ ts

0

(
Pk2I(τ̂) exp

{
µτ̂ + k1

∫ τ̂

0
E(τ)dτ

})
dτ̂

> 0.

It can be shown by a similar argument that E(ts) > 0, I(ts) > 0, and IP (ts) > 0.

This contradicts the fact that ts is the supremum because at least one of the state variables

should be equal to zero at ts. Therefore ts = tmax. Thus, C(t) ≥ 0, E(t) ≥ 0, I(t) ≥ 0,

and IP (t) ≥ 0, for all time t > 0. This completes the proof.

Invariant region

We consider the long term behaviour of the system (5.1)-(5.4) in an apposite biologically

feasible region D̂.

Since all the parameters and state variables of model system (5.1)-(5.4) are non-negative

for all t ≥ 0, from the Equation (5.1), it follows that

dC

dt
= Pk2I − µC − k1CE

≤ Pk2I − µC.
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This implies that
dC

dt
+ µC ≤ Pk2I.

Thus,

C(t) ≤ C(0)e−µt + e−µtPk2

∫ t

0
I(τ)eµτdτ.

Since the interval [0, t] is compact, and since the integrand, I(τ)eµτ , is continuous on that

interval, the corresponding integral is finite. Therefore

C(t) ≤ e−µt(C(0) + Pk2n1) = n̄1,

where n1 =
∫ t

0 I(τ) eµτdτ .

From Equation (5.2),
dE

dt
≤ PE − δEE.

This implies that
dE

dt
+ δEE ≤ PE .

Thus,

E(t) ≤ E(0)e−δEt +
PE
δE

(1− e−δEt),

= E(0)e−δEt + E∗(1− e−δEt),
= E∗ − (E∗ − E(0))e−δEt.

E(t) either approaches E∗ asymptotically or there exists some finite time after which

E(t) ≤ E∗.

From Equation (5.3),
dI

dt
≤ k1CE + ρu1IP − k2I,

that is
dI

dt
+ k2I ≤ k1CE + ρu1IP .

Thus,

I(t) ≤ I(0)e−k2t + e−k2t
∫ t

0
(k1C(τ)E(τ) + ρu1(τ)IP (τ))ek2τdτ.

Again, the integral is finite since continuous functions, C(τ)E(τ)ek2τ and ρu1(τ)IP (τ)ek2τ

are integrated over a compact interval. Therefore

I(t) ≤ I(0)e−k2t + e−k2tn2 = n̄2,
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where

n2 =

∫ t

0
(k1C(τ)E(τ) + ρu1(τ)IP (τ))ek2τdτ.

From Equation (5.4),
dIP
dt
≤ γI +Qαu2I − δP IP ,

that is
dIP
dt

+ δP IP ≤ γI +Qαu2I.

Thus,

IP (t) ≤ IP (0)e−δP t + e−δP t
∫ t

0
(γI(τ) +Qαu2(τ)I(τ))eδP τdτ.

Again, the integral is finite since continuous functions, γI(τ)eδP τ and Qαu2(τ)I(τ)eδP τ

are integrated over a compact interval. Therefore

IP (t) ≤ IP (0)e−δP t + e−δP tn3 = n̄3,

where

n3 =

∫ t

0
(γI(τ) +Qαu2(τ)I(τ))eδP τdτ.

Hence, the region

D̂ =
{

(C(t), E(t), I(t), IP (t)) ∈ R4
+ : C(t) ≤ n̄1, E(t) ≤ E∗, I(t) ≤ n̄2, IP (t) ≤ n̄3

}
is positively invariant and attracting for the model system (5.1)-(5.4), that is, every

feasible solution of the model with initial conditions in D̂, will remain in D̂, for all t ≥ 0.

We establish this result via the following lemma:

Lemma 5.1.2. The biologically feasible region D̂ is positively invariant and attracting

with respect to the model system (5.1)-(5.4) with initial conditions in R4
+.

It is clear that the right hand sides of the model equations (5.1)-(5.4) are smooth. Hence,

initial value problems have unique solutions on the region D̂. Also, since paths are confined

in D̂, solutions exist for all time t ≥ 0. It follows that solutions to system (5.1)-(5.4) exist

in D̂ and are unique. Having thus confirmed that the model system is mathematically

and biologically well posed, we proceed to study the dynamics of the flow induced by the

model system (5.1)-(5.4) in D̂.

5.1.2 Existence and stability of equilibria

In this section, we determine the equilibria of the basic Chlamydia persistence model

(5.5)-(5.8) and analyse their stability.



Chapter 5. Optimal control of chronic Chlamydia trachomatis infection 98

Local stability of the Chlamydia-free equilibrium

The Chlamydia-free equilibrium (CFE) can be obtained by the setting the right-hand sides

of the basic Chlamydia persistence model (5.5)-(5.8) to zero and then choosing solutions

where C = I = IP = 0. This CFE is given by F02,

F02 = (C∗, E∗, I∗, I∗P ) = (0, Ê, 0, 0), (5.12)

where Ê =
PE
δE

.

The linear stability of this equilibrium F02 can be established using the next generation

method described in Subsection 4.1.2, on the model system (5.5)-(5.8).

The class of infectives in the model system (5.5)-(5.8) are Chlamydia (C), Chlamydia-

infected host cells (I), and persistently infected host cells (IP ), since these three classes

facilitate the chronic chlamydial infection process. Thus, the infected subsystem of the

model system (5.5)-(5.8) is given by Equations (5.5), (5.7) and (5.8), that is, (Ċ, İ, ˙IP ).

Hence we sort the model system (5.5)-(5.8) so that the first three compartments corre-

spond to the class of infectives, that is (Ċ, İ, ˙IP , Ė).

The rate of appearance of new infections in the three compartments, is denoted by F1,

F1 =


0

k1CE

0

0

 , (5.13)

while the rate of transfer of each of the interacting species in and out of the three com-

partments is denoted by V1,

V1 = −

 Pk2I − µC − k1CE

−(k2 + γ)I

PE − δEE − k1CE

 . (5.14)

Hence, the matrices of partial derivatives F1 and V1, for the infected subsystem, are

respectively given by
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F1 =



∂F1(G0)

∂C

∂F1(G0)

∂I

∂F1(G0)

∂IP

∂F2(G0)

∂C

∂F2(G0)

∂I

∂F2(G0)

∂IP

∂F3(G0)

∂C

∂F3(G0)

∂I

∂F3(G0)

∂IP


=

 0 0 0

k1Ê 0 0

0 0 0

 , (5.15)

and

V1 =



∂V1(G0)

∂C

∂V1(G0)

∂I

∂V1(G0)

∂IP

∂V2(G0)

∂C

∂V2(G0)

∂I

∂V2(G0)

∂IP

∂V3(G0)

∂C

∂V3(G0)

∂I

∂V3(G0)

∂IP


=

 µ+ k1Ê −Pk2 0

0 k2 + γ 0

0 −γ δP

 . (5.16)

The operator V −1
1 is given by

V −1
1 =

1

(µ+ k1Ê)(k2 + γ)


k2 + γ Pk2 0

0 µ+ k1Ê 0

0
γ(µ+ k1Ê)

δP

(µ+ k1Ê)(k2 + γ)

δP

 . (5.17)

F1V
−1
1 =

1

(µ+ k1Ê)(k2 + γ)

 0 0 0

k1Ê(k2 + γ) Pk1k2Ê 0

0 0 0

 . (5.18)

Hence, the spectral radius of F1V
−1
1 , which is the basic reproduction number R02 of the

basic Chlamydia persistence model (5.5)-(5.8), is given by

R02 =
Pk1k2Ê

(µ+ k1Ê)(k2 + γ)
. (5.19)

By inspecting the basic reproduction number R02, one can track the contribution of the

infected and infectious classes (infected epithelial cells and elementary bodies, respec-

tively) to the infection process. From the expression in (5.19), it can be seen that the

basic reproduction number R02 is the product of the infection rate of healthy epithelial

cells by Chlamydia, k1Ê, the number of infectious progenies released by a lysing infected
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cell, P , the duration of infectiousness of an EB,
1

µ+ k1Ê
, and the proportion of infected

cells that survive up to the stage of lysis,
k2

k2 + γ
.

We establish the following result by implementing Theorem 2 of van den Driessche and

Watmough [157].

Lemma 5.1.3. The Chlamydia-free equilibrium (CFE) F02, of the basic Chlamydia per-

sistence model (5.5)-(5.8), is locally stable whenever R02 < 1 and unstable if R02 > 1.

Lemma 5.1.3 implies that when R02 < 1, the in vivo clearance of Chlamydia body forms

can be achieved if the initial sizes of the subpopulations of the model (C,E, I, IP ) are in

the basin of attraction of the CFE F02.

In order to ensure that the therapeutic effects of an effective Chlamydia infection treat-

ment regimen in an in vivo or in vitro setting system does not depend on either the initial

size of Chlamydia body forms or innoculum, respectively, or the initial sizes of other sub-

populations of the model (E, I, and IP ), we show that the CFE is globally asymptotically

stable (GAS) when R02 < 1.

Global stability of the Chlamydia-free equilibrium

Theorem 5.1.4. The Chlamydia-free equilibrium (CFE) F02, of the basic Chlamydia

persistence model (5.5)-(5.8), is globally asymptotically stable in D̂, whenever R02 < 1

and unstable otherwise. The CFE F02 is the only equilibrium when R02 ≤ 1.

Proof. Consider the candidate Lyapunov function

Y = Pk1k2I + k1(γ + k2)C, (5.20)

with Lyapunov derivative (where a dot represents differentiation with respect to t) given

by

Ẏ = Pk1k2İ + k1(γ + k2)Ċ

= Pk1k2(k1CE − k2I − γI) + k1(γ + k2)(Pk2I − µC − k1CE)

= Pk2
1k2CE − (k2(µ+ k1E) + γ(µ+ k1E))k1C

= k1(k2 + γ)(µ+ k1E)

(
Pk1k2E

(k2 + γ)(µ+ k1E)
− 1

)
C

≤ k1(k2 + γ)(µ+ k1E
∗)
(

Pk1k2E
∗

(k2 + γ)(µ+ k1E∗)
− 1

)
C (since E(t) ≤ E∗ in D)

= k1(k2 + γ)(µ+ k1E
∗)(R02 − 1)C ≤ 0, when R02 ≤ 1.
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Since all the model parameters and variables are non-negative, it follows that Ẏ ≤ 0 for

R02 ≤ 1, with equality if R02 = 1 or C = 0. Moreover, for R02 < 1, Ẏ = 0 if and only if

C = 0. Hence, Y is a Lyapunov function on D̂. Furthermore, D̂ is a compact and absorbing

subset of R4
+, and the largest compact invariant set in {(C,E, I, IP ) ∈ D̂ : Ẏ = 0}, when

R02 ≤ 1, is the singleton F02. Therefore, F02 is the only steady state when R02 ≤ 1.

Thus, by LaSalle’s invariance principle [65,94] (See Section A.1 for the principle), C → 0,

I → 0, and IP → 0 as t → ∞. Substituting C = I = IP = 0 into the model equations

(5.5)-(5.8) shows that E → E∗ as t → ∞. Hence, every solution of the basic Chlamydia

model system (5.5)-(5.8), with initial conditions in D̂, approaches the CFE F02 as t→∞
(that is, the CFE F02 is GAS in D̂) whenever R02 < 1 and unstable otherwise.

Existence of the Chlamydia-present equilibrium

We show that the basic Chlamydia persistence model system (5.5)-(5.8) has a unique

Chlamydia-present equilibrium (CPE), that is the equilibrium for which Chlamydia per-

sists within-host, if and only if R02 > 1. In order to obtain the CPE, we set the right

hand sides of the model equations (5.5)-(5.8) to zero, and solve for all its non-zero state

variables. We also express the state variables in terms of the force of infection

Λ∗∗ = k1C
∗∗, (5.21)

of model system (5.5)-(5.8). Thus, the right hand sides of the model system (5.5)-(5.8)

at steady states gives

C∗∗ =
Λ∗∗PE(Pk2 − k2 − γ)

µ(δE + Λ∗∗)(k2 + γ)
, (5.22)

E∗∗ =
PE

δE + Λ∗∗
, (5.23)

I∗∗ =
Λ∗∗PE

(δE + Λ∗∗)(k2 + γ)
, (5.24)

I∗∗P =
γI∗∗

δP
. (5.25)

Thus, the CPE of the basic Chlamydia persistence model (5.5)-(5.8) is given by

F12 = (C∗∗, E∗∗, I∗∗, I∗∗P ). (5.26)
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Substituting (5.22)-(5.25) into the expression for Λ∗∗ in (5.21), and simplifying, we obtain

a quadratic expression that the non-zero CPE F12 of model system (5.5)-(5.8) satisfies,

that is

Λ∗∗(µ(k2 + γ)Λ∗∗ + δEµ(k2 + γ)− k1PE(Pk2 − k2 − γ)) = 0. (5.27)

The solutions of Equation (5.27) are either

Λ∗∗ = 0 (5.28)

or

Λ∗∗ =
(k2 + γ)(µ+ k1E

∗)(R02 − 1)

µ/δE(k2 + γ)
. (5.29)

The trivial solution (5.28) implies the disease-free steady state which corresponds to the

CFE described by (5.12). This is not our equilibrium of interest at this point. Thus, the

unique and non-trivial solution (5.29) is valid.

From (5.29), it follows that if R02 < 1, then Λ∗∗ < 1, which is biologically meaningless.

In addition, if R02 = 1, then Λ∗∗ = 0, which again corresponds to the CFE described by

(5.12). Thus, the model system (5.5)-(5.8) has no positive CPE in these two cases. It can

be clearly seen that the unique solution (5.29) of (5.27) is positive if and only if R02 > 1,

since all the model parameters are positive.

Hence, the four components C∗∗, E∗∗, I∗∗, and I∗∗P of the CPE F12, can be explicitly

determined by substituting (5.29) into (5.22)-(5.25), to obtain

C∗∗ =
PE(k2(P − 1)− γ)

µ(k2 + γ)
− δE
k1
, (5.30)

E∗∗ =
µ(k2 + γ)

k1(k2(P − 1)− γ)
, (5.31)

I∗∗ =
PE

k2 + γ
− µδE
k1(k2(P − 1)− γ)

, (5.32)

I∗∗P =
γ

δP

(
PE

k2 + γ
− µδE
k1(k2(P − 1)− γ)

)
. (5.33)

These results are summarised below.

Theorem 5.1.5. The basic Chlamydia persistence model (5.5)-(5.8) has a unique CPE

given by F12, whenever R02 > 1 and no CPE otherwise.
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As Theorems 5.1.4 and 5.1.5 imply, it suffices to explore therapeutic strategies that can

drive the disease outbreak threshold R02 below unity.

5.2 Existence of an optimal control pair

In this section, we show that the existence of an optimal control pair with finite objective

functional is guaranteed for our model system (5.1)-(5.4). Using an established theorem

in Fleming and Rishel [55], as re-stated in Theorem 4.2.1, we show that our system

(5.1)-(5.4) and objective functional (5.11) meet the conditions of Theorem 4.2.1, thus

establishing the existence of an optimal control pair for our model.

Theorem 5.2.1. For the optimal control problem with state equations (5.1)-(5.4), there

exists an optimal control pair (u∗1, u
∗
2) ∈ Γ̂ which minimises the objective functional

J(u1, u2) in equation (5.11).

Proof. To prove this theorem, we show that our optimal control model meets the five

conditions given in Theorem 4.2.1, being sufficient conditions for the existence of an

optimal control pair for our model.

1. To verify condition 1, we refer to Theorem 3.1 by Picard-Lindelöf [29,39]. Based on

the theorem, if the solutions of the state equations (5.1)-(5.4) are a priori bounded

and if the state equations are continuous and Lipschitz-continuous in the state

variables, then there is a unique solution corresponding to every admissible control

pair in Γ̂. Since for all (C,E, I, IP ) ∈ D̂, the model states are bounded below and

above (see Section 5.1.1), then, the solutions to the state equations are bounded.

The boundedness of the partial derivatives with respect to the state variables in the

state system can be shown directly. The right sides of the state equations (5.1)-(5.4)

are also continuously differentiable functions of the dependent variables C,E, I, and

IP . These demonstrate the fact that the system is locally Lipschitz-continuous with

respect to the state variable [28]. Thus, condition 1 is fulfilled.

2. The control set is closed and convex by definition. Hence, condition 2 is fulfilled.

3. The right side of the model system (5.1)-(5.4) is Lipschitz-continuous. Thus, it is

obviously continuous and bounded. The state equations (5.1)-(5.4) are also bilinear

in u1 and u2, hence condition 3 is satisfied.

4. The integrand Ĝ = C(t) + A1I(t) + A2IP (t) +
A3

2
u2

1 +
A4

2
u2

2, of the objective

functional, has a positive semidefinite Hessian, hence it is convex on the admissible

set Γ̂. Thus condition 4 is satisfied.

5. Let η = min(A2, A3), and θ =
1

2
η. Then,



Chapter 5. Optimal control of chronic Chlamydia trachomatis infection 104

G =
A3

2
u2

1 +
A4

2
u2

2 + C +A1I +A2IP

≡ 1

2

{
η(u2

1 + u2
2) + σ1u

2
1 + σ2u

2
2

}
+ (C +A1I +A2IP )

≥ θ(u2
1 + u2

2) + (C +A1I +A2IP )

≥ θ(u2
1 + u2

2)− c2

= θ(|u1|2 + |u2|2)− c2,

for any c2 > 0, where 0 ≤ σ1 ≤ A3 and 0 ≤ σ2 ≤ A4. Note that η, θ ≥ 0. Hence the

integrand satisfies the inequality (4.40), with β = 2.

This completes the proof.

5.3 Characterisation of the optimal control pair

In this section, we derive the conditions of optimality for the control problem (5.1)-(5.11).

We use Pontryagin’s Maximum Principle [125], which provides the necessary conditions

that an optimal control and corresponding state must satisfy, to convert the optimisation

problem (5.1)-(5.11) into one of minimising a Hamiltonian Ĥ, with respect to the control

(u1(t), u2(t)) [100, pg 14].

Theorem 5.3.1. Given optimal controls u∗1, u
∗
2, and solutions C∗, E∗, I∗, and I∗P of the

corresponding state system (5.1)-(5.4), that minimise the objective functional (5.11) over

Γ̂, there exist adjoint variables λC , λE, λI , and λIP satisfying:

λ̇C = −1 + (µ+ k1E
∗)λC + k1E

∗λE − k1E
∗λI , (5.34)

λ̇E = k1C
∗λC + (δE + k1C

∗)λE − k1C
∗λI , (5.35)

λ̇I = −A1 − Pk2λC + (γ + k2 + αu∗2(t) + cu∗1(t)u∗2(t))λI − (γ(1− cu∗1(t)) +Qαu∗2(t))λIP
(5.36)

˙λIP = −A2 − ρu∗1(t)λI + ρu∗1(t)λIP + δPλIP , (5.37)

with transversality conditions

λC(tf ) = A5, λIP (tf ) = A6, and λE(tf ) = λI(tf ) = 0. (5.38)

Furthermore, the control functions can be shown to satisfy the following, called the control

characterisations:
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u∗1(t) = min

{
max

(
0,

V ∗

A3A4 −M2

)
,m1

}
,

u∗2(t) = min

{
max

(
0,

1

A4

(
MV ∗

A3A4 −M2
+ T4 − T5

))
,m2

}
,

where V ∗ = −A4T1 +MT4−MT5 +A4T2 +A4T3, M = cI∗λI , T1 = ρI∗PλI , T2 = cγI∗λIP ,

T3 = ρI∗PλIP , T4 = αI∗λI , T5 = QαI∗λIP , and A3A4 6= M2.

Proof. We define the Hamiltonian Ĥ(C,E, I, IP , u1, u2, λC , λE , λI , λIP ) as

Ĥ = C(t) +A1I(t) +A2IP (t) +
A3

2
u2

1 +
A4

2
u2

2

+ λC(Pk2I(t)− µC(t)− k1C(t)E(t))

+ λE(PE − δEE(t)− k1C(t)E(t))

+ λI(k1C(t)E(t) + ρu1(t)IP (t)− γI(t)− k2I(t)− αu2(t)I(t)− cu1(t)u2(t)I(t))

+ λIP (γ(1− cu1(t))I(t) +Qαu2(t)I(t)− ρu1(t)IP (t)− δP IP (t)). (5.39)

Using Pontryagin’s Maximum Principle [125],

λ
′
C = −∂H

∂C
, λ
′
E = −∂H

∂E
, λ
′
I = −∂H

∂I
, and λ

′
IP

= − ∂H
∂IP

. (5.40)

Thus adjoint system (5.34)-(5.37), with transversality conditions (terminal conditions)

expressed in the form provided in (5.38), was obtained from the Hamiltonian (5.39) and

the relations in (5.40).

The Hamiltonian Ĥ is minimised with respect to the controls at the optimal control pair

u∗ = (u∗1, u
∗
1). Thus we differentiate Ĥ with respect to u1 and u2 on the interior sets

{t | 0 ≤ u1 ≤ m1} and {t | 0 ≤ u2 ≤ m2} respectively. Thus, the optimality equations are

∂Ĥ

∂u1
= A3u

∗
1 + ρI∗PλI − cu∗2I∗λI − cγI∗λIP − ρI∗PλIP = 0 at u∗1, (5.41)

∂Ĥ

∂u2
= A4u

∗
2 − αI∗λI − cu∗1I∗λI +QαI∗λIP = 0 at u∗2. (5.42)

Solving for u∗1 and u∗2 on the interior sets, we obtain



Chapter 5. Optimal control of chronic Chlamydia trachomatis infection 106

u∗1 =
V ∗

A3A4 −M2
, (5.43)

u∗2 =
1

A4

(
MV ∗

A3A4 −M2
+ T4 − T5

)
, (5.44)

where V ∗ = −A4T1 +MT4−MT5 +A4T2 +A4T3, M = cI∗λI , T1 = ρI∗PλI , T2 = cγI∗λIP ,

T3 = ρI∗PλIP , T4 = αI∗λI , T5 = QαI∗λIP , and A3A4 6= M2.

By standard control arguments involving the bounds on the controls (see Sections 8.1 and

12.1 of [100]), we conclude that

u∗1 =



0 if
V ∗

A3A4 −M2
≤ 0

V ∗

A3A4 −M2
if 0 <

V ∗

A3A4 −M2
< m1

m1 if
V ∗

A3A4 −M2
≥ m1

, (5.45)

which in compact notation can be characterised as

u∗1(t) = min

{
max

(
0,

V ∗

A3A4 −M2

)
,m1

}
. (5.46)

Similarly, we conclude that

u∗2 =



0 if
1

A4

(
MV ∗

A3A4 −M2
+ T4 − T5

)
≤ 0,

1

A4

(
MV ∗

A3A4 −M2
+ T4 − T5

)
if 0 <

1

A4

(
MV ∗

A3A4 −M2
+ T4 − T5

)
< m2

m2 if
1

A4

(
MV ∗

A3A4 −M2
+ T4 − T5

)
≥ m2

(5.47)

which in compact notation can also be characterised as

u∗2(t) = min

{
max

(
0,

1

A4

(
MV ∗

A3A4 −M2
+ T4 − T5

))
,m2

}
. (5.48)

This completes the proof.
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Remark 5.3.2. The optimality system that characterises the optimal control pair (u∗1, u
∗
2)

consists of the state system (5.1)-(5.4) with its associated initial conditions, the adjoint

system (5.34)-(5.37) with its transversality conditions (5.38), and the control characteri-

sations (5.45) and (5.47).

Due to the a priori boundedness of the state and adjoint solutions, the right sides of the

state and adjoint equations become Lipschitz in those solutions. The uniqueness of the so-

lutions of the optimality system is guaranteed by this Lipschitz property, for a sufficiently

small final time tf . This small time length restriction is due to the opposite time orien-

tation of the state equations (5.1)-(5.4), and the adjoint equations (5.34)-(5.37); the state

system has initial time conditions and the adjoint equations have final time conditions.

Uniqueness of solutions of the optimality system implies the uniqueness of the optimal

controls [100]. See Fisher et. al [54] for a uniqueness proof using Lipschitz properties.

5.4 Numerical Results

In this section, we present numerical results of the model system (5.1)-(5.4) under different

scenarios.

5.4.1 Disease dynamics with no treatment (control)

In this section, we present numerical results for the dynamics of the extracellular Chlamy-

dia, healthy epithelial cells, infected epithelial cells, and persistently infected epithelial

cells. We set the controls u1 and u2 to zero and solve the resulting system of ODEs. Fig-

ures 5.1a-5.1d show that in the absence of any therapeutic intervention, the infection may

not be abated, even when the antimicrobial responses of the humoral and cell-mediated

immunity are present. It is observed that each of the interacting species approached their

endemic states. The parameter values and initial conditions used in all the simulations

are given in Table 5.1.
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Figure 5.1: Numerical simulation of the tryptophan supplementation Chlamydia treatment model (5.1)-
(5.4) showing the time course plot of (a) C(t), concentration of Chlamydia, (b) E(t), concentration of
healthy epithelial cells, (c) I(t), concentration of infected epithelial cells, and (d) IP (t), concentration of
persistently infected epithelial cells, respectively, with no controls applied. Note that the final time values
of each state variable, which are also their calculated steady states, rounded up to the next integer, are
C(tf ) = 36, E(tf ) = 124, I(tf ) = 2, IP (tf ) = 43, respectively.

5.4.2 Optimal Control

In this section, we numerically study and present the numerical solutions of the optimality

system described in Remark 5.3.2, over Tf = 5 days. Our goal is to find the optimal

treatment strategies, that is the most effective and efficient temporal drug usage at each

time point, that ensures the clearance of a chronic Chlamydia infection, while minimizing

the drugs levels and their systemic costs. We solve the optimal control problem (5.1)-

(5.11) using MATLAB’s in-built non-linear optimisation tool fmincon [114] as described

in Section 4.4.2.

In order to obtain an optimal therapy during a chronic chlamydial infection, we assume

that at the time of commencement of the treatment, the infected host has reached chronic

steady state values C = 36 cells/mm3, E = 124 cells/mm3, I = 2 cells/mm3, and IP = 43

cells/mm3, respectively. These steady state values were obtained by setting the right

hand size of the model system (5.1)-(5.4) to zero in the absence of any treatment, that is
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u1 ≡ u2 ≡ 0, and solving the resulting system of nonlinear equations using MATLAB’s

in-built solver fsolve.

We investigate and compare numerical results of three different optimal therapy scenarios:

(i) when u1, tryptophan supplement, is optimised while treatment u2 is set to zero, (ii)

when u2, the drug that is bacteriostatic on Chlamydia, is optimised while treatment u1

is set to zero, and (iii) when both treatments u1 and u2 are optimised. We only track

the amount of bio-available treatment/drug the system is supplied with, with respect to

time. In this study, we do not investigate the complete degradation of the drug/treatment

to be administered, but rather the bio-availability and delivery of the treatment into the

system.

We simulated the model for different combination of values of the weight parameters A1,

A2, A3, A4, A5, and A6, which are the balancing cost factors due to scales (that is, they

adjust the balance between the clearance of the infection and the systemic cost of the

treatments) and the importance of the seven parts of the objective functional. In all the

presented figures, we use the same set of weight factors, A1 = 70, A2 = 20, A3 = 90,

A4 = 20, A5 = 1, and A6 = 5 to illustrate the effects of various optimal therapies

on a chlamydial infection. The order of the parameters are mostly on the order of ten

and A4 on the order of a hundred. This is because the magnitude of the concentration

of Chlamydia is much larger than the magnitude of the concentration of infected and

persistently infected cells, and the magnitude of the concentrations of the treatments, in

the objective functional in (5.11). Hence, we balance this difference in magnitudes by the

orders of the weight parameters. As in the preceding chapter, we have only presented

results for one parameter combination for brevity. This is because there was no significant

effect (with regards to clinical outcomes) of the variation on the qualitative results of the

optimal controls when the respective weight parameters were varied within the same order.

However, in Section B.3 of the Appendix, we have investigated and discussed in details,

the effects of different weight parameters combinations on the qualitative results of the

optimal control problem (this include the time series of interacting species, the optimal

controls, and the corresponding values of the objective functional). We also investigate the

three different treatment scenarios discussed for different treatment duration (in number

of days) by varying the final time of treatment. We observe that the optimal solution

of the model system (with respect to clinical outcomes) is not sensitive with respect to

the final time. This implies that similar optimal solutions are obtained even when the

duration of treatment is increased. These results are also not shown for brevity. We only

show results for five days of treatment. We have however discussed these results in details

in Section B.4.

Control with tryptophan supplementation only (u2 ≡ 0)

We consider monotherapy with u1, the tryptophan supplement, alone. Numerical simu-

lations are performed using MATLAB’s fmincon as described in Section 4.4.2, for A4 ≡ 0

when u2 ≡ 0. Then, the optimal control problem is defined by
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J(u1) =

∫ tf

t0

G(t, x(t), u1(t))dt+ φ(x(tf )), (5.49)

subject to

ẋ = f(t, x(t), u1(t)), t0 ≤ t ≤ tf ,
x(t0) = x0,

(5.50)

where x = (C,E, I, IP ), f is the right side of the model (state) system (5.1)-(5.4),

φ(x(tf )) = A5C(tf ) +A6IP (tf ), and G(t, x, u1) = C(t) +A1I(t) +A2IP (t) +
A3

2
u2

1.

For this therapy, as explained in Section 5.1, µτ , the rate at which the tryptophan supple-

ment (1-MT) facilitates the reduction in the amount of EBs produced on lysis of infected

epithelial cells, is 1.5. As shown in Figure 5.2, the optimal control problem predicts that

the chronic chlamydial infection is cleared by the fifth day after the therapy commenced.

It can also be seen that in the presence of the tryptophan supplement, healthy epithelial

cells recovered from their diminished state and proliferated normally. The optimal control

function u1(t) in Figure 5.2e is continuous and decreases with respect to increasing time.

Our simulations show that for the chronic infection to be cleared, the optimal control will

be the maximum dosage of the tryptophan supplement for about four days, as shown in

Figure 5.2e. We note that the value of the objective functional (5.11) for this simulation

is 1440.5.

Control with bacteriostatic agents only (u1 ≡ 0)

We again consider monotherapy, this time with the bacteriostatic agent represented by

u2 and with u1 ≡ 0. Numerical simulations are performed using MATLAB’s fmincon

as described in Section 4.4.2, for A2 ≡ 0 when u1 ≡ 0. Then, the optimal control

problem is defined by relations similar to (5.49) and (5.50), but with u2 instead of u1,

and G(t, x, u1) = C(t) +A1I(t) +A2IP (t) +
A4

2
u2

2.

For this therapy, as explained in Section 5.1, µτ = 0. Thus, µ = µm = 2 (see Table 5.1).

As shown in Figure 5.3, the optimal control problem predicts that the chronic chlamydial

infection may not be cleared when only bacteriostatic agents are used for the treatment

of a chronic chlamydial infection. It can be seen that at the end of the therapy, the

persistently infected cells were not cleared. There were also a few EBs present at the

end of the therapy. The optimal control function u2(t) for these results, as shown in

Figure 5.3e is continuous and decreases with respect to time. Our simulations show that

the optimal control model does not result in the clearance of the chronic infection even

when u2 = 0.9 (the maximum dosage) for about four days, as shown in Figure 5.3e. We

note that the value of the objective functional (5.11) for this simulation is 3037.2.
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Figure 5.2: Time course of the tryptophan supplementation Chlamydia treatment model (5.1)-(5.4) show-
ing the effect of using control u1 (tryptophan Supplementation treatment) only on (a) C(t), concentration
of Chlamydia, (b) E(t), concentration of healthy epithelial cells, and (c) I(t), concentration of infected
epithelial cells, and (d) IP (t), concentration of persistently infected epithelial cells, respectively. (e) Opti-
mal evolution for control u1. Note that the initial conditions for this treatment model are the steady state
solutions of the no treatment model, that is C(t0) = 36, E(t0) = 124, I(t0) = 2, IP (t0) = 43, respectively,
while the final time values of the state variables are 0, 139, 0, and 0, respectively.

Optimal combination treatment

With this treatment strategy, the tryptophan supplementation control u2 and bacterio-

static control u1 are both used to optimise the objective functional J as in (5.11).

For this therapy, as explained in Section 5.1, µτ , the rate at which the tryptophan supple-

ment (1-MT) facilitates the reduction in the amount of EBs produced on lysis of infected

epithelial cells, is also 1.5. The numerical results of the state variables for this combi-

nation therapy is very similar to that of the tryptophan-only supplement. As shown in

Figure 5.4, the optimal control problem predicts that the chronic chlamydial infection is

cleared by the fifth day after the therapy commenced. It can also be seen that in the

presence of the two controls, healthy epithelial cells recovered from their diminished state

and proliferated normally. The optimal control functions u1(t) and u2(t), as shown in

Figures 5.4e and 5.4f, respectively, are continuous and decrease with respect to time. Our

simulations show that for the chronic infection to be cleared, the optimal control u1(t)



Chapter 5. Optimal control of chronic Chlamydia trachomatis infection 112

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

10

20

30

40

Time (days)

C
(t
)

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
100

120

140

Time (days)

E
(t
)

(b)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

Time (days)

I
(t
)

(c)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

20

40

Time (days)

I p
(t
)

(d)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

Time (days)

u
2
(t
)

(e)

Figure 5.3: Time course of the tryptophan supplementation Chlamydia treatment model (5.1)-(5.4) show-
ing the effect of using control u2 (bacteriostatic agents) only on (a) C(t), concentration of Chlamydia,
(b) E(t), concentration of healthy epithelial cells, and (c) I(t), concentration of infected epithelial cells,
and (d) IP (t), concentration of persistently infected epithelial cells, respectively. (e) Optimal evolution
for control u2. Note that the initial conditions for this treatment model are the steady state solutions of
the no treatment model, that is C(t0) = 36, E(t0) = 124, I(t0) = 2, IP (t0) = 43, respectively, while the
final time values of the state variables are 2, 153, 0, and 14, respectively.

will be the maximum dosage of the tryptophan supplement for about 4 days, while the

optimal control u2(t) will be half the maximum dosage of the bacteriostatic agent at the

initiation of the therapy, followed by a higher dosage after about 2.5 days.

5.5 Conclusion

In this chapter, we have used an optimal control theory paradigm to model the treatment

of chronic chlamydial infection. Our approach couples a model of within-host interaction

of Chlamydia and the immune system with an additional class for persistently infected

epithelial cells. We have investigated the dynamics of the interacting species with and

without two different therapeutic control strategies. We use methods of optimal control to

derive and analyse the conditions for optimal treatment of the disease with a tryptophan

supplement and bacteriostatic agents/drugs. Existence and uniqueness of the optimal
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Figure 5.4: Time course of the tryptophan supplementation Chlamydia treatment model (5.1)-(5.4) show-
ing the effect of using both controls u1 (tryptophan Supplementation treatment) and u2 (bacteriostatic
agents) on (a) C(t), concentration of Chlamydia, (b) E(t), concentration of healthy epithelial cells, and
(c) I(t), concentration of infected epithelial cells, and (d) IP (t), concentration of persistently infected
epithelial cells, respectively. (e) Optimal evolution for control u1. (f) Optimal evolution for control u2.
Note that the initial conditions for this treatment model are the steady state solutions of the no treatment
model, that is C(t0) = 36, E(t0) = 124, I(t0) = 2, IP (t0) = 43, respectively, while the final time values of
the state variables are 0, 144, 0, and 0, respectively.

controls were proved. We also characterised the controls using Pontryagin’s Maximum

Principle (see Section A.3) and the resulting optimality system was numerically solved.

Our optimal control problem accounts for: (i) the blockage of IFN-γ-induced persistence

by tryptophan supplementation; (ii) the reversal of established chlamydial persistence,

either induced by IFN-γ or antibiotics, using tryptophan supplementation; (iii) the ef-

fects of the humoral and cell-mediated immune responses; (iv) the antimicrobial effects of

an antibiotic therapy; (v) reduction of the production of EBs; and (vi) short duration of

treatment with minimal dosage administration. We numerically explored the different im-

pacts of the two optimal control strategies. Interestingly, monotherapy with tryptophan

supplement alone suffices for the clearance of the chronic infection. We also investigated

the three different treatment scenarios discussed for different treatment duration by vary-

ing the final time of treatment. We observed that the optimal solution of the model
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system is not sensitive with respect to the final time. This implies that similar optimal

solutions were obtained even when we increased the duration of treatment. These results

are not shown.

The optimal control problem indicates the necessity of the high immunomodulatory effects

of the tryptophan supplement 1-MT. The numerical results of the model suggest that

single therapy with a tryptophan supplement, in the presence of a strong immune system,

may be the optimal course of action in the clearance of a chronic Chlamydia infection,

as it aids the clearance of the pathogen itself, limitation of side effects of drugs, and the

survival of healthy epithelial cells.

We note that when both controls/treatments u1 and u2 were used, the objective functional

value was 1433.6. When control/treatment u1 alone was used, the objective functional

value was 1440.5. Whereas, when control/treatment u2 alone was used, the objective

functional value was 3037.2. These are very relevant observations. The results imply that

although the use of either both treatments (u1 and u2) or treatment u1 alone clears the

chronic chlamydial infection, the systemic cost of the treatments (toxicity) to the host is

minimal when both treatments are used, as opposed to when only treatment u1 is used.

These numerical results also show that when treatment u2 alone is used to treat a chronic

chlamydial infection, the systemic cost (toxicity) of the treatment u2 to the host is very

high, despite the fact that the treatment does not result in the clearance of the chronic

chlamydial infection.

The numerical results suggest that the optimal therapy is a dynamic one, in that the

treatment is adjusted over the duration of the treatment, whereby one administers the

maximum dosage for some days and then gradually lessen the treatment either in strength

or concentration. We suggest that therapeutic interventions that adhere to these control

strategies may be effective in treating chronic Chlamydia infections. We however note

that even if the immune system is not at its best, the optimal course of action in the

clearance of the infection may be a combination therapy with a bacteriostatic agent and

tryptophan supplement, as the bacteriostatic agent may clear the actively replicating

Chlamydia while tryptophan aids with the clearance of persistence.

Importantly, we acknowledge the likely adverse impact of tryptophan on the host immune

system. When a tryptophan supplement is taken, indoleamine 2,3-dioxygenase (IDO) 1

is expressed. This leads to tryptophan depletion and the generation of bioactive catabo-

lites known as kynurenines. This process can induce the suppression of the innate and

adaptive immunity by some cells of the immune system, thereby promoting tolerogenic

responses. The kynurenine pathway of tryptophan catabolism modifies immunological

and neurological responses to inflammation. It promotes neurological comorbidities such

as pain, depression, and fatigue [116]. These are undesirable health consequences. As

such, the use of tryptophan supplements in the treatment of chronic chlamydial infection

should be used with caution and subjected to thorough clinical tests.
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The optimal treatment strategies suggested by our model require that strong doses of

the two drugs - bacteriostatic agents and tryptophan supplements - be administered and

maintained within a therapeutic band for days. This could mean that patients have

to take multiple-doses of the treatment regimen. This may not be achievable because

of the issue of patients’ compliance to the drug regimen [150]. However, as suggested in

Section 6.3, designs of drug delivery systems, that can ensure a controlled release/delivery

of drugs over a particular period of time, while also maintaining the drugs’ concentration

within a therapeutic band, can make such treatment regimens a reality.

Some limitations in this study include the following: (1) model parameters that de-

scribe biological processes may have been over-estimated. In particular, the effects of the

cell-mediated immune response may have been over-emphasised, thereby resulting in an

improved clearance of a chlamydial infection as compared to what happens in vivo; (2)

Optimal control solutions are subject to change when weight parameters are varied. For

example, while we observed that when systemic cost of using the tryptophan supplement,

A2, was significantly increased, the maximum dosage of the supplement was required

throughout the duration of the treatment. Despite this, the chronic infection was not

effectively cleared as a few infectious progenies and infected epithelial cells were produced

at the end of the therapy. Healthy epithelial cells also did not recover efficiently (results

not shown).

The presented model has been kept fairly generic and further studies are required in order

for a more accurate model of the interaction between Chlamydia, host epithelial cells, and

the immune response, to be incorporated. There can be significant uncertainty in the

determination of (biological) parameter values. Furthermore, in the case of a disease

such as chronic genital Chlamydia, it is not unreasonable to anticipate that the values

of some (biological) parameters are patient specific. Thus, the presented model could be

usefully extended by the carrying out of uncertainty and sensitivity analyses. In addition,

direct pharmacology for monotherapy and combination therapy of treatments need to be

investigated further. The presented model and subsequent analysis provides a framework

for the design of new and improved treatment strategies for chronic chlamydial infection.



6 Mathematical Modelling of the Role of a Mu-

cosal Vaccine on the Within-host Dynamics of

Chlamydia trachomatis

In the preceeding chapters, the chlamydial developmental cycle, and the antibiotic treat-

ment of chlamydial infections have been modelled. However, none of these models took

into account the fact that antimicrobial treatments reduce natural immunity to chlamy-

dial infection and this facilitates the transmission of infection in the population [18, 104,

110, 130, 159]. After a naturally-occurring Chlamydia infection, protective immunity is

developed by an infected individual [105, 135]. However, this immunity is not perfect,

since it only offers partial protection against reinfection [82, 104, 105, 110], and it also

often leads to severe immunopathology [104].

In addition, Chlamydia antibiotic treatment failures also exist as discussed in Subsec-

tion 2.2.1. More treatment failures have been recorded in practice than originally thought,

with failure rates ranging from 8% to 23% [74,76,77,92,104,138,179]. For these reasons,

and because of the morbidity and high health costs associated with chlamydial infection,

the development of a prophylactic Chlamydia vaccine has become crucial, and is consid-

ered to be the only feasible solution to the effective population level control of chlamydial

infections (and its associated complications) [17,18,48,81,104,110,176].

Although some within-host models for assessing the impact of a vaccine have been devel-

oped and used in the literature (such as the in-host malaria model developed by Niger and

Gumel [120]), no such model has been designed for a potential C. trachomatis vaccine.

This study extends prior Chlamydia within-host modelling studies by theoretically assess-

ing the potential role of an effective anti-Chlamydia vaccine on the within-host dynamics

of C. trachomatis. In this chapter, we present a mathematical model of the within-host

dynamics of C. trachomatis infection in the presence of a mucosal vaccine. The purpose

of the study in this chapter is to investigate the impact of a potentially effective mucosal

Chlamydia vaccine on the within-host dynamics and prognosis of genital chlamydial in-

fection. The model uses a prototype vaccine that induces similar protective immunity like

that described by the study of Stary et al. [149], which has been discussed in Section 2.4.

116
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6.1 Model Formulation

The model to be developed is that of the dynamics of C. trachomatis within the body

of an infected host subject to a mucosal anti-Chlamydia vaccine. The model, which

builds on the model presented by Sharomi and Gumel [142], is designed as follows. Let

He(t) represent the concentration of healthy epithelial cells, Hh(t), the concentration of

healthy epithelial cells protected by the humoral immune response against EB attachment,

and I(t), the concentration of infected epithelial cells. Furthermore, let Tr(t) and Tc(t)

represent the concentrations of Chlamydia-specific mucosal resident memory T cells (TRM)

and Chlamydia-specific circulating memory T cells (TCM), respectively. Let F (t) be

the concentration of IFN-γ molecules secreted by T cells, Eb(t) be the concentration of

chlamydial elementary bodies, and Rb(t) be the concentration of reticulate bodies. See

Table 6.1 for a concise description of the state variables used in this chapter.

The model for the in-host dynamics of C. trachomatis, subject to a mucosal anti-Chlamydia

vaccine, is given by the following deterministic, non-linear system of differential equations:

dHe

dt
= Πh + ωHh − γ(1− εv)HeEb − φεhHe − µhHe, (6.1)

dHh

dt
= φεhHe − ωHh − µhHh, (6.2)

dI

dt
= γ(1− εv)HeEb − κI − ρIF, (6.3)

dTr
dt

= εrΛv + τ1FTr − µtTr, (6.4)

dTc
dt

= εcΩv + τ2FTc − µcTc, (6.5)

dF

dt
= ψ1TrEb + ψ2TcEb − ρIF, (6.6)

dEb
dt

= NEκI − γ(1− εv)HeEb − εaαEb − µeEb, (6.7)

dRb
dt

= NR1κI +NR2ρIF − µrRb. (6.8)

Healthy epithelial cells are replenished by non-differentiated stem cell precursors [147], at

a rate Πh, and are naturally protected against EB attachment by the humoral immune

response at a rate φ [142, 168], with efficacy 0 < εh ≤ 1 (where εh = 0 means a totally

ineffective humoral immune response, and εh = 1 represents a perfect humoral immune

response). This immunity is assumed to wane at a rate ω. EBs infect unprotected healthy

epithelial cells at a rate γ. The presence of a Chlamydia vaccine is expected to boost the

body’s defense mechanism (via antibody blocking) against Chlamydia infection. Thus,

it is assumed that the number of newly-infected epithelial cells depends largely on the

efficacy of the vaccine (with a 100% vaccine efficacy implying that new epithelial cell

infections are prevented). The efficacy of the vaccine is represented by 0 < εv ≤ 1

(where εv = 0 means a totally ineffective vaccine, and εv = 1 represents a perfectly
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efficacious vaccine). The natural mortality rate of epithelial cells is µh. We assume

that the Chlamydia vaccine works by reducing the probability of host infection by an

(infectious) EB form of Chlamydia.

C. trachomatis infection triggers the rapid release of cytokines (IFN-γ in particular)

by the tissue-TRM and TCM [105, 110, 112, 113, 149]. Thus, it is plausible to assume

that the rate of production of IFN-γ is proportional to the number of EB forms and

the concentration of TRM and TCM. The production rates of IFN-γ by TRM and TCM

are ψ1 and ψ2, respectively. In an uninfected host, the genital tract mucosa contains

relatively few lymphocytes. Thus, the recruitment of circulating lymphocytes is a very

important component of the immune response [110]. The concentration of Chlamydia-

specific TCM has been observed to be significantly higher than that of Chlamydia-specific

(tissue) TRM [149]. Thus, it is assumed that the rate of production of TCM (Ωv) is greater

than the rate of production of TRM (Λv). That is, Ωv > Λv. Furthermore, it is assumed

that there are are vaccine-induced increases in the production of Chlamydia-specific TRM

and TCM, which are accounted for by the modification parameters εr > 1 and εc > 1,

respectively. The tissue-TRM confers substantial protection against Chlamydia infection

even when the influx of TCM is impeded [149]. Thus, it is assumed that εr > εc. Cytokines,

such as IFN-γ, account for the enhancement of cellular proliferation [112,147]. Thus, there

is an IFN-γ-induced proliferation of T cells - TRM (Tr) and TCM (Tc), represented by the

rates τ1 and τ2, respectively. The natural mortality rates of TRM and TCM are µt and µc,

respectively. We assume that they are equal, thus, µt = µc.

Infected epithelial cells lyse (after maturation of their intracellular inclusions) at a rate

κ, and are lysed/destroyed prematurely (that is, before the CDC is completed) by IFN-

γ at a rate ρ. While antibodies are involved in the signalling of macrophages for the

engulfment of bound pathogen [169], IFN-γ activation of macrophages empowers them

more to destroy phagocytosed EBs [96, 110]. Thus, it is assumed that there is a vaccine-

induced increase in the rate at which antibodies destroy phagocytosed EBs. This is

accounted for by the modification parameter 1 ≤ εa ≤ 2. The rate at which macrophages

engulf free extracellular EB forms is α. The natural mortality rates of EBs and RBs are

µe and µr, respectively. Since within-cell chlamydial replication is inhibited at the RB

stage in the presence of IFN-γ [96,135], it is assumed that there will be an IFN-γ-induced

increase in the number of RBs that will be released on infected epithelial cell lysis [96].

It is expected that the presence of IFN-γ will lead to a marked decrease in the amount

of EB forms that will be released from IFN-γ-induced cell lysis [96]. Furthermore, it is

assumed that infected cells in the advanced stage of the CDC mainly contain EBs [168].

Hence, the number of EBs released when infected cells lyse (NE) is greater than both the

number of RBs released when “mature” infected cells lyse (NR1) and the number of RBs

released when infected cells lyse due to the inhibitory action of IFN-γ on the CDC (NR2).

That is, NE > NR1 and NE > NR2. However, if the inhibitory effect of IFN-γ on the

CDC is very potent (which is one of the goals of a potentially effective anti-Chlamydia

vaccine), it can be expected that NR2 > NE and NR2 > NR1.
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State Description: Concentration (cells/mm3) of
Variables

He(t) Healthy epithelial cells

Hh(t) Epithelial cells protected by humoral immune response

I(t) Infected epithelial cells

Tr(t) Resident memory T-cells (TRM)

Tc(t) Circulating memory T-cells

F (t) IFN-γ molecules produced by the cell-mediated immune response

Eb(t) Chlamydial elementary bodies

Rb(t) Chlamydial reticulate bodies
Table 6.1: Description of state variables of the model system (6.1)-(6.8).

The new within-host model system (6.1)-(6.8) is an extension of the within-host Chlamy-

dia models by Sharomi and Gumel [142] discussed in Section 2.5.3. In particular, in

addition to the incorporation of the effects of a potentially efficacious mucosal Chlamydia

vaccine, the model system (6.1)-(6.8) extends the model in [142] by, inter alia,

(i) adding a new compartment for the dynamics of Chlamydia-specific resident memory

T cells (Tr);
(ii) adding a new compartment for the dynamics of Chlamydia-specific circulating mem-

ory T cells (Tc);
(iii) allowing for the proliferation of resident memory T cells (at a rate τ1), and circu-

lating memory T cells (at a rate τ2);
(iv) allowing for a vaccine-induced (additional) protective immunity against infection

of healthy epithelial cells by Chlamydia via antibody blocking (binding of mucosal

and circulating antibodies to EBs, thereby neutralising the antigen of some EBs

and blocking their ability to enter the mucosa [105,112,135]), modelled by the term

γ(1− εv)HeEb;
(v) adding a compartment for the inhibitory action of IFN-γ (F ).

We note that the notations used in this model are similar to those used in shaetgum10.

For easy correlation between the previously developed model(s), in Table 6.2, we present

the state variables and parameters that are common to the models built in Chapters 5

and 6.

Variables Chapter 5 Chapter 6

Free extracellular Chlamydia C Eb
Healthy mucosal epithelial cells E He

Infected epithelial cells I I

Parameters

Rate of production of healthy epithelial cells PE Πh

Rate of infection of epithelial cells by EB forms k1 γ
Number of Chlamydia (EB) released on cell lysis P NE

Macrophage engulfment rate of extracellular EB forms µ α
Rate of lysis of infected cells k2 κ
Rate at which IFN-γ clear infected cells γ ρ
Natural mortality rate of healthy epithelial cells δE µh

Table 6.2: State variables and parameters that are common to the models built in Chapters 5 and 6
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A schematic representation of the above dynamics is presented in Figure 6.1. The de-

scription of the state variables and parameters of the model are shown in Tables 6.1 and

6.3 respectively. In the section to follow, we give the basic properties of model system

(6.1)-(6.8).

He Hh

I

Eb

Rb

F Tc

Tr

φεhHe

ωHh

Πh

µhHe µhHh

γ(1 − εv)HeEb
γ(1 − εv)HeEb

ψ1TrEb + ψ2TcEb

NR2ρIF

τ1FTr

(εaα + µe)Eb

κI

NEκI

NR1κI

τ2FTc

ρIF

µeRb

εcΩv

µtTc

εrΛv µtTr

Figure 6.1: A schematic representation of model system (6.1)-(6.8).
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Parameters Description

Πh Rate of replenishment of healthy epithelial cells

γ Effective contact rate between healthy
epithelial cells and EB forms

φ Rate of protection of healthy epithelial cells
by the humoral immune response

ω Waning rate of the protection of healthy
epithelial cells by humoral immune response

Λv Production rate of resident memory T cells

Ωv Production rate of circulating memory T cells

κ Rate at which infected cells lyse/burst

ρ Rate at which IFN-γ lyse/destroy infected cells

α Rate of macrophage engulfment of free extracellular EB forms

εv Efficacy of vaccine

εh Efficacy of the humoral response in protecting
healthy epithelial cells

εr Modification parameter accounting for vaccine-induced
increase in the production of Chlamydia-specific TRM

εc Modification parameter accounting for vaccine-induced
increase in the production of Chlamydia-specific TCM

εa Modification parameter accounting for vaccine-induced
increase in the EB-engulfment rate of antibodies

τ1 IFN-γ-induced proliferation rate of resident memory T cells

τ2 IFN-γ-induced proliferation rate of circulating memory T cells

ψ1 Vaccine-induced increase in production rate of IFN-γ by
resident memory T cells

ψ2 Vaccine-induced increase in production rate of IFN-γ by
circulating memory T cells

µh Natural mortality rate of host epithelial cells

µt Natural mortality rate of resident memory T-cells

µc Natural mortality rate of circulating memory T-cells

µe Natural mortality rate of EB forms

µr Natural mortality rate of RB forms

NE Number of EBs released on lysis of infected cells

NR1 Number of RBs released on lysis of infected cells

NR2 Number of RBs released on lysis of infected cells
due to IFN-γ’s inhibitory action on the CDC

Table 6.3: Description of the parameters of the model system (6.1)-(6.8). TRM (or TCM) means resident
(or circulating) memory cells.

6.1.1 Basic Properties

Positivity of solutions.

It is crucial to prove that all the state variables of the model system (6.1)-(6.8) subjected

to positive initial conditions remain non-negative for all time t > 0. This is to certify that

the model system is epidemiologically meaningful.
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Lemma 6.1.1. Given that the initial values of the state variables of the model system

(6.1)-(6.8) are non-negative, the model does not predict negative values for the state vari-

ables at any future time.

Proof. Let He(0) > 0, Hh(0) ≥ 0, I(0) ≥ 0, Tr(0) ≥ 0, Tc(0) ≥ 0, F (0) ≥ 0, Eb(0) ≥ 0,

and Rb(0) ≥ 0 be non-negative initial conditions. Denote by [0, tmax], the maximum

interval of existence of the corresponding solution. In order to prove that the solution is

positive in [0,+∞], it suffices to show that it is positive in [0, tmax].

Also let t̂ = sup{0 < t < tmax : He(t) > 0, Hh(t) > 0, I(t) > 0, Tr(t) > 0, Tc(t) > 0, F (t) >

0, Eb(t) > 0, Rb(t) > 0} ∈ [0, t].

t̂ > 0 since He(0), Hh(0), I(0), Tr(0), Tc(0), F (0), Eb(0), and Rb(0) are non-negative.

Suppose t̂ < tmax.

From Equation (6.1), we have

d

dt

(
He(t) exp

{
(φεh + µh)t+

∫ t

0
(γ(1− εv)Eb(θ)− τ1F (θ))dθ

})
= (Πh + ωHh) exp

{
(φεh + µh)t+

∫ t

0
(γ(1− εv)Eb(θ)− τ1F (θ))dθ

}
.

This implies that

He(t̂) exp

{
(φεh + µh)t̂+

∫ t̂

0
(γ(1− εv)Eb(θ)− τ1F (θ))dθ

}
−He(0)

=

∫ t̂

0
(Πh + ωHh) exp

{
(φεh + µh)η +

∫ η

0
(γ(1− εv)Eb(θ)− τ1F (θ))dθ

}
dη.

Thus,

He(t̂) = He(0) exp

{
−
(

(φεh + µh)t̂+

∫ t̂

0
(γ(1− εv)Eb(θ)− τ1F (θ))dθ

)}

+ exp

{
−
(

(φεh + µh)t̂+

∫ t̂

0
(γ(1− εv)Eb(θ)− τ1F (θ))dθ

)}

×
∫ t̂

0
(Πh + ωHh) exp

{
(φεh + µh)η +

∫ η

0
(γ(1− εv)Eb(θ)− τ1F (θ))dθ

}
dη

> 0.

It can be shown by a similar argument that Hh(t̂) > 0, I(t̂) > 0, Tr(t̂) > 0, Tc(t̂) > 0,

F (t̂) > 0, Eb(t̂) > 0, and Rb(t̂) > 0.
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This contradicts the fact that t̂ is the supremum because at least one of the state variables

should be equal to zero at t̂. Therefore t̂ = tmax. Hence He(t) ≥ 0, ∀ t > 0. Similarly, it

can be shown that Hh(t) ≥ 0, I(t) ≥ 0, Tr(t) ≥ 0, Tc(t) ≥ 0, F (t) ≥ 0, Eb(t) ≥ 0, and

Rb(t) ≥ 0 for any time t > 0. Hence, every solution of the model system (6.1)-(6.8) will

always be positive for all non-negative initial conditions. This completes the proof.

Invariant regions.

The model system (6.1)-(6.8) is analysed in an apposite biologically feasible region D2.

The model system (6.1)-(6.8) is shown to be dissipative, that is, solutions of the model

are uniformly bounded in a subset D2 of R8
+. Let P (t) = He(t) + Hh(t). Since all the

parameters and state variables of model system (6.1)-(6.8) are non-negative for all time

t ≥ 0, then from Equation (6.1),

dP (t)

dt
≤ Πh − µhP (t).

Using a standard comparison theorem by Lakshmikantham et al. [95], it can be shown that

P (t) ≤ P (0)e−µht +
Πh

µh
(1− e−µht).

Whenever P (0) ≤ Πh/µh, solutions of model system (6.1)-(6.8) are increasing monoton-

ically and are bounded above by Πh/µh. Conversely, whenever P (0) > Πh/µh, solutions

of model system (6.1)-(6.8) are monotone decreasing and bounded below by Πh/µh. In

both cases, at limiting equilibrium, limt→∞ P (t) = Πh/µh.

From Equation (6.4),

dTr
dt
≤ εrΛv + τ1FTr,

that is,

dTr
dt
− τ1FTr ≤ εrΛv.

Thus,

Tr(t) ≤
(
Tr(0) +

∫ t

0
εrΛv exp

{
−τ1

∫ η

0
F (θ)dθ

}
dη

)
exp

{
τ1

∫ t

0
F (θ)dθ

}
.
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Since the integrands of the above relation are continuous functions on the compact set

[0, t], then by the boundedness theorem, they are bounded on the set. The integrands are

thus Riemann integrable on [0, t] and the integrals are finite. This implies that

Tr(t) ≤ (Tr(0) + c1)c2 = m1,

where c1 =
∫ t

0 εrΛv exp
{
−τ1

∫ η
0 F (θ)dθ

}
dη and c2 = exp

{
τ1

∫ t
0 F (θ)dθ

}
.

Similarly, from Equation (6.5),

Tc(t) ≤
(
Tc(0) +

∫ t

0
εcΩv exp

{
−τ2

∫ η

0
Eb(θ)dθ

}
dη

)
exp

{
τ2

∫ t

0
Eb(θ)dθ

}
.

Thus, Tc(t) ≤ (Tc(0) + c3)c4 = m2, where c3 =
∫ t

0 εcΩv exp
{
−τ2

∫ η
0 Eb(θ)dθ

}
dη and

c4 = exp
{
τ2

∫ t
0 Eb(θ)dθ

}
. Hence, the region D1,

D1 =

{
(He(t), Hh(t), I(t), Tr(t), Tc(t), F (t), Eb(t), Rb(t)) ∈ R8

+ : P (t) ≤ Πh

µh
, Tr(t) ≤ m1,

Tc(t) ≤ m2, I(t) ≥ 0, F (t) ≥ 0, Eb(t) ≥ 0, Rb(t) ≥ 0} is positively invariant and attracting

for the model system (6.1)-(6.8).

From Equation (6.1), using the fact that P (t) = He(t) +Hh(t) ≤ Πh

µh
, it follows that

dHe

dt
= Πh + ωHh − γ(1− εv)He(t)Eb(t)− φεhHe(t)− µhHe(t)

≤ Πh + ωHh(t)− (φεh + µh)He(t)

≤ Πh + ω

(
Πh

µh
−He(t)

)
− (φεh + µh)He(t)

= Πh

(
µh + ω

µh

)
− (ω + µh + φεh)He(t)

= (ω + µh + φεh)

(
Πh(ω + µh)

µh(ω + µh + φεh)
−He(t)

)
= (ω + µh + φεh)(H∗e −He(t)),

where H∗e =
Πh(ω + µh)

µh(ω + µh + φεh)
.

Hence,

He(t) ≤ H∗e − (H∗e −He(0))e−kt,
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where k = ω+µh +φεh. From the above relation, He(t) either approaches H∗e asymptot-

ically or there exists some finite time after which He(t) ≤ H∗e .

From Equation (6.2),

dHh

dt
= φεhHe − ωHh − µhHh

≤ φεh[
Πh

µh
−Hh]− c̄Hh

=
φεh(Πh − µhHh)

µh
− c̄Hh

=

[(
Πhφεh

φεhµh + µhc̄
−Hh

)
(φεh + c̄)

]
= (c̄+ φεh)(H∗h −Hh),

where H∗h =
Πhφεh

µh(c̄+ φεh)
and c̄ = ω + µh.

Hence,

Hh(t) ≤ H∗h − (H∗h −Hh(0))e−kt.

This implies that Hh(t) either approaches H∗h asymptotically or there exists some finite

time after which Hh(t) ≤ H∗h. Consequently, any solution He(t), Hh(t), I(t), Tr(t), Tc(t),

F (t), Eb(t), and Rb(t) at t ≥ 0, of model system (6.1)-(6.8), that commences in the

positive orthant R8
+, either remains confined in, enters, or asymptotically approaches the

region D2, where

D2 = {(He(t), Hh(t), I(t), Tr(t), Tc(t), F (t), Eb(t), Rb(t)) ∈ D1 : He ≤ H∗e , Hh ≤ H∗h, I ≥
0, Tr ≥ 0, Tc ≥ 0, F ≥ 0, Eb ≥ 0, Rb ≥ 0}.
Lemma 6.1.2. The region D2 is positively invariant and attracting for the model system

(6.1)-(6.8) with initial conditions in R10
+ .

6.1.2 Existence and stability of equilibria

Local stability of the CFE

The Chlamydia-free equilibrium (CFE) of the model system (6.1)-(6.8), which is obtained

by setting the right hand side of the model system (6.1)-(6.8) to zero, and then choosing

solutions where Eb = Rb = I = F = 0, is given by

E0 = {H∗e , H∗h, I∗, T ∗r , T ∗c , F ∗E∗b , R∗b},

=

(
Πh(ω + µh)

µh (ω + µh + φεh)
,

Πhφεh
µh (ω + µh + φεh)

, 0,
εvΛv
µt

,
εcΩv

µt
, 0, 0, 0

)
. (6.9)
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Using the next generation operator method (as described by van den Driessche and Wat-

mough [157]) on the model system (6.1)-(6.8), the linear stability of the equilibrium E0

can be established. Using the notations in [157], the matrices F and V , for the trans-

mission (new infection) terms and transition terms of the infected subsystem (formed by

the differential equations for compartments I, Eb, and Rb in model equations (6.3), (6.7),

and (6.8), respectively), respectively, are given by

F =

 0 γ(1− εv)H∗e 0

0 0 0

0 0 0

 (6.10)

and

V =

 κ 0 0

−κNE αεa + µe + γ(1− εv)H∗e 0

−κNR1 0 µe

 . (6.11)

Thus, the basic reproduction number R0 of the model system (6.1)-(6.8), given by the

spectral radius of the next generation matrix FV −1, is

R0 =
NEγ (1− εv)H∗e

γ (1− εv)H∗e + (αεa + µe)
. (6.12)

The basic reproduction number R0 is written in such a way that one can track the

contribution of the infected and infectious classes (infected epithelial cells and elementary

bodies, respectively) to the epidemic. The R0 expression in (6.12) is simply the product

of the infection rate of healthy epithelial cells by EBs (γ(1− εv)H∗e ), number of infectious

Chlamydia (EB) released by a bursting infected epithelial cell (NE), and the expected

duration of infectiousness of EBs

(
1

γ (1− εv)H∗e + (αεa + µe)

)
.

Implementing Theorem 2 of van den Driessche and Watmough [157], the following result

is established.

Lemma 6.1.3. The Chlamydia-free equilibrium (CFE) E0, of the model system (6.1)-

(6.8), is locally stable whenever R0 ≤ 1 and unstable if R0 > 1.

Global stability of CFE

Theorem 6.1.4. The CFE of the model system (6.1)-(6.8), given by Equation (6.9), is

globally asymptotically stable (GAS) in D2 whenever R0 ≤ 1 and unstable otherwise.

Proof. Consider the candidate Lyapunov function
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V = NEI(t) + Eb(t),

with Lyapunov derivative (where a dot represents differentiation with respect to t) given

by

V̇ = NE İ + Ėb

= NE(γ(1− εv)HeEb − κI − ρIF ) + (NEκI − γ(1− εv)HeEb − εaαEb − µeEb)
= Eb(γ(1− εv)He(NE − 1))−NEρIF − αεaEb − µeEb
= Eb(γ(1− εv)He(NE − 1)− αεa − µe)−NEρIF

≤ Eb(γ(1− εv)H∗e (NE − 1)− αεa − µe)−NEρIF (since NE − 1 > 0&He ≤ H∗e in D2)

= Eb(γ(1− εv)NEH
∗
e − γ(1− εv)H∗e − αεa − µe)−NEρIF

= Eb

(
(γ(1− εv)H∗e + αεa + µe)

(
γ(1− εv)NEH

∗
e

γ(1− εv)H∗e + αεa + µe
− 1

))
−NEρIF

= Eb(γ(1− εv)H∗e + αεa + µe)(R0 − 1)−NEρIF < 0, when R0 ≤ 1.

Since all the model parameters and variables are non-negative, it follows that V̇ < 0 for

R0 ≤ 1 and V̇ = 0 if and only if Eb = I = 0. Hence, V is a Lyapunov function on

D2. Furthermore, D2 is a compact and absorbing subset of R8
+, and the largest compact

invariant set in {(He, Hh, T, Tr, Tc, F, Eb, Rb) ∈ D2 : V̇ = 0} is the singleton E0. Thus,

by Lasalle’s invariance principle [65], I → 0 and Eb → 0 as t → ∞. Substituting

I = Eb = Rb = 0 into the model equations (6.1)-(6.8) shows that He → H∗e , Hh → H∗h,

Tr → T ∗r , Tc → T ∗c , and Rb → 0 as t → ∞. Hence, every solution of the model system

(6.1)-(6.8), with initial conditions in D2, approaches the CFE E0 as t → ∞ (that is, the

CFE E0 is GAS in D2) whenever R0 ≤ 1.

Existence of CPE

In order to obtain the Chlamydia-present equilibrium (CPE) of model system (6.1)-(6.8),

we set the right hand sides of the model equations (6.1)-(6.8) to zero, and solve for all its

state variables. We also express the state variables in terms of the force of infection

λ∗ = γE∗∗b . (6.13)

Thus, the CPE of model system (6.1)-(6.8) is given by
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E1 = {H∗∗e , H∗∗h , I∗∗, T ∗∗r , T ∗∗c , F ∗∗E∗∗b , R
∗∗
b }, (6.14)

where

H∗∗e =
πh (ω + µh)

λ∗ (1− εv) (ω + µh) + µh (φεh + ω + µh)
,

H∗∗h =
πhφεh

λ∗ (1− εv) (ω + µh) + µh (φεh + ω + µh)
,

I∗∗ =
λ∗(1− εv)H∗∗e
κ+ ρF ∗∗

,

T ∗∗r =
εrΛv

µt − τ1F ∗∗
, µt > τ1F

∗∗,

T ∗∗c =
εcΩv

µt − τ2F ∗∗
, µt > τ2F

∗∗, (6.15)

F ∗∗ =
1

6

Z2/3 + 2C2Z
1/3 − 12C3C1 + 4C2

2

C1Z1/3
,

E∗∗b =
D1

γD2

(
κR0

κ+ ρF ∗∗
− 1

)
R∗∗b =

NR1κI
∗∗ +NR2ρI

∗∗F ∗∗

µe
,

where

Z = 12
√

3
√

27C1
2C4

2 + 4C1C3
3 + 4C2

3C4 − 18C1C2C3C4 − C2
2C3

2C1 + 108C4C1
2 +

8C2
3 − 36C3C2C1 > 0,

C1 = k6τ1τ2ρ,

C2 = ρk2 + ρk4 + ρµtτ1 + ρµtτ2,

C3 = ρ k6µt
2 + ρ k1 + ρ k3 + k2k5 + k4k5,

C4 = k1k5 + k3k5,

k1 = µtψ1εrΛv, k2 = τ2ψ1εrΛv, k3 = µtψ2εcΩv, k4 = τ1ψ2εcΩv, k5 = κ (NE − 1),

k6 = α εa + µe,

D1 = µh(εaα+ µe)(ω + µh + φεh) + γ(1− εv)(ω + µh)Πh, and

D2 = (εaα+ µe)(ω + µh)(1− εv).

Note that E∗∗b > 0 if R0 > 1 +
ρF ∗∗

κ
. D1 > 0, D2 > 0, C1 > 0, C2 > 0, C3 > 0, and

C4 > 0, since all the model parameters are positive.

Substituting for E∗∗b in the relation (6.13), we obtain
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λ∗ =
D1

D2

(
κR0

κ+ ρF ∗∗
− 1

)
. (6.16)

From the expression for F ∗∗ in Equations (6.15) (by direct calculation using the Maple

software), we see that F ∗∗ is a strictly positive constant (independent of λ∗), since all

the model parameters are positive. Thus, the term
ρF ∗∗

κ
> 0 at the CPE. This implies

that 1 +
ρF ∗∗

κ
> 1. Hence, λ∗ is biologically relevant, that is, λ∗ > 0, only when

R0 > 1 +
ρF ∗∗

κ
> 1.

Lemma 6.1.5. The model system (6.1)-(6.8) has one positive Chlamydia-present (en-

demic) equilibrium E1 whenever R0 > 1 and no positive equilibrium otherwise.

Thus, the above mathematical analyses show that the model system (6.1)-(6.8) has a

globally asymptotically stable Chlamydia-free equilibrium (CFE) whenever R0 ≤ 1, and

a unique Chlamydia-present equilibrium (CPE) when R0 > 1. Simply put, the C. tra-

chomatis infection will be cleared if R0 ≤ 1, and would persist otherwise.

6.2 Numerical Simulations

6.2.1 Sensitivity analysis

Sensitivity analysis quantifies how variability (prediction imprecision) in predictors (in-

put parameters) influence the value of outcome variables (responses) [16,73]. In order to

examine the sensitivity of R0 to variations in some parameters, we use Latin Hypercube

Sampling (LHS) and partial rank correlation coefficient (PRCC) with 10000 Monte Carlo

simulations per run. LHS is a stratified Monte Carlo sampling technique used for unbiased

sampling of predictors in a multi-dimensional parameter space [73]. It is a very efficient

sampling design which allows for the variation of predictor values simultaneously, in which

each value is used only once in the analysis [16]. In the LHS, each predictor’s estimation

uncertainty is modelled by treating the predictor as a random variable. Probability den-

sity functions are then defined for each predictor, each of the marginal distributions are

stratified into N equiprobable serial intervals, and a single value is then randomly chosen

from every interval, for each predictor. In the analysis, each value of each predictor, which

is obtained from each sampling interval, is used only once but the entire parameter space

is efficiently and fairly sampled. Then, the distribution of the outcome variables can be

derived by running the model N times with each of the sampled set of parameters [16,73].

The LHS is useful for executing an uncertainty analysis [16, 73]. Uncertainty analysis is

useful for evaluating the prediction imprecision in a response due to the uncertainty in

estimating the predictor. Sensitivity analysis extends uncertainty analysis by ranking the

predictors in terms of their contribution (order of importance) to the variability of each
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of the responses [16,73]. A sensitivity analysis is performed by the calculation of PRCCs

for each predictor (sampled by the LHS scheme) and each model outcome variable [16].

The calculation of PRCCs is useful for classifying the importance of predictor-response

correlations [73]. It enables the establishment of the statistical relationship between each

predictor and each response(s), other predictors being held constant at their expected

value [16]. A PRCC measures the degree of monotonicity between a specific predictor

and a response. The sign (positive or negative) of the PRCC of a predictor indicates the

qualitative (but not quantitative) affiliation (increase or decrease, respectively) it has with

the response [16,73]. The magnitude of the PRCC shows how important the uncertainty

in the estimation of the predictor value is, to the prediction imprecision in the response

value [16]. The relative importance of predictors can be determined via a comparison of

the values of their PRCCs [16]. One can also access the monotonicity between a predictor

and response by examining scatter plots of its PRCCs [16].

The sampling and sensitivity analysis methods used in SaSAT (Sampling and Sensitivity

Analysis Tools [73]) were implemented in order to conduct uncertainty and sensitivity

analysis on the model system (6.1)-(6.8). In the analysis, we use PRCCs, as described

above, to distinguish and measure statistical influence, in particular, the monotonicity of

the input variables on the response, which is the basic reproduction number R0. Figure

6.2 is the tornado plot of the PRCC of all the predictors of our model system as described

in Table 6.3. It connotes the importance of the uncertainty of individual predictors, with

respect to their contribution to the variability in the basic reproduction number R0 of

chlamydial infections, as described by the model system (6.1)-(6.8). Tornado plots are

used for illustrating the results of sensitivity analyses [73]. Input parameters with positive

PRCCs are depicted by bar plots to the right, and with positive values on the horizontal

axis, while input parameter with negative PRCCs are depicted by bar plots to the left,

and with negative values on the horizontal axis.

In order to investigate the existence of any non-monotonicity between the basic reproduc-

tion number R0 and selected predictors/parameters (those with high absolute values of

PRCC), we produce scatter plots of their PRCCs and examine them. The plots compare

the basic reproduction number R0 (log 10 scale) against each selected parameter. For

this analysis, predictors with fairly significant monotonic relationships with the R0 alone

are displayed.

Figures 6.3 and 6.4 display the monotonic relationship between the indicated parameters

and the log scale of the basic reproduction number R0. Simply put, they illustrate

the variations in R0 against the input variables. Obviously, at log(R0) = 0, R0 = 1.

Figures 6.3(a), 6.3(b), and 6.4(c) show the monotonic relationship between Πh, the rate of

replenishment/production of healthy epithelial cells, γ, the effective contact rate between

healthy epithelial cells and EB forms, and NE , the number of EB forms released on lysis

of infected cells, respectively, and the basic reproduction number R0. The figures indicate

that a monotonic increase in the specified predictors produces a monotonic increase in
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Figure 6.2: Tornado plot of the PRCC of R0 to the input parameters of model system (6.1)-(6.8), as
described in Table 6.3, using R0 as the output. Mod. = Modification; HIR = Humoral immune response;
No.= Number; PR = Production rate; TRM = Tissue-resident memory T cells; TCM = Circulating memory
T cells.

the response R0. It can be seen on Figure 6.3(d) that there exists some monotonic but

weak relationship between ω, the waning rate of the protection of epithelial cells by the

humoral immune response, and R0 = 1. The figure indicates that a monotonic increase

in ω will produce a slight monotonic increase in R0.

Figures 6.3(c) and 6.4(a) show the monotonic relationship between φ, the rate of protec-

tion of healthy epithelial cells by the humoral immune response, α, the macrophage en-

gulfment rate of extracellular EB forms, respectively, and the basic reproduction number

R0. The figures indicate that a monotonic decrease in the specified predictors produces

a monotonic decrease in the response R0. The predictor that shows the most significant

correlation to the the basic reproduction number R0 is εv, the efficacy of the Chlamydia

vaccine. It can be seen that on Figure 6.4(b) that the higher the efficacy of the vaccine, the

lower the R0. In particular, it can be seen that a vaccine of an efficacy of about 90% will

facilitate the prevention of the progression of a Chlamydia infection, hence, eradicating

the infection.

We carried out further numerical investigation (sensitivity analysis) by increasing the

rates at which some biological processes occur in order to see how they affect R0, and
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thus the prognosis of the disease. When the highest range of only φ, the protection rate

of healthy epithelial cells by the humoral immune response, was increased to 35 hr−1,

R0 could not be brought below unity. This suggests that the protection conferred upon

epithelial cells by the humoral immune response is not enough to prevent chlamydial

infection, even if it is higher than the known biological plausibility. However, when both

φ and α (the macrophage engulfment rate of EBs) were increased to 20 hr−1, it was seen

that R0 was brought below unity. This would be good for the prognosis of chlamydial

infection if those values were biologically plausible, but they are not currently plausible.

These results are not graphically displayed here.
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Figure 6.3: Scatter plots that compare the basic reproduction number R0 against selected parameters.
HIR means the humoral immune response.
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Figure 6.4: Scatter plots that compare the basic reproduction number R0 against selected parameters.
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Parameters Baseline Value Range Reference

Πh 2.1 [1,2.1] hr−1 [142,169]
γ 0.000083 0.00008333 hr−1 [Assumed]
φ 3 [0.05,5] hr−1 [142]
ω 0.1 0.1 hr−1 [142]
Λv 0.009 [0.003,0.009] hr−1 [Assumed]
Ωv 0.002 [0.002083,0.003333] hr−1 [133]
κ 0.020833 0.0138-0.025 hr−1 [169]
ρ 4 [0.05,5] hr−1 [142]
α 0.3 [0.08333,0.41667] hr−1 [169]
εv (0, 1] [Assumed]
εh 0.5 (0, 1] [Assumed]
εr 1.2 [1, 2] [Assumed]
εc 1.2 [1, 2] [Assumed]
εa 1.2 [1, 2] [Assumed]
τ1 0.001 [0.0005, 1] [Assumed]
τ2 0.001 [1, 2] [Assumed]
ψ1 0.00005 [1, 2] [Assumed]
ψ2 0.00005 [1, 2] [Assumed]
µh 0.0008333 0.08333 hr−1 [169]
µt 0.004 [0.0008333,0.00625] hr−1 [133]
µc 0.004 [0.0008333,0.00625] hr−1 [133]
µe 0.005 [0.00375,0.015] hr−1 [32]
NE 200 150-400 [142]
NR1 10 10-50 [Assumed]
NR2 20 10-50 [Assumed]

Table 6.4: Values and ranges of the parameters of the model system (6.1)-(6.8). Assumed values/ranges
are reasonably chosen so that they drive a within-host Chlamydia infection.

6.2.2 Results

We investigate the Chlamydia burden in an in vivo Chlamydia infection post-vaccination,

with varying vaccine efficacy, by tracking the concentrations of elementary bodies, in-

fected epithelial cells, and protected epithelial cells over 1000 hours post-infection. Using

the parameter values in Table 6.4, the model system (6.1)-(6.8) was simulated for vary-

ing values of εv, 0 ≤ εv ≤ 1, the vaccine efficacy, and εh, 0 ≤ εh ≤ 1, the efficacy of

the humoral immune response in protecting healthy epithelial cells. The corresponding

concentrations of the EB forms, infected epithelial cells, and of healthy epithelial cells

protected from Chlamydia infection by the humoral immune response, are all graphically

displayed on Figures 6.5, Figures 6.6, and Figures 6.7, respectively.

Numerical results, as shown graphically on both Figures 6.5 and 6.6, of the model system

(6.1)-(6.8), show that for some combinations of the vaccine efficacy (εv) and the efficacy of

the humoral immune response in protecting epithelial cells, (εh), the Chlamydia infection

does not burden the host system in the presence of the Chlamydia vaccine. This is

characterised by the clearance of the pathogen by the final time of the simulation (that

is, concentrations of EB forms and of infected epithelial cells are both zero). As shown

on Figure 6.7, for such combinations of εv and εh, surges in the concentrations of healthy
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epithelial cells that are protected by the humoral immune response (Hh), in the presence

of the vaccine, also indicate the anti-Chlamydia potency of the vaccine.

Based on the numerical results shown on Figure 6.5, an efficacy of 45% is sufficient for an

effective Chlamydia vaccine. However, an important characteristic of the vaccine is that

its presence in the host system should have the ability to (1) boost the natural humoral

immune response which protects healthy epithelial cells from infection to at least 90%

of its biologically plausible potency; (2) boost the production of resident and circulating

memory T cells each by 20%; and (3) increase the rate at which macrophages engulf

extracellular Chlamydia (EB forms) by 20% (this may mediate antibody-dependent cell-

mediated cytotoxicity (ADCC)). An effective Chlamydia vaccine may also sufficiently have

an efficacy of 65%, but it should have the ability to boost the natural humoral immune

response by at least 85% of its biologically plausible potency, other rates being equal.
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Figure 6.5: Numerical simulation of the Chlamydia model system (6.1)-(6.8), showing a 3D representation of the
concentration of elementary body forms (Chlamydia burden) at the end of the simulation (time tf = 1000 hours
post-infection), for varying values of εv, the vaccine efficacy, and εh, the efficacy of the humoral immune response
in protecting healthy epithelial cells.
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Figure 6.6: Numerical simulation of the Chlamydia model system (6.1)-(6.8), showing a 3D representation of the
concentration of infected epithelial cells at the end of the simulation (time tf = 1000 hours post-infection), for
varying values of εv, the vaccine efficacy, and εh, the efficacy of the humoral immune response in protecting healthy
epithelial cells.
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Figure 6.7: Numerical simulation of the Chlamydia model system (6.1)-(6.8), showing a 3D representation of the
concentration of protected healthy epithelial cells at the end of the simulation (time tf = 1000 hours post-infection),
for varying values of εv, the vaccine efficacy, and εh, the efficacy of the humoral immune response in protecting
healthy epithelial cells.
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6.2.3 Critical Vaccine Efficacy

High vaccine efficacies are often difficult to achieve in real world experiments. It has been

established that all vaccines are partially efficacious, that is, vaccine efficacies are always

less than a 100% [146]. Thus, we estimate the critical efficacy of an effective Chlamydia

vaccine if it does not need to be up to 100%. The biological interpretation of our vaccine

efficacy is the reduction of the probability of infection of a healthy epithelial cell per

contact with an infectious Chlamydia (EB forms). We solve for the expression for the

critical vaccine efficacy (εcv), by first making εcv the subject of the relation in Equation 6.12.

This gives:

εv = 1− R0(αεa + µe)

γH∗e (NE −R0)
, (6.17)

where H∗e =
Πh(ω + µh)

µh (ω + µh + φεh)
.

Setting R0 to 1 in Equation 6.17, we obtain:

εcv = 1− αεa + µe
γH∗e (NE − 1)

, (6.18)

Lemma 6.2.1. The basic reproduction number R0 < 1 whenever εv > εcv.

Whenever the vaccine efficacy εv is greater than the critical vaccine efficacy εcv, Chlamydia

is cleared from the host system, since R0 < 1, and Theorem 6.1.4 guarantees the in vivo

clearance of the pathogen under this setting. Numerical results of Lemma 6.2.1 are shown

in Figure 6.8, for three different values of εv. For parameter values shown in Table 6.4, the

critical vaccine efficacy εcv = 0.86. Figures 6.8a and 6.8b show that for values of εv < εcv,

the infection may not be abated, even in the presence of a Chlamydia vaccine pre-infection.

However, for any value εv > εcv, the infection can be eliminated from the host system.

Figure 6.8c also shows the impact of the vaccine efficacy on protected epithelial cells. It

indicates that for values of εv < εcv, the ability of the humoral immune response to protect

healthy epithelial cells from Chlamydia infection may wane, while it would increase for

values of εv > εcv.

We note that the numerical value of the critical vaccine efficacy (εcv) depends on other

model parameters, such as the efficacy of the humoral immune response in protect-

ing healthy epithelial cells (εh) amongst others. Thus considering the implications of

Lemma 6.2.1 and Theorem 6.1.4, we assess the impact of the Chlamydia vaccine by de-

picting contour plots of the basic reproduction number R0 as a function of εv, the vaccine

efficacy, and εh, the efficacy of the humoral immune response in protecting healthy epithe-

lial cells in Figure 6.9. In Figure 6.9, it can be seen that for values of R0 ≤ 1, the use of

an imperfect Chlamydia vaccine can lead to the elimination of the disease. For example,

for relatively low values of R0, such as R0 = 0.85, the use of a Chlamydia vaccine with
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a modest efficacy of 85%, and with a 75% efficacy in the protection of healthy epithelial

cells from Chlamydia infection, can bring about the elimination of chlamydial infection.

A relatively low R0 value of 0.9 would also yield εv = 80% and εh = 80%. Note that we

have only used values of εv and εh between the interval [0.3, 1] because we observed that

values of the parameters between the interval [0, 0.3) do not necessarily yield relatively

low values of R0, for parameter values in Table 6.4.

We differentiate the basic reproduction number R0 with respect to εv. This gives:

∂R0

∂εv
= − NEγ(αεa + µe)H

∗
e

(γ (1− εv)H∗e + (αεa + µe))2
< 0. (6.19)

Equation 6.19 shows that R0 is a decreasing function of εv, which implies that a vaccine

with a good efficacy will reduce the in vivo concentration of Chlamydia.

We monitor the effect of efficacy of the humoral response in the protection of healthy

epithelial cells from chlamydial infection, by differentiating R0 with respect to εh. This

gives:

∂R0

∂εh
= − µhφγΠhNE(1− εv)(ω + µh)(αεa + µe)

(µh(αεa + µe)(ω + µh + φεh) + γΠh(1− εv)(ω + µh))2
< 0. (6.20)

Equation 6.20 shows that R0 is a decreasing function of εh, which implies that if the

vaccine brings about more protection of healthy epithelial cells from infection, then the

reproduction number R0 decreases.

We also monitor the effect of the vaccine-induced increase in the engulfment rate of EB

forms of Chlamydia by antibodies (macrophages) by differentiating R0 with respect to

εa. This gives:

∂R0

∂εa
= − NEαγ(1− εv)H∗e

(γ (1− εv)H∗e + (αεa + µe))2
< 0. (6.21)

Equation 6.21 shows that R0 is a decreasing function of εa, which implies that if the

vaccine increases the concentration of extracellular Chlamydia engulfed by antibodies,

then the reproduction number R0 decreases.
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Figure 6.8: Numerical simulation of the Chlamydia model system (6.1)-(6.8), showing the time course
plot of (a) Eb(t), concentration of elementary body forms, (b) I(t), concentration of infected epithelial
cells, and (c) Hh(t), concentration of protected healthy epithelial cells, respectively, all over 1000 hours
post infection, and for εv = 0.7 < εcv, εv = 0.8 < εcv, and εv = 0.9 > εcv.
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Figure 6.9: Simulation of the Chlamydia vaccine model system (6.1)-(6.8), showing contour plots of R0 as a function of
εv, the vaccine efficacy, and εh, the efficacy of the humoral immune response in protecting healthy epithelial cells.
Note that εcv = 0.86.
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6.3 Discussion

In this chapter, we have extended the mathematical modelling literature by theoretically

assessing the potential role of an imperfect anti-Chlamydia vaccine on the within-host

dynamics of C. trachomatis. In this study, we investigated the impact of a potentially

effective mucosal Chlamydia vaccine on the within-host dynamics and prognosis of a

genital chlamydial infection. We also explored how efficacious a Chlamydia vaccine should

be if it must (1) elicit protective immunity against chlamydial challenge, and (2) efficiently

clear a chlamydial infection upon a re-challenge with Chlamydia. The developed model

uses a prototype vaccine that induces similar protective immunity like that described by

the study of Stary et al. [149], which has been discussed in Section 2.4.

In addition to the incorporation of the effects of a potentially efficacious mucosal Chlamy-

dia vaccine, our model specifically extends the work by Sharomi and Gumel [142] by (i)

adding a new compartment for the dynamics of Chlamydia-specific resident memory T

cells; (ii) adding a new compartment for the dynamics of Chlamydia-specific circulating

memory T cells; (iii) allowing for the proliferation of resident memory T cells and circulat-

ing memory T cells; (iv) allowing for a vaccine-induced (additional) protective immunity

against infection of healthy epithelial cells by Chlamydia via antibody blocking; and (v)

adding a compartment for the inhibitory action of IFN-γ. We carried out qualitative and

stability analysis of the model. The model has a globally asymptotically stable Chlamy-

dia-free equilibrium when its associated basic reproduction number R0 ≤ 1. The model

also has a unique Chlamydia-present equilibrium when the basic reproduction number

R0 > 1.

We quantified how the variability in model parameters affect the value of the basic re-

production number R0 by carrying out sensitivity analysis of R0 to input parameters.

In particular, we investigated the monotonic relationship between the model’s basic re-

production number R0 and some predictor variables, in particular Πh, the rate of re-

plenishment/production of healthy epithelial cells, γ, the effective contact rate between

healthy epithelial cells and EB forms, and NE , the number of EB forms released on lysis

of infected cells. Simulation results indicate that a monotonic increase in the specified

predictors produces a monotonic increase in the response R0. In addition, an investiga-

tion of the monotonic relationship between φ, the rate of protection of healthy epithelial

cells by the humoral immune response, α, the macrophage engulfment rate of extracellular

EB forms, and the basic reproduction number R0, indicates that a monotonic decrease in

the specified predictor variables produces a monotonic decrease in the response R0. The

predictor variable that shows the most significant inverse correlation to the R0 was εv,

the efficacy of the Chlamydia vaccine. Summarily, the sensitivity analysis results suggest

that a Chlamydia vaccine of an efficacy of about 90% may facilitate the prevention of the

progression of a Chlamydia infection, hence, eradicating the infection.
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We investigated the Chlamydia burden in an in vivo Chlamydia infection post-vaccination,

for varying values of εv, 0 ≤ εv ≤ 1, the vaccine efficacy, and εh, 0 ≤ εh ≤ 1, the efficacy

of the humoral immune response in protecting healthy epithelial cells, by tracking the

concentrations of elementary bodies, infected epithelial cells, and protected epithelial cells

over 1000 hours post-infection. The vaccine was shown to be able to possess sufficiently

low efficacies, however, it must also satisfy some other immune-related conditions if it

must be effective. We also obtained the mathematical expression for, and the values of,

the critical vaccine efficacy, using parameter values presented in Table 6.4.

Results of the numerical simulations of the model show that a vaccine with a minimum

(critical) efficacy of 86% may be required for the in vivo control of Chlamydia burden,

which is characterised by the concentrations of infectious Chlamydia (EB forms) and of

infected epithelial cells. We also assessed the impact of the described Chlamydia vaccine

by depicting contour plots of R0 as a function of εv, the vaccine efficacy, and εh, the

efficacy of the humoral immune response in protecting healthy epithelial cells. Simulation

results indicate that for values of R0 ≤ 1, the use of an imperfect Chlamydia vaccine

should lead to the clearance of the pathogen.

In conclusion, we found that a Chlamydia vaccine that (1) decreases the concentration of

newly infected epithelial cells; (2) increases the concentration of extracellular Chlamydia

engulfed by antibodies; (3) boosts the protection of healthy epithelial cells from infection;

may reduce the concentration of Chlamydia in vivo, thereby eliminating the chlamydial

infection overall. Candidate vaccines that possess similar properties as described by our

model results may be efficacious in the in vivo control of Chlamydia trachomatis genital

infection. We however note that results of this model should be viewed in the light of its

associated parameters and assumptions.



7 Conclusions

In this chapter we summarise the major contributions of the thesis, and propose areas for

future work. This thesis has addressed some crucial biological questions with regards to

the within-host dynamics and treatment of chlamydial infections, as outlined in Chapter

1. To recap, the research questions addressed are:

1. Why are there treatment failures in the control of genital chlamydial infection? In

particular, could existing treatment regimen be inhibiting intracellular Chlamydia

growth later than expected, thereby resulting in some of them thriving for repeat

infection? In the presence of antimicrobial treatments, what role does the different

component of the chlamydial developmental cycle play in the pathogenesis of the

disease? How can these treatment regimens be improved?

2. Are treatment failures consequences of sub-optimal treatment regimen? Under

what treatment conditions can the effective and efficient clearance of Chlamydia

be achieved in vivo? Do we need more therapeutic agents in the clearance of the

infection? How and when should such treatments be initiated in infected individu-

als?

3. How do we treat chronic chlamydial infections? In particular, how can we prevent,

or even reverse, the development of severe sequelae of chlamydial infections in the

human population?

4. How would an imperfect Chlamydia vaccine impact on the dynamics and progno-

sis of a genital chlamydial infection in vivo? How efficacious should a Chlamydia

vaccine be if it must facilitate the prevention of the progression of a Chlamydia

infection?

The thesis has extended the mathematical modelling literature by achieving its aims as

outlined in Chapter 1. To recap, the objectives of the thesis were:

1. Construction of new mathematical models of (genital) chlamydial infection in hu-

mans or animals that better account for the complexity of the immune response

to infection, and importantly, reinfection events caused by chlamydial persistence,

than existing models.

145
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2. Enhancement of the above and existing models, such that they are able to describe

the effects of existing treatments and of proposed vaccination strategies.

3. Formation of new hypotheses regarding repeated chlamydial infections based on

model analysis.

4. Proposition of optimal treatment and vaccination strategies based on the above.

7.1 Model for the timing of the inhibitory effects of

antibiotics on Chlamydia

In this thesis, a mathematical model that investigates (1) the optimal timing of the

inhibitory activity of antibiotic treatments in a typical chlamydial infection, and (2) the

effect of this activity on the yield of Chlamydia at the end of the chlamydial developmental

cycle, was presented. This investigation was done by examining how different timing of

the commencement of antibiotic inhibitory activity (in an active antibiotic delivery of an

in vitro testing), within the CDC and on a single cell level, will impact on the prognosis

of a genital chlamydial infection. This antibiotic delivery was assumed to be dependent

on the pharmacokinetics of the treatment administered. The prototype antibiotic used

was azithromycin, particularly the use of the in vivo equivalence of a single 1 g oral dose

treatment according to the World Health Organisation (WHO) recommended guidelines.

The presented model, which was based on a system of three ordinary differential equations,

accounted for the concentrations of intracellular reticulate body (RB) and elementary

body (EB) forms of Chlamydia, and the intracellular concentration of azithromycin.

The presented model was investigated under five different treatment scenarios: the time

at which the (intracellular) inhibitory activity of azithromycin against chlamydial growth

commences (1) coincides with EB-RB differentiation; (2) occurs during RB replication;

(3) coincides with RB-EB differentiation; (4) occurs during asynchronous RB-EB differ-

entiation and RB replication; and (5) occurs at cell lysis. Under the described treatment

scenarios, the concentration of infectious progenies (EB forms of Chlamydia) were tracked.

Model results indicated that the effectiveness of antibiotics in the clearance of intracellular

Chlamydia may be a function of the time at which its inhibitory activity commences. In

particular, the results of the model suggested that for the effective antibiotic inhibition of

Chlamydia, the efficient inhibitory activity of the drug should at least commence at the

start of the cellular infection. A stronger and faster intracellular penetration of antibiotics

may achieve this.

Thus, we hypothesised that the discovery and development of more effective routes of

antibiotic administration, through the targeted delivery of antibiotics, may bring about

the effective treatment of chlamydial infections. Targeted delivery of drugs is a treatment

strategy that aims to selectively deliver antibiotics to the pathogen of interest at the infec-

tion site, where they can best exert their therapeutic effect. This strategy, which has been

recently explored for chlamydial infections (see [64]), has been proven to be significantly

more effective in the suppression of Chlamydia more than the use of antibiotics alone.
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Our model results have shown that targeted drug delivery, which may facilitate a faster

and higher delivery of antibiotics to the intracellular pathogen before its developmental

cycle progresses, may be a solution to the effective treatment of chlamydial infections.

We note that it may be worthwhile investigating the impact of including treatments/drugs

that boost or strengthen the immune system’s response to chlamydial infections. This

is because we suspect that if chlamydial infections are treated with effective antibiotics

(irrespective of the CDC stage of administration) and in the presence of an enhanced im-

mune response there may not be any EBs released on lysis of infected host cells. It may be

interesting to investigate the impact of an enhanced cell-mediated response in particular

as it has been reported to be more effective than the humoral immune response. The

investigation of the impact of effective chlamydial infection treatments/vaccines on the

within-host dynamics of chlamydial infection, that is, that which involves both intracel-

lular and extracellular Chlamydia forms is proposed for future work.

7.2 Optimal control models for the treatment of

Chlamydia trachomatis genital infection

We presented two ordinary differential equation models, using techniques of optimal con-

trol theory, for the optimal treatment of a chlamydial infection.

7.2.1 Model for the treatment of genital chlamydial infections

The first optimal control model was used to determine hypothetical optimal treatment

strategies that may not only minimise the production of free extracellular Chlamydia, but

possibly enhance the cell-mediated immune response (that is, cytotoxic immune response)

in the clearance of chlamydial infection. The model described the cellular dynamics of

the interaction processes between extracellular Chlamydia, uninfected epithelial cells and

Chlamydia-infected epithelial cells. The model also described the role of the humoral

and cell-mediated immunity in the Chlamydia developmental cycle. We proposed that

alongside antibiotic activity, the presence of a proteasome-specific inhibitor such as lacta-

cystin may enhance the capacity of the cell-mediated immune response in the clearance of

Chlamydia infection. We also hypothesised that treatment failures are perhaps the con-

sequences of sub-optimal treatment regimens. The two therapeutic treatments explored

are: (1) drugs that reduce, or possibly eliminate, the production of viable Chlamydia

(bacteriostatic or bactericidal agents, respectively) and (2) drugs that act as proteasome-

specific inhibitor, which may enhance the cell-mediated immune response in the clearance

of chlamydial infection prior to the lysis of infected epithelial cells, since Chlamydia-

infected cells would be able to present their chlamydial peptides to T cells [141].

We presented some qualitative analysis of the model and stability analysis of the Chlamy-

dia-free equilibrium. Using optimal control theory, we derived and analysed the condi-

tions for the optimal control/treatment of genital chlamydial infection. Existence and



Chapter 7. Conclusions 148

uniqueness of the optimal controls were proved. We also characterised the controls using

Pontryagin’s Maximum Principle and the resulting optimality system was solved numer-

ically.

Numerical results of the model indicated that an optimal and effective clearance of a

Chlamydia infection may be achieved by the administration of a combined chemotherapy

of drugs that are bacteriostatic on Chlamydia and of drugs that are proteasome-specific

inhibiting. The results indicated that the optimal combination therapy is a dynamic one,

in that the treatment is adjusted over the course of the treatment intervention whereby

one begins with a (maximal) strong dosing scheme, followed by a lessening of treatment

over time, either by the reduction of drug dosage or strength. The control problem also

indicated that bacteriostatic agents that will increase the chances of the survival of healthy

epithelial cells are especially essential for timely reduction of free extracellular Chlamydia

and the overall clearance of a Chlamydia infection.

These suggested treatment strategies, which require that strong doses of the two drugs

be administered and maintained within a therapeutic band for days, could mean that

patients have to take multiple-doses of the treatment regimen. This is unrealistic because

of the issue of patient compliance. However drug delivery systems that can make such

treatment regimens a reality can be designed. Such systems can enhance the permeability

and spatiotemporal release of chlamydial antibiotics (such as azithromycin, which already

has a long half-life) at concentrations higher than the minimum inhibitory concentration

(MIC) of Chlamydia, may facilitate its bioavailability at very high concentrations for

several days. The use of a transdermal patch to constantly deliver desired concentrations

of the drug over time may also be able to provide the therapeutically effective drug

concentration that suits our model’s suggested optimal treatment strategy. We suggest

that therapeutic interventions that adhere to these control strategies may be very effective

in combating Chlamydia infections. Our approach has provided a framework for the design

of new protocols for optimal treatment strategies for genital chlamydial infections.

7.2.2 Model for the treatment of chronic chlamydial infection

Using a second optimal control model, we addressed the concern of the development of

Chlamydia persistence, which causes severe sequelae in chronic chlamydial infections. As

the literature suggest, the combination of a tryptophan and antibiotic treatment may facil-

itate an improved treatment of chronic Chlamydia infections characterised by chlamydial

persistence. Our model used these two therapeutic strategies for the optimal treatment

of chronic genital chlamydial infection. Specifically, the two therapeutic treatments ex-

plored are: (1) tryptophan supplement, in the form of 1-MT, which blocks the intracellular

formation of persistent Chlamydia, while also facilitating the ‘recovery’ of persistently in-

fected cells by reversing IFN-γ-induced persistence in intracellular Chlamydia (thereby

increasing the susceptibility of Chlamydia to antibiotic treatment), and (2) bacteriostatic

agents (which reduces the concentration of infected cells by blocking the intracellular
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growth of Chlamydia, thereby inducing some chlamydial persistence). The model was

used to determine optimal treatment strategies that not only minimise the production of

free extracellular Chlamydia, but also minimise the production of persistent intracellu-

lar Chlamydia by blocking the formation of persistent Chlamydia, and reversing already

established persistence into actively replicating Chlamydia forms, for clearance by the

immune system and antibiotics. Basic qualitative analyses of the model were also done

and existence results for the optimal controls were presented.

The presented optimal control model accounted for: (i) the blockage of IFN-γ-induced

persistence by tryptophan supplementation; (ii) the reversal of established chlamydial

persistence, either induced by IFN-γ or antibiotics, using tryptophan supplementation;

(iii) the effects of the humoral and cell-mediated immune responses; (iv) the antimicrobial

effects of an antibiotic therapy; (v) reduction of the production of EBs; and (vi) short

duration of treatment with minimal dosage administration.

Numerical results of the model suggested that monotherapy with tryptophan supplement

alone, suffices for the clearance of the chronic infection. Model results also suggested that

the high immunomodulatory effects of the tryptophan supplement 1-MT is necessary

for the treatment of a chronic chlamydial infection. The results also suggested that the

optimal therapy is a dynamic one, in that the treatment is adjusted over the duration

of the treatment, whereby one administers the maximum dosage for some days and then

gradually lessens the treatment either in strength or concentration. As discussed in the

previous section, the suggested treatment strategies could imply the use of multiple-dose

treatment by patients, which may be impractical due to the common issue of patience

compliance. Hence, we suggest that designs of drug delivery systems, which can ensure a

controlled release/delivery of drugs over a particular period of time, while also maintaining

the drugs’ concentrations within a therapeutic band, can make such treatment regimens

a reality.

Thus, we suggest that single therapy with a tryptophan supplement, in the presence

of a strong immune system, may be the optimal course of action in the clearance of a

chronic Chlamydia infection, as it aids the clearance of the pathogen itself, limitation of

side effects of drugs, and the survival of healthy epithelial cells. Our model results also

suggested that even if the immune system is not at its best, the optimal course of action

in the clearance of the infection may be a combination therapy with a bacteriostatic agent

and tryptophan supplement, as the bacteriostatic agent may clear the actively replicating

Chlamydia while tryptophan aids with the clearance of persistence.

Importantly, we acknowledge the likely adverse impact of tryptophan on the host immune

system. When a tryptophan supplement is taken, indoleamine 2,3-dioxygenase (IDO) 1

is expressed. This leads to tryptophan depletion and the generation of bioactive catabo-

lites known as kynurenines. This process can induce the suppression of the innate and

adaptive immunity by some cells of the immune system, thereby promoting tolerogenic

responses. The kynurenine pathway of tryptophan catabolism modifies immunological
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and neurological responses to inflammation. It promotes neurological comorbidities such

as pain, depression, and fatigue [116]. These are undesirable health consequences. As

such, the use of tryptophan supplements in the treatment of chronic chlamydial infection

should be used with caution and subjected to thorough clinical tests. In addition, direct

pharmacology for monotherapy and combination therapy of treatments need to be inves-

tigated further. We suggest that therapeutic interventions that adhere to these control

strategies may be effective in treating chronic Chlamydia infections. The presented model

and subsequent analysis has provided a framework for the design of new and improved

treatment strategies for chronic chlamydial infection.

7.3 Model for an imperfect mucosal Chlamydia vaccine

It has been suggested that the development of a prophylactic Chlamydia vaccine is the

only feasible solution to the effective population level control of chlamydial infections and

its associated complications. We presented a model that uses a prototype mucosal vaccine

that induces protective immunity like that described by the study of Stary et al. [149].

We have extended the mathematical modelling literature by theoretically assessing the

potential role of such an imperfect anti-Chlamydia vaccine on the within-host dynamics of

C. trachomatis and the prognosis for a genital chlamydial infection. We also explored how

efficacious a Chlamydia vaccine should be if it must (1) elicit protective immunity against

chlamydial challenge, and (2) efficiently clear a chlamydial infection upon a re-challenge

with Chlamydia.

We carried out qualitative and stability analysis of the model. The model has a globally

asymptotically stable Chlamydia-free equilibrium when its associated basic reproduction

number R0 ≤ 1. The model also has a unique Chlamydia-present equilibrium when the

basic reproduction number R0 > 1. We also quantified how the variability in model pa-

rameters affect the value of the basic reproduction number R0 by carrying out sensitivity

analysis of R0 to the parameters. We found that the parameter with the most significant

(negative) correlation to R0 was the vaccine efficacy εv.

Model results indicated that that a vaccine with a critical efficacy of 86% may be required

for the in vivo control of Chlamydia burden, which is characterised by the concentrations

of infectious Chlamydia (EB forms) and of infected epithelial cells. Numerical results

also show that for values of R0 ≤ 1, the use of an imperfect Chlamydia vaccine may lead

to the clearance of (intracellular and inter-cellular) Chlamydia. Importantly, we suggest

that an imperfect Chlamydia trachomatis vaccine may proffer protective immunity against

Chlamydia infection and facilitate immune-mediated clearance of Chlamydia if it can

potentially recruit memory T cells that will induce (1) a decrease in the concentration

of newly infected epithelial cells; (2) an increase in the concentration of extracellular

Chlamydia engulfed by antibodies; (3) a boost in the protection of healthy epithelial cells

from infection via antibody blocking. Candidate vaccines that possess similar properties

may be efficacious in the in vivo control of Chlamydia trachomatis genital infection.
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7.4 Limitations of study and potential future directions

We acknowledge that there are several limitations to this study. Some of them are listed

below.

(i) Model parameters that describe biological processes may have been overestimated

and may not accurately reflect in vivo dynamics of Chlamydia and the immune

response. In particular, the effects of the cell-mediated immune response may have

been over-emphasised, thereby resulting in an improved clearance of a chlamydial

infection as compared to what happens in vivo. We suggest that collaboration

with experimental scientists may facilitate the accurate development of more real-

istic mathematical models of chlamydial dynamics and the treatment of (chronic)

chlamydial infection, especially in the estimation of parameters.

(ii) Results of the optimisation of the treatments are subject to change when weight

parameters of the objective functionals are varied. Thus we suggest that future

developments of these models that investigate numerical results when varying model

parameters should be considered.

(iii) For the optimal control models, an investigation into the administration of the

treatments/drugs at discrete time intervals may facilitate the investigation of more

realistic treatment regimens based on the current treatment guidelines of genital

chlamydial infections.

(iv) The presented models have been kept fairly generic and further studies are required

for the development of more comprehensive models that accurately describes the

complex within-host interaction between Chlamydia, host epithelial cells, and the

host immune response.

(v) The use of tryptophan supplements can modify immunological and neurological

responses to inflammation. Thus, its use in the combination therapy of chronic

genital chlamydial infections should be subjected to further theoretical and clinical

investigations. In addition, direct pharmacology for monotherapy and combination

therapy of treatments need to be investigated further.

(vi) In the case of an infectious disease such as genital Chlamydia, it is not unreasonable

to anticipate that the values of some (biological) parameters are patient specific.

Consequently, there can be significant uncertainty in the determination of (biologi-

cal) parameter values. Thus, the models presented in Chapters 3-5 could be usefully

extended by the carrying out of uncertainty and sensitivity analyses.



A Mathematical Tools

A.1 LaSalle’s Invariance Principle

The following definitions and theorems have been adapted from [88] and [1].

Consider the autonomous system

ẋ = f(x), f(0) = 0, (A.1)

where x is a vector of variables.

Definition A.1.1. A set M is

1. an invariant set with respect to system (A.1) if

x(0) ∈M⇒ x(t) ∈M, ∀ t ∈ R. (A.2)

2. a positively invariant set with respect to system (A.1) if

x(0) ∈M⇒ x(t) ∈M, ∀ t ≥ 0. (A.3)

Theorem A.1.1 (La Salle’s Theorem). Let Ω̄ ⊂ D̄ ⊂ Rn be a compact positively in-

variant set with respect to the system dynamics (A.1). Let f(x) be a locally Lipschitz

function defined over the domain D̄ ⊂ Rn. Let V : D̄ → R, where V (x) is a continuously

differentiable function, such that V̇ (x) ≤ 0 (negative semidefinite) in Ω̄. Let Ē be the set

of all points in Ω̄ where V̇ (x) = 0, and M is the largest invariant set in Ē. Then, every

solution starting in Ω̄ approaches M as t −→∞.

Theorem A.1.2 (La Salle’s Invariance Principle). Let f(x) be a locally Lipschitz function

defined over the domain D̄ ⊂ Rn which contains the origin (0 ∈ D̄). Let V : D̄ → R,

where V (x) is a continuously differentiable positive definite function, such that V̇ (x) ≤ 0

(negative semidefinite) in D̄. Let S̄ =
{

x ∈ D̄|V̇ (x) = 0
}

.

• If no trajectory (solution) of the system can stay in S̄ other than the trivial trajectory

x(0) ≡ 0, then the origin is asymptotically stable.
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• Moreover, if Ω̄ ⊂ D̄ is compact and positively invariant, then it is a subset of the

region of attraction.

• Furthermore, if D̄ ⊂ Rn and V (x) is radially unbounded, that is, V (x) −→ ∞, as

‖x‖ → ∞, then the origin is globally asymptotically stable.

A.2 Mayer Form of an Optimal Control Problem

Consider an optimal control problem with system equations

ẋ(t) = f(t, x(t), u1(t), u2(t)), t0 ≤ t ≤ tf , (A.4)

where the vector x ∈ Rn denotes the state system, (u∗1, u
∗
2) ∈ Γ, where Γ, the set of

admissible controls is defined as

Γ = {(u1, u2)|u1 and u2 are Lebesgue measurable, a ≤ u1 ≤ b, a ≤ u2 ≤ b, t ∈ [t0, tf ]},
(A.5)

and x(t0) = x0 are the initial conditions. Let the objective functional of the system be

J(u1, u2) =

∫ tf

t0

G(t, x(t), u1(t), u2(t))dt+ φ(x(tf )), (A.6)

where φ(x(tf )), called the payoff term, is a goal with respect to the final state x(tf ).

The optimal control problem defined above is in the Bolza (functional) form. Every

problem in this form can be converted into an equivalent problem in Mayer form [23,25,

124].

The Bolza form can be reformulated into the Mayer form by the introduction of an

auxiliary state variable xa(t), which is defined by the differential equation (DE)

ẋa(t) = G(t, x(t), u1(t), u2(t)), (A.7)

with initial condition xa(t0) = 0. This initial value problem can then be inserted into the

the DE in Equation (A.4) alongside x(t).

The equivalent optimal control formulation, the Mayer form, is then obtained as:
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minimise : J(u1, u2) = xa(tf ) + φ(x(tf )),

subject to : ẋ(t) = f(t, x(t), u1(t), u2(t)); x(t0) = x0

ẋa(t) = G(t, x(t), u1(t), u2(t)); xa(t0) = 0

t0 ≤ t ≤ tf .

(A.8)

A.3 Pontryagin’s Maximum Principle

Consider the optimal control problem (A.4)-(A.6). The Pontryagin’s Maximum Principle

(PMP) converts the problem of finding controls that minimise the objective functional

subject to the differential equation and initial condition, to that of the point-wise minimi-

sation of a Hamiltonian with respect to the controls [100, Page 14]. Using Theorems 1.2

and 1.3 of Lenhart and Workman [100, Page 13], including the remarks that follow, the

implementation of the PMP is summarised as follows. To use the PMP, we need to form

a set of necessary conditions that an optimal control pair (u∗1(t), u∗2(t)) for the system

(A.4)-(A.6) must satisfy.

1. Introduce adjoint variable λ(t), like a Lagrange multiplier.

2. Generate the necessary conditions by forming the Hamiltonian H,

H(t, x(t), u1(t), u2(t), λ(t)) =G(t, x(t), u1(t), u2(t)) + λ(t)f(t, x(t), u1(t), u2(t)),

≡ integrand + adjoint ∗ RHS of DE.

(A.9)

3. Minimise the Hamiltonian with respect to (u1, u2) at (u∗1, u
∗
2) (over all admissible

controls, that is, all controls that adhere to the bounds on u1 and u2) to obtain the

optimality condition

∂H

∂u1
=Gu1(t, x∗(t), u∗1(t), u∗2(t)) + λ(t)fu1(t, x∗(t), u∗1(t), u∗2(t)) = 0

∂H

∂u2
=Gu2(t, x∗(t), u∗1(t), u∗2(t)) + λ(t)fu2(t, x∗(t), u∗1(t), u∗2(t)) = 0

(A.10)

4. Write the adjoint differential equation and the transversality boundary conditions.

The adjoint equation is

λ̇(t) = −∂H(t, x∗(t), u∗1(t), u∗2(t))

∂x
, (A.11)

with boundary condition (transversality condition)
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λ(tf ) = φ̇(x∗(tf ). (A.12)

There are now four unknowns, viz u∗1(t), u∗2(t), x∗(t), and λ(t).

5. Solve the optimality Equations (A.10) for u∗1(t) and u∗2(t) in terms of x∗(t), and

λ(t). This will eliminate u∗1(t) and u∗2(t). Due to the bounds on u1 and u2 (see

Equation (A.5) and Sections 8.1 and 12.1 of [100]), the optimal controls u∗1(t) and

u∗2(t) will have the following expression:

u∗1 =



a if
∂H

∂u1
≥ 0

a ≤ u∗1 ≤ b if
∂H

∂u1
= 0

b if
∂H

∂u1
≤ 0

, (A.13)

u∗2 =



a if
∂H

∂u2
≥ 0

a ≤ u∗2 ≤ b if
∂H

∂u2
= 0

b if
∂H

∂u2
≤ 0

. (A.14)

6. Substitute for the expressions of the characterisation of the optimal control, which is

obtained from Equations (A.13) and (A.14), in the two differential Equations (A.4)

and (A.11). These, together with the two boundary conditions form the optimality

system. Solve the optimality system.

7. Finally, after finding the optimal state and adjoint, solve for the optimal control.

A.4 Next Generation Method (NGM): Necessary

Assumptions

Below are the assumptions that the functions described in Equations (4.10) and (4.11)

(and consequently those described in Equations (4.14), and (4.15), for the basic Chlamydia

model system (4.1)-(4.3)) satisfy, according to Driessche and Watmough [157].

(A1) If x ≥ 0, then Fi, V+
i , V−i ≥ 0 for i = 1, . . . , n.

Since each function represents a directed transfer of individuals/species, they are all

non-negative.

(A2) If xi = 0, then V−i = 0. In particular, if x ∈ Xs, then V−i = 0 for i = 1, . . . ,m.

If the compartment is empty, then there can be no transfer of individuals out of the

compartment by death, infection, nor any other means.

(A3) Fi = 0 if i > m.

This is true because of the simple fact that the incidence of infection for uninfected

compartments is zero.
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(A4) If x ∈ Xs, then Fi(x) = 0 and V+
i = 0 for i = 1, . . . ,m.

To ensure that the disease free subspace is invariant, we assume that if the population

is free of disease then the population will remain free of disease. That is, there is

no (density independent) immigration of infectives.

(A5) If F is set to zero, then all eigenvalues of Df(x0) have negative real parts, where

x0 is the disease free equilibrium.

This condition is based on the derivatives of f near a disease-free-equilibrium (DFE).

Here, a DFE of (4.11) is defined to be a (locally asymptotically) stable equilibrium

solution of the disease free model (4.11), that is, (4.11) restricted to Xs. Note that

we need not assume that the model has a unique DFE. Consider a population near

the DFE x0. If the population remains near the DFE (that is, if the introduction of

a few infective individuals does not result in an epidemic) then the population will

return to the DFE according to the linearized system

ẋ = Df(x0)(x− x0), (A.15)

where Df(x0) is the derivative ∂fi/∂xj evaluated at the DFE, x0 (that is, the Ja-

cobian matrix). Here, and in what follows, some derivatives are one sided, since x0

is on the domain boundary. We restrict our attention to systems in which the DFE

is stable in the absence of new infection. Hence the above condition is valid.



B Appendix

B.1 Investigating the Effects of Varying Weight

Parameters(Chapter 4 Model)

In this section, we investigate and discuss the effects of different weight parameter com-

bination on the qualitative results of the optimal control problem (this include the time

series of interacting species, the optimal controls, and the corresponding values of the

objective functional). In these investigations, both treatment controls are used.

In Figure B.1, higher weightings of A1 were tested. These do not result in any improve-

ment in the prognosis of the infection as Figures B.1 (a)-(c) reflect. Moreover, for higher

A1 values, treatment u2 (proteasome-specific inhibitor) is required to be given for a fairly

longer time, while its effect on treatment u1 (bacteriostatic agent) is imperceptible. The

values of the objective functional also increased significantly for increasing values of A1,

which do not lead to the minimisation of the systemic costs of the treatments as required.

These results suggest that heavier penalisation of the systemic cost of minimising the con-

centration of infected cells would require longer administration of the proteasome-specific

inhibiting treatment, which acts intracellularly (within infected cell before lysis), despite

the fact that it does not affect clinical outcomes.

In Figure B.2, higher weightings of A2 were tested, which allowed for imperceptibly

shorter, and slightly higher treatment doses of treatments u1 and u2, respectively, for

increasing values of A2. However, these do not result in any improvement in the progno-

sis of the infection as Figures B.2 (a)-(c) reflect. Nevertheless, the values of the objective

functional increased for increasing values of A2, which do not lead to the minimisation

of the systemic costs of the treatments as required. These results suggest that heavier

penalisation of the systemic cost of using treatment u1, that is increased toxicity of the

bacteriostatic treatement (antibiotics), does not really affect clinical outcomes, but the

relative doses of the treatments as a function of drug toxicity.

In Figure B.3, higher weightings of A3 were tested, which allowed for slightly higher

treatment doses of treatments u2 only, for increasing values of A3. It’s effect on treatment

u1 is imperceptible. However, these do not result in any improvement in the prognosis
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of the infection as Figures B.3 (a)-(c) reflect. Nevertheless, the values of the objective

functional insignificantly increased for increasing values of A3, which do not lead to the

minimisation of the systemic costs of the treatments as required. These results suggest

that heavier penalisation of the systemic cost of using treatment u2, that is increased

toxicity of the proteasome-specific inhibiting treatment, does not really affect clinical

outcomes, but the relative doses of the treatments as a function of drug toxicity.

In Figure B.4, higher weightings of A4 were tested. The optimal control solution predicts

that for heavier penalisation of the systemic cost of minimising the concentration of

Chlamydia at the end of the treatment, the bacteriostatic treatment should be given

at the maximum tolerable dose by the end of the treatment. It’s effect on treatment

u2 is imperceptible. Nevertheless, all these do not result in any improvement in the

prognosis of the infection as Figures B.4 (a)-(c) reflect. Furthermore, the values of the

objective functional increased slightly for increasing values of A4, which do not lead to

the minimisation of the systemic costs of the treatments as required.

In Figure B.5, higher weightings of A5 were tested, which allowed for imperceptibly longer

doses of both treatments u1 and u2, for increasing values of A5. These do not result in

improved clinical outcomes of the infection as Figures B.5 (a)-(c) reflect. Nevertheless,

the values of the objective functional slightly increased for increasing values of A5, which

do not lead to the minimisation of the systemic costs of the treatments as required.

Table B.1 below gives a summary of variation in the weight parameters (A1, A2, A3, A4,

and A5) on the values of the state variables (Cend, Eend, and Iend), objective functional

(Jend), and the controls (u1end
and u2end

), at the end of the treatment.

A1 A2 A3 A4 A5 Cend Eend Iend Jend u1end
u2end

5 50 50 1 5 0.2877 163.3260 0.0421 126.8092 0.3145 0.0046
50 50 50 1 5 0.2439 163.3358 0.0348 341.5589 0.2742 0.0048
100 50 50 1 5 0.2114 163.3428 0.0296 577.1924 0.2454 0.0050
200 50 50 1 5 0.1613 163.3525 0.0219 1047.9274 0.1982 0.0051
300 50 50 1 5 0.1358 163.3560 0.0183 1518.6548 0.1780 0.0053
5 100 50 1 5 0.5682 163.2724 0.0829 219.1615 0.3113 0.0088
5 200 50 1 5 1.1705 163.1533 0.1724 402.1073 0.3245 0.0182
5 300 50 1 5 1.6938 163.0559 0.2467 584.0970 0.3110 0.0266
5 50 100 1 5 0.2890 163.3256 0.0423 127.0333 0.3160 0.0024
5 50 200 1 5 0.2896 163.3254 0.0424 127.2120 0.3167 0.0011
5 50 300 1 5 0.2899 163.3254 0.0425 127.3423 0.3170 0.0008
5 50 50 5 5 0.1067 163.3584 0.0172 127.7434 0.4624 0.0056
5 50 50 10 5 0.0602 163.3680 0.0100 128.3081 0.5047 0.0057
5 50 50 50 5 0.0189 163.3422 0.0177 129.1780 1.0000 0.0007
5 50 50 1 10 0.2018 163.3434 0.0289 127.1726 0.2782 0.0040
5 50 50 1 20 0.1240 163.3587 0.0174 127.6703 0.2403 0.0035
5 50 50 1 50 0.0585 163.3691 0.0081 128.4144 0.2118 0.0031
5 50 50 1 100 0.0311 163.3743 0.0043 129.0537 0.2001 0.0032

Table B.1: Summary of variations in the weight parameters and their corresponding effects.
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Figure B.1: Time series of Chlamydia model (4.4)-(4.6) showing the effect of variation in the value of the weight parameter A1 (A1 ∈ [5, 50, 100, 200, 300], with objective
functional values (126.8092, 341.5590, 577.1926, 1047.9277, 1518.6331), respectively) on the concentrations of interacting species (a) C(t), free extracellular chlamydial particles,
(b) E(t), healthy epithelial cells, and (c) I(t), Chlamydia-infected epithelial cells, and on the optimal evolution for both controls (d) u1 (optimal bacteriostatic treatment), and
(e) u2 (optimal proteasome-specific inhibitor). Other weight parameters are fixed ((A2, A3, A4, A5) = (50, 50, 1, 5)).
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Figure B.2: Time series of Chlamydia model (4.4)-(4.6) showing the effect of variation in the value of the weight parameter A2 (A2 ∈ [50, 100, 200, 300], with objective
functional values (126.8092, 219.1615, 402.1073, 584.0970), respectively) on the concentrations of interacting species (a) C(t), free extracellular chlamydial particles, (b) E(t),
healthy epithelial cells, and (c) I(t), Chlamydia-infected epithelial cells, and on the optimal evolution for both controls (d) u1 (optimal bacteriostatic treatment), and (e) u2

(optimal proteasome-specific inhibitor). Other weight parameters are fixed ((A1, A3, A4, A5) = (5, 50, 1, 5)).
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Figure B.3: Time series of Chlamydia model (4.4)-(4.6) showing the effect of variation in the value of the weight parameter A3 (A3 ∈ [50, 100, 200, 300], with objective
functional values (126.8092, 127.0333, 127.2120, 127.3423), respectively) on the concentrations of interacting species (a) C(t), free extracellular chlamydial particles, (b) E(t),
healthy epithelial cells, and (c) I(t), Chlamydia-infected epithelial cells, and on the optimal evolution for both controls (d) u1 (optimal bacteriostatic treatment), and (e) u2

(optimal proteasome-specific inhibitor). Other weight parameters are fixed ((A1, A2, A4, A5) = (5, 50, 1, 5)).
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Figure B.4: Time series of Chlamydia model (4.4)-(4.6) showing the effect of variation in the value of the weight parameter A4 (A4 ∈ [1, 5, 10, 20, 50, 100], with objective
functional values (126.8092, 127.7434, 128.3081, 142.8141, 129.1780, 145.6416), respectively) on the concentrations of interacting species (a) C(t), free extracellular chlamydial
particles, (b) E(t), healthy epithelial cells, and (c) I(t), Chlamydia-infected epithelial cells, and on the optimal evolution for both controls (d) u1 (optimal bacteriostatic
treatment), and (e) u2 (optimal proteasome-specific inhibitor). Other weight parameters are fixed ((A1, A2, A3, A5) = (5, 50, 50, 5)).
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Figure B.5: Time series of Chlamydia model (4.4)-(4.6) showing the effect of variation in the value of the weight parameter A5 (A5 ∈ [5, 10, 20, 50, 100], with objective functional
values (126.8092, 127.1726, 127.6703, 128.4144, 129.0537), respectively) on the concentrations of interacting species (a) C(t), free extracellular chlamydial particles, (b) E(t),
healthy epithelial cells, and (c) I(t), Chlamydia-infected epithelial cells, and on the optimal evolution for both controls (d) u1 (optimal bacteriostatic treatment), and (e) u2

(optimal proteasome-specific inhibitor). Other weight parameters are fixed ((A1, A2, A3, A4) = (5, 50, 50, 1)).
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B.2 Investigating the Effects of Varying Final Treatment

Time (Chapter 4 Model)

In this section, we investigate and discuss the effects of different final time of treatment

on the qualitative results of the optimal control problem (this include the time series of

interacting species, the optimal controls, and the corresponding values of the objective

functional). In these investigations, both treatment controls are used.

In Figure B.6, different values of Tf were tested, which allowed for longer treatment doses

of both treatments u1 (bacteriostatic treatment), and u2 (proteasome-specific inhibitor),

for increasing values of Tf . However, these do not result in any improvement in the

prognosis of the infection as Figures B.6 (a)-(c) reflect. Nevertheless, the values of the

objective functional increased quite significantly for increasing values of Tf , which do not

lead to the minimisation of the systemic costs of the treatments as required. These results

suggest that increasing the duration of treatment will not necessarily yield better clinical

outcomes.
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Figure B.6: Time series of Chlamydia model (4.4)-(4.6) showing the effect of variation in the value of the final time of treatment, Tf (Tf ∈ [4.5, 8, 12, 15, 20], with objective
functional values (126.8092, 193.9386, 275.4131, 331.2908, 429.2486), respectively) on the concentrations of interacting species (a) C(t), free extracellular chlamydial particles,
(b) E(t), healthy epithelial cells, and (c) I(t), Chlamydia-infected epithelial cells, and on the optimal evolution for both controls (d) u1 (optimal bacteriostatic treatment), and
(e) u2 (optimal proteasome-specific inhibitor). Other model parameters are fixed.
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B.3 Investigating the Effects of Varying Weight

Parameters(Chapter 5 Model)

In this section, we investigate and discuss the effects of different weight parameter com-

binations on the qualitative results of the optimal control problem (this include the time

series of interacting species, the optimal controls, and the corresponding values of the

objective functional). In these investigations, both treatment controls are used.

In Figure B.7, higher weightings of A1 were tested. These result in poorer prognosis of

the infection as Figures B.7 (a)-(d) reflect. Moreover, for higher A1 values, treatment

u1 (tryptophan supplement) is required to be given for a slightly longer time. On the

other hand, for higher values of A1, treatment u2 (bacteriostatic agent) is required to

be given at significantly higher concentrations for longer time. Furthermore, the values

of the objective functional also increased significantly for increasing values of A1, which

do not lead to the minimisation of the systemic costs of the treatments as required.

These results suggest that heavier penalisation of the systemic cost of minimising the

concentration of infected cells would require the administration of higher doses of the

bacteriostatic treatment for long periods of time, despite the fact that it does not affect

clinical outcomes positively.

In Figure B.8, higher weightings of A2 were tested, which allowed for significantly longer

and high doses of treatment u1 (tryptophan supplement), but shorter and lesser doses of

treatment u2 (bacteriostatic agent), for increasing values of A2. However, these do not

result in any improvement in the prognosis of the infection as Figures B.8 (a)-(d) reflect.

Nevertheless, the values of the objective functional increased for increasing values of A2,

which do not lead to the minimisation of the systemic costs of the treatments as required.

These results suggest that heavier penalisation of the systemic cost of minimising the

concentration of persistently infected cells would require the administration of high and

longer doses of the tryptophan supplement treatment for longer periods of time, but

shorter and lower doses of the bacteriostatic treatment, despite the fact that these do not

affect clinical outcomes.

In Figure B.9, higher weightings of A3 were tested, which allowed for slightly shorter doses

of treatment u1 (tryptophan supplement), but higher doses of treatment u2 (bacteriostatic

agent), for increasing values of A3. However, these do not result in any improvement in

the prognosis of the infection as Figures B.9 (a)-(d) reflect. Nevertheless, the values of

the objective functional increased for increasing values of A3, which do not lead to the

minimisation of the systemic costs of the treatments as required. These results suggest

that heavier penalisation of the systemic cost of using treatment u1, that is, increased

toxicity of the tryptophan supplement treatment, does not affect clinical outcomes, but

the relative doses of the treatments as a function of drug toxicity.
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In Figure B.10, higher weightings of A4 were tested, which allowed for slightly longer doses

of treatment u1 (tryptophan supplement), but significantly shorter doses of treatment u2

(bacteriostatic agent), for increasing values of A4. However, these do not result in any

improvement in the prognosis of the infection as Figures B.10 (a)-(d) reflect. Nevertheless,

the values of the objective functional imperceptibly increased for increasing values of A4,

which do not necessarily lead to the minimisation of the systemic costs of the treatments

as required. These results suggest that heavier penalisation of the systemic cost of using

treatment u2, that is, increased toxicity of the bacteriostatic treatment, does not affect

clinical outcomes, but the relative doses of the treatments as a function of drug toxicity.

In Figure B.11, higher weightings of A5 were tested, which allowed for imperceptibly

shorter doses of treatment u1 (tryptophan supplement), but slightly higher doses of treat-

ment u2 (bacteriostatic agent), for increasing values of A5. However, these do not result

in any improvement in the prognosis of the infection as Figures B.11 (a)-(d) reflect. Nev-

ertheless, the values of the objective functional imperceptibly increased for increasing

values of A5, which do not necessarily lead to the minimisation of the systemic costs of

the treatments as required. These results suggest that heavier penalisation of the minimi-

sation of the concentration of Chlamydia at the end of the treatment would require the

administration of slightly higher doses of the bacteriostatic treatment. However, these do

not affect clinical outcomes.

In Figure B.12, higher weightings of A6 were tested, which allowed for significantly longer

and higher doses of treatment u1 (tryptophan supplement), but significantly lower and

shorter doses of treatment u2 (bacteriostatic agent), for increasing values of A6. How-

ever, these do not result in any improvement in the prognosis of the infection as Fig-

ures B.12 (a)-(d) reflect. Moreover, the values of the objective functional increased for

increasing values of A6, which do not necessarily lead to the minimisation of the systemic

costs of the treatments as required. These results suggest that heavier penalisation of the

minimisation of the concentration of persistently infected cells at the end of the treatment

would require the administration of significantly higher and longer doses of the trypto-

phan supplement treatment, but significantly lower and shorter doses of the bacteriostatic

treatment. These however do not affect clinical outcomes.
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Figure B.7: Time series of Chlamydia model (4.4)-(4.6) showing the effect of variation in the value of the weight parameter A1 (A1 ∈ [70, 90, 120, 150], with objective functional
values (1433.5856, 1596.4009, 1753.3537, 1909.4035), respectively) on the concentrations of interacting species (a) C(t), free extracellular chlamydial particles, (b) E(t), healthy
epithelial cells, (c) I(t), Chlamydia-infected epithelial cells, and (c) Ip(t), persistently infected epithelial cells, and on the optimal evolution for both controls (d) u1 (tryptophan
supplementation treatment), and (e) u2 (bacteriostatic agents). Other weight parameters are fixed ((A2, A3, A4, A5, A6) = (20, 90, 20, 1, 5)).
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Figure B.8: Time series of Chlamydia model (4.4)-(4.6) showing the effect of variation in the value of the weight parameter A2 (A2 ∈ [20, 40, 60, 100], with objective functional
values (1433.5856, 2011.3671, 2587.1339, 3741.7231), respectively) on the concentrations of interacting species (a) C(t), free extracellular chlamydial particles, (b) E(t), healthy
epithelial cells, (c) I(t), Chlamydia-infected epithelial cells, and (c) Ip(t), persistently infected epithelial cells, and on the optimal evolution for both controls (d) u1 (tryptophan
supplementation treatment), and (e) u2 (bacteriostatic agents). Other weight parameters are fixed ((A1, A3, A4, A5, A6) = (70, 90, 20, 1, 5)).
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Figure B.9: Time series of Chlamydia model (4.4)-(4.6) showing the effect of variation in the value of the weight parameter A3 (A3 ∈ [90, 110, 150, 180], with objective functional
values (1433.5856, 1451.0910, 1484.5167, 1507.5932), respectively) on the concentrations of interacting species (a) C(t), free extracellular chlamydial particles, (b) E(t), healthy
epithelial cells, (c) I(t), Chlamydia-infected epithelial cells, and (c) Ip(t), persistently infected epithelial cells, and on the optimal evolution for both controls (d) u1 (tryptophan
supplementation treatment), and (e) u2 (bacteriostatic agents). Other weight parameters are fixed ((A1, A2, A4, A5, A6) = (70, 20, 20, 1, 5)).
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Figure B.10: Time series of Chlamydia model (4.4)-(4.6) showing the effect of variation in the value of the weight parameter A4 (A4 ∈ [20, 40, 60, 80], with objective functional
values (1433.5856, 1436.2320, 1437.7002, 1438.4729), respectively) on the concentrations of interacting species (a) C(t), free extracellular chlamydial particles, (b) E(t), healthy
epithelial cells, (c) I(t), Chlamydia-infected epithelial cells, and (c) Ip(t), persistently infected epithelial cells, and on the optimal evolution for both controls (d) u1 (tryptophan
supplementation treatment), and (e) u2 (bacteriostatic agents). Other weight parameters are fixed ((A1, A2, A3, A5, A6) = (70, 20, 90, 1, 5)).
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Figure B.11: Time series of Chlamydia model (4.4)-(4.6) showing the effect of variation in the value of the weight parameter A5 (A5 ∈ [1, 5, 10, 20], with objective functional
values (1433.5856, 1432.1733, 1431.6031, 1435.1588), respectively) on the concentrations of interacting species (a) C(t), free extracellular chlamydial particles, (b) E(t), healthy
epithelial cells, (c) I(t), Chlamydia-infected epithelial cells, and (c) Ip(t), persistently infected epithelial cells, and on the optimal evolution for both controls (d) u1 (tryptophan
supplementation treatment), and (e) u2 (bacteriostatic agents). Other weight parameters are fixed ((A1, A2, A3, A4, A6) = (70, 20, 90, 20, 5)).
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Figure B.12: Time series of Chlamydia model (4.4)-(4.6) showing the effect of variation in the value of the weight parameter A6 (A6 ∈ [5, 10, 20, 40], with objective functional
values (1433.5856, 1437.0098, 1443.3248, 1448.4589), respectively) on the concentrations of interacting species (a) C(t), free extracellular chlamydial particles, (b) E(t), healthy
epithelial cells, (c) I(t), Chlamydia-infected epithelial cells, and (c) Ip(t), persistently infected epithelial cells, and on the optimal evolution for both controls (d) u1 (tryptophan
supplementation treatment), and (e) u2 (bacteriostatic agents). Other weight parameters are fixed ((A1, A2, A3, A4, A5) = (70, 20, 90, 20, 1)).
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B.4 Investigating the Effects of Varying Treatment

Duration (Chapter 5 Model)

In this section, we investigate and discuss the effects of different final time of treatment

on the qualitative results of the optimal control problem (this include the time series of

interacting species, the optimal controls, and the corresponding values of the objective

functional). In these investigations, both treatment controls are used.

In Figure B.13, different values of Tf were tested, which allowed for slightly longer treat-

ment doses of treatment u1 (tryptophan supplement treatment), and significantly longer

and higher doses of treatment u2 (bacteriostatic treatment), for increasing values of Tf .

However, these do not result in any improvement in the prognosis of the infection as

Figures B.13 (a)-(d) reflect. Nevertheless, the values of the objective functional increased

quite significantly for increasing values of Tf , which do not lead to the minimisation of

the systemic costs of the treatments as required. These results suggest that increasing

the duration of treatment will not necessarily yield better clinical outcomes.
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Figure B.13: Time series of Chlamydia model (5.1)-(5.4) showing the effect of variation in the value of the final time of treatment, Tf (Tf ∈ [5, 8, 10, 12, 15], with objective
functional values (1433.5856, 1470.7691, 1476.2584, 1479.9195, 1482.7511), respectively) on the concentrations of interacting species (a) C(t), free extracellular chlamydial
particles, (b) E(t), healthy epithelial cells, and (c) I(t), Chlamydia-infected epithelial cells, (d) Ip(t), persistently infected epithelial cells, and on the optimal evolution for both
controls (d) u1 (tryptophan supplement treatment), and (e) u2 (bacteriostatic treatment). Other model parameters are fixed.
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