An update on contextual fear memory mechanisms: Transition between Amygdala and Hippocampus

, , & (2018) An update on contextual fear memory mechanisms: Transition between Amygdala and Hippocampus. Neuroscience and Biobehavioral Reviews, 92, pp. 43-54.

View at publisher

Description

Context is an ever-present combination of discrete environmental elements capable of influencing many psychological processes. When context is associated with an aversive stimulus, a permanent contextual fear memory is formed. Context is hypothesized to greatly influence the treatability of various fear-based pathologies, in particular, post-traumatic stress disorder (PTSD). In order to understand how contextual fear memories are encoded and impact underlying fear pathology, delineation of the underlying neural circuitry of contextual fear memory consolidation and maintenance is essential. Past understandings of contextual fear suggest that the hippocampus only creates a unitary, or single, representation of context. This representation is sent to the amygdala, which creates the associative contextual fear memory. In contrast, here we review new evidence from the literature showing contextual fear memories to be consolidated and maintained by both amygdala and hippocampus. Based on this evidence, we revise the current model of contextual fear memory consolidation, highlighting a larger role for hippocampus. This new model may better explain the role of the hippocampus in PTSD.

Impact and interest:

98 citations in Scopus
72 citations in Web of Science®
Search Google Scholar™

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

436 since deposited on 27 Jun 2018
137 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 119428
Item Type: Contribution to Journal (Journal Article)
Refereed: Yes
Measurements or Duration: 12 pages
DOI: 10.1016/j.neubiorev.2018.05.013
ISSN: 0149-7634
Pure ID: 33362894
Divisions: Past > QUT Faculties & Divisions > Faculty of Health
Past > Institutes > Institute of Health and Biomedical Innovation
Copyright Owner: 2018 Elsevier Ltd
Copyright Statement: This work is covered by copyright. Unless the document is being made available under a Creative Commons Licence, you must assume that re-use is limited to personal use and that permission from the copyright owner must be obtained for all other uses. If the document is available under a Creative Commons License (or other specified license) then refer to the Licence for details of permitted re-use. It is a condition of access that users recognise and abide by the legal requirements associated with these rights. If you believe that this work infringes copyright please provide details by email to qut.copyright@qut.edu.au
Deposited On: 27 Jun 2018 05:36
Last Modified: 02 Aug 2024 06:01