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Abstract

Many real-world robotic and autonomous ve-
hicle applications, such as autonomous mining
vehicles, require robust localisation under chal-
lenging environmental conditions. Laser range
sensors have been used traditionally, but of-
ten get lost in long tunnels that are the major
components of underground mines. Recent re-
search and applied systems have been increas-
ingly using cameras, bringing in new challenges
with regards to robustness against appearance
and viewpoint changes. In this paper we de-
velop a novel visual place recognition algorithm
for autonomous underground mining vehicles
that can be used to provide sufficiently accu-
rate (sub-metre) metric pose estimation while
also having the appearance-invariant and com-
putationally lightweight characteristics of topo-
logical appearance-based methods. The chal-
lenge of large viewing angle variations typical
in confined tunnels is addressed by incorporat-
ing multiple reference image candidates. The
framework is evaluated with real-world multi-
traverse datasets featuring different environ-
ments including underground mining tunnels
and office building environments. The reprojec-
tion error of image registration is ∼50% lower
than a state-of-the-art deep-learning based
method (MR-FLOW) using manually-labelled
ground truth on a set of images representing
typical scenarios during the underground min-
ing process.

∗This research was supported by an Advance Queensland
Innovation Partnerships grant from the Queensland Govern-
ment, Mining3, Caterpillar and the Queensland University of
Technology. MM also received support from an ARC Future
Fellowship FT140101229.
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Figure 1: (a) Picture of a mining vehicle in an under-
ground tunnel, with vision sensors mounted to capture
images of the ceiling. (b) Example of a captured ceil-
ing image. (c) The image in (b) overlapped with sparse
optical flow w.r.t a reference image (not shown) from
the proposed I2-S2 algorithm. (d) Corresponding optical
flow field extracted from the dense result calculated by
a state-of-the-art deep-learning algorithm (MR-FLOW),
underestimating the velocity of the vehicle. Optical flow
vectors are colour coded as follows: Yellow - manually
labelled ground truth; green - accepted optical flow vec-
tors; gray and blue - discarded optical flow vectors.

1 INTRODUCTION

Mining vehicles have been improving production efficien-
cies in modern underground mines. Though some of
them are autonomous to some extent, there is significant
industry pressure to further improve the level of auton-
omy by enhancing their localisation capability. Existing
techniques, such as the Wireless Sensor Networks (WSN)
[Moridi et al., 2015] and Radio-Frequency IDentifica-
tion (RFID)-based [Lavigne and Marshall, 2012] under-
ground localisation, inevitably require extensive survey-
ing and investment on the infrastructure. In contrast,
the cost-effective vision-based localisation is becoming
more attractive with the development of computer vi-
sion technologies.
Current approaches for this purpose approximately

fall into three broad categories: i) Very accurate, full
3D / 6DOF (Degrees of Freedom) visual SLAM or po-
sitioning, ii) topological appearance-based methods and
iii) LiDAR-based underground vehicle localisation meth-
ods that are neither full 3D SLAM nor topological, e.g.
[Daoust et al., 2016]. The full 3D solutions typically



require significant computation and are sensitive to ex-
treme appearance changes, while the topological tech-
niques do not provide any or sufficient metric positioning
information. A light-weight camera-only coarse localisa-
tion system for underground environment [Jacobson et
al., 2018] [Zeng et al., 2017] has been developed by the
authors up to a localisation accuracy of ∼9 metres. To
ultimately achieve fully-automated underground mining
process, it is necessary to further pin-point the location
of the vehicle within sub-metre accuracy, especially w.r.t
digging / tipping points, so as to better assist obstacle
and pedestrian avoidance by knowing with high degree
of certainty the accurate vehicle locations relative to ob-
stacles and pedestrians captured by other sensors on the
vehicle.

The underground mining context offers unique oppor-
tunities and challenges. On one hand, the constituent
objects and patterns in images from a mine tunnel are
relatively predictable, allowing an application-specific
design methodology. On the other hand, repetitive pat-
terns, and the presence of dust and water increase the
difficulty in precise alignment, in addition to large rela-
tive displacements when the vehicle is moving. Variable
lighting conditions, especially the lack of ambient light
is another major challenge for underground localisation.
Most real operating mines have no lights, except per-
haps in some limited areas. Some mines are lit in places,
but even then the amount of lighting is significantly less
than on surface. Even with active lighting added, fast
moving vehicles in comparatively dark conditions results
in a lot of motion blur, which is a huge issue for cameras
that move underground. Last but not least, the field
of view (FOV) is often limited due to the lower height
of mine tunnel ceilings, evident even with fish-eye cam-
eras: The same scene can appear dramatically different
when viewed from locations found to be close by coarse
localisation, to the extent that it becomes impossible to
directly solve the sub-metre localisation problem with a
single camera-based reference map. To resolve this is-
sue, a scheme with multiple reference images covering a
larger area that is equivalent to the expansion of FOV is
introduced in this paper.

An algorithm based on intra-image patch-sequence
matching that is robust to appearance change is pre-
sented in this paper. The relative displacement be-
tween the query and a set of reference locations / poses
is obtained by matching selected point pairs in images
(Fig. 1c). The query and reference images are taken by a
fish-eye camera mounted on the vehicle pointing towards
the ceiling (Fig. 1a). Compared with other possible lo-
cations to set-up a camera, such as pointing to the front
of the vehicle or to the walls, mine tunnel ceilings most
consistently offer a quasi-planar surface for homography
extraction. Moreover, moving foreground objects, for

which modern algorithms tend to devote time to iden-
tify, are rare on mine tunnel ceilings, allowing a sparse
instead of dense optical flow estimation to suffice.
Main contribution of the paper: 1. Given a pair of

query and reference images, a robust algorithm that gen-
erates a sparse optical flow field between them for the
subsequent homography estimation step to refine the
coarse localisation result, is described. 2. A reference
select module that pairs up the query image with multi-
ple reference images in order to resolve the limited FOV
problem is proposed and verified on datasets collected in
different environments (office and mine tunnel).
The paper proceeds as follows. Section 2 reviews pre-

vious works on confined space localisation and relevant
literature on optical flow based image registration al-
gorithms. Section 3 elaborates the detailed implemen-
tations of the proposed approach. Section 4 gives the
configurations of experimental set-up to verify the ef-
fectiveness of our approach on datasets collected from
underground mine tunnels and university lab office en-
vironment, with the results of experiments presented in
Section 5. A brief discussion and conclusions can be
found in Section 6 and 7.

2 Literature Review

2.1 General SLAM and Localisation

3D point clouds from LiDARs have been used in SLAM
algorithms [Zhang and Singh, 2015]; laser-based local-
isation in a mine [Zlot and Bosse, 2014] has also been
studied. However, lasers tend to get lost in long uniform
tunnels. On the other hand, cameras collecting visual
information can work regardless of whether the vehicle
is in a long tunnel, but loop closure uncertainty makes
monocular SLAM problem difficult. Thanks to the fact
that once a high-quality reference database is built for a
mine tunnel, one can benefit from the map by travers-
ing the tunnel thousands of times, pre-mapping the mine
tunnels before the localisation run is economical. This
helps to remove the ambiguities of unfamiliar scenes in
regular SLAM problems.

2.2 Vision-based Localisation Techniques

Full 3D / 6DOF (Degrees of Freedom) visual SLAM sys-
tems such as ORBSLAM [Mur-Artal Raúl and Tardós,
2015] and LSD-SLAM [Caruso et al., 2015] do not work
well in environments with sudden big changes in appear-
ance. The classical probabilistic SLAM system FAB-
MAP [Cummins and Newman, 2008] achieves some de-
gree of viewpoint-invariance by associating places with
sets of features. Since geometrical information is not
retained in its bag-of-words representation, it does not
work well under severe visual-aliasing. SeqSLAM [Mil-
ford and Wyeth, 2012] has been shown to be more suc-
cessful by matching sequences of images based on Sum



of Absolute Difference (SAD) scores and using patch-
normalisation to minimise the effect of appearance-
change. However, as an approach that performs place
recognition, it does not provide the metric information
required for sub-metre localisation. Our previous work
[Zeng et al., 2017] demonstrated vision-based coarse lo-
calisation of vehicles inside mine tunnels, but the best
match location of whole-image matching does not pro-
vide metric indication of pose change. There is a gap
between the full-metric and pure-topological approaches,
which sub-metre underground localisation calls for.

2.3 Image Registration Techniques

Classical image registration algorithms such as Lucas-
Kanade [Lucas et al., 1981] have been widely used to ac-
curately estimate the sub-pixel flow vectors. When the
aim comes to getting the relative pose, the flow vector
could be either sub-pixel or hundreds of pixels, making
the problem difficult. Methods that derive from Lucas-
Kanade [Birchfield, 2007] for large displacements are sus-
ceptible to visual aliasing. Methods that match interest
points (selected by e.g. SURF [Bay et al., 2006] feature
detectors) with nearest point matchers such as FLANN
[Muja and Lowe, 2014] exploit the advantages of scale
and rotation invariance, but again they fall short in vi-
sually aliased environments. Recent research have fo-
cused on utilising Convolutional Neural Network (CNN)
for object recognition [Dosovitskiy et al., 2015] and sep-
arating fast-moving objects from the rigid background,
among which MR-FLOW [Wulff et al., 2017] has shown
robustness with appearance change and motion blur.
The results obtained from MR-FLOW without the com-
putation time constraint will be used to benchmark our
sub-metre localisation approach under various adverse
underground conditions. Nevertheless, it provides more
information than needed for our localisation problem be-
cause obtaining the dense optical flow for every pixel is
unnecessary for homography estimation in environments
like a mine tunnel.

3 Approach

Our vision-based sub-metre localisation approach is an
extension of the method in [Sergeant et al., 2016] that
relies solely upon the matching of RGB camera images.
A query image Iquery of size Row(Iquery) × Col(Iquery)
of mine tunnel ceiling and a reference image Iref taken
from a nearby perspective (∼3-metre neighbourhood) is
given as input for relative pose extraction.

3.1 Simple Patch Matching

The base method underlying our novel contribution is
introduced first in this subsection. Since moving ob-
jects in the foreground are not common in mine tun-
nel ceiling footages, the visual displacement can be es-

timated using sparse sample points instead of register-
ing every pixel. This can be confirmed by the resul-
tant near-uniform optical flow field around each sam-
pled point if dense registration is indeed performed. If
Iquery and Iref are known to have some overlap, such
that the distance in pixel space between the same fea-
ture in the two images is less than a known upper-bound
LSR, the best match for a pixel in Iquery can poten-
tially be found by scanning every candidate pixel in a
bounding box of BSR = [2LSR × 2LSR] in Iref . Though
matches can be found in ideal conditions, there are sev-
eral failure mechanisms. First, repetitive patterns and
monotonic feature-sets in a mine tunnel environment can
create severe visual aliasing within the image, as shown
in Fig. 2. The two image patches in Fig. 2a as well as
Fig. 2b are cropped from different locations of the same
image (Fig. 2c, yellow boxes), despite the nearly identi-
cal looks. Confusing them when picking the best-match
image patch will lead to errors in sub-metre localisation.
Increasing patch size normally would partially resolve
the visual aliasing by resorting to finer details, at the
cost of computation, as well as requiring more expensive
cameras to provide higher resolution images. However,
it does not work in a mining context because images are
often dusty and blurry, and there are not much finer
details to resort to.

(a) (b) (c)

Figure 2: Visual aliasing in mine tunnel ceiling images.
Visually similar patches in (a) and (b) actually come
from different locations in (c), as indicated by the yellow
boxes.

3.2 Intra-Image-SeqSLAM (I2-S2)

An effective method in addressing visual aliasing for
place recognition is SeqSLAM [Milford and Wyeth,
2012]. The same technique of matching a sequence of
images can be applied within an image to recognise dif-
ferent intra-image “places”, alleviating visual aliasing.
The Intra-Image-SeqSLAM (I2-S2) approach generalises
SeqSLAM in pixel space within images. In I2-S2, a
query “place” pquery = (xquery, yquery) is a pixel located
within the query image Iquery, and a reference “place”
pref = (xref , yref ) is a pixel within the reference image



Figure 3: Schematic Diagram of I2S2. The various com-
ponents are labelled for the query image, the correspond-
ing labels in the reference image are omitted.

Iref . Unlike the vanilla approach that makes match-
ing decisions solely based on the SAD score between the
query patch Pquery(pquery) centred at pquery and every
candidate reference patch Pref (pref ) centred at pref , a
sequence Qquery of patches Pquery,i centred at a set of
points pquery,i ∈ S(pquery) sampled around the neigh-
bourhood δ(pquery) of pquery are compared with their
counter parts in Qref , i.e.,

QX = {PX,i(pX,i)|pX,i ∈ S(pX)}, X ∈ (query, ref).
(1)

By matching a sequence of patches around the pixel
neighbourhood, more contextual information around
that pixel is integrated, reducing the visual aliasing ef-
fect.

3.3 Sequence Generation Module

A sequence generation module is constructed to handle
the many ways to produce a sequence of patches P (p)
around a pixel p. It takes in an image and a point of
interest p, and generates a sequence Q with length lq
of patch-normalised patches sized lpatch × lpatch in the
neighbourhood of p. Additional parameters are used
to define the specific manner in which the sequence of
patches are sampled: The distance (step length) dq be-
tween the adjacent sampled patches, and the angle α of
the trajectory line the sequence is sampled along. An
example of sequences Qquery and Qref is shown in the
schematic of I2-S2 in Fig. 3. Note that although the
patch at the centre of the sequences is centred at pquery
and pref in the schematic, this is not required since I2-S2
only cares about the neighbourhood as a whole. In fact,
pquery and pref have no more weight assigned to them
than other pixels in the sequence. For those pquery and
pref near the image edge, dq is reduced to “squeeze-in”
the part of generated sequences that goes beyond the
image boundary in our current implementation. This
flexibility in sampling the sequence may distort the rela-
tive correspondence between patches in Qquery and those
in Qref , therefore a novel way to calculate the sequence
score is introduced.

3.4 Sequence Score

After sequence Qquery is generated around pquery,
along with one Qref (x, y) for each reference candidate
pref (x, y), where (x, y) ∈ BSR, a confusion matrix
Mconf,(x,y) ∈ R

lq×lq can be obtained for each Qref (x, y),
after each pair (Pquery ∈ Qquery, Pref ∈ Qref ) of patches
is compared, as in original SeqSLAM. A trajectory T =
{(i 7→ j = T (i))|i, j ∈ N, 0 ≤ i, j ≤ lq} is a mapping
between Pquery in Qquery and Pref in Qref (x, y). A co-

herent trajectory T̃ is one that satisfies T̃ (i1) ≤ T̃ (i2), if
i1 < i2. The sequence score E(pref (x, y)) for each ref-
erence candidate pref (x, y) is the minimum trajectory
score for all coherent trajectories on the confusion ma-
trix Mconf,(x,y), i.e.

E(pref (x, y)) = min
T̃

∑

(i 7→j)∈T̃

Mconf,(x,y)(i, j) (2)

which can be found in Θ(l2q) with dynamic program-
ming. Effectively, this downweighs the match between
the patch centred exactly at pquery and pref , and blend
in the best possible contribution from their neighbour-
hood. Finally, the matching reference point pref (x

∗, y∗)
is the one with the minimum sequence score:

(x∗, y∗) = argmin
(x,y)

(E(pref (x, y)). (3)

3.5 Homography

For each pair of query and reference images, a Manhat-
tan grid G of size hG × wG of sampling points lG pix-
els apart is used to extract a series V (pquery) of query
points. For each pquery ∈ V (pquery), a range BSR cen-
tred at pquery to search for matching reference point
is defined. A series V (pref ) of points from the refer-
ence image that best matches V (pquery) is obtained us-
ing I2-S2. After a preliminary filtering of the “out-of-
range” matches (those with matching pref on the bound-
ary on BSR), the mapping MAP (V (pquery), V (pref ))
is fed into a RANSAC filter before a homography
H(V̂ (pref ), V̂ (pquery)) is calculated based on the filtered

MAP (V̂ (pref ), V̂ (pquery)). The homographyH can sub-
sequently be used to estimate vehicle’s relative pose
transform between the query and reference images.

3.6 Algorithmic Complexity

One can derive from the descriptions above the asymp-
totic complexity for generating MAP (V (pref ), V (pref ))
is Θ(hGwGL

2
SRl

2
q l

2
patch). The need to find a match for ev-

ery pixel in the query images is relaxed to a sparse grid
G whose density can be adjusted according to the den-
sity of non-planar objects on the ceiling. Furthermore,
the size and sparsity of the search box BSR can also
be tuned according to maximum possible vehicle veloc-
ity for further reduction in computation time. Though



(a) (b)

Figure 4: Images of the same place taken from two per-
spectives. The same ceiling pipelines in (a) also appear
in (b), shifted towards the left. Dramatic visual changes
significantly degrades the performance of general visual
matching methods. Note the images are already taken
using a fish eye camera.

sequence length lq and patch size lpatch both have super-
linear influence in terms of complexity, in practice they
seldom need to be set too large, as long as the sequence
of patches generated by lq, lpatch as well as step length dq
spans a neighbourhood distinguished enough to identify
the pixel “place” with confidence.

3.7 Reference Select Module

In practice, even if coarse place recognition correctly pro-
vides an Iref taken from a nearby location of Iquery, the
relative pose change could be so large that there is little
overlap between the images. Even when there is overlap,
viewing the same scene from different angles can bring
about dramatic visual changes such as those shown in
Figure 4, which challenges most vision-based methods.
Moreover, even if matching features do coexist in images
Iquery and Iref , there could be large separation between
them that requires a large LSR of the search box BSR to
encompass this maximum distance, which quadratically
slows down computation.

An effective augmentation to make our method ro-
bust to such large pose change is recording a reference
database from various viewing angles and perform I2-S2
w.r.t. multiple nearby reference images from those per-
spectives. After multiple images of different perspectives
for a same location are recorded, the query images are
then compared with these references until a clear match
is found. A reference select module is integrated into the
system to select the best reference image. In this way,
the size LSR of the search box BSR, which has quadratic
influence on complexity, can be constrained, while the
cost for the additional reference matching is linear, and
can be stopped once a confident match is found, the com-
putation time is reduced. Better accuracy can also be
obtained by combining the results from various reference
images.

In the next section, the datasets and experimental
setup for evaluating the image registration performance
of I2-S2 benchmarked by a state-of-the-art deep-learning
based approach is described, along with settings for ver-

Figure 5: Floor plan of the mine tunnel traversed.

ifying the functionalities of the reference select module.

4 Experimental Setup

4.1 Datasets

Three datasets were used to evaluate the I2-S2 perfor-
mance in this work. The source images of these datasets
were collected from an underground mine and inside an
office building. The details of these datasets follows:

Mine tunnel multi-traverse dataset
The images were taken using a rugged monocular camera
with a 180 degree FOV and image resolution of 944 ×
800, mounted on the roof of a light vehicle, pointing to-
wards the ceiling of a mine tunnel. The dataset was col-
lected when the light vehicle travelled along a mine tun-
nel, the schematic floor plan of which is shown in Fig. 5.
The same mine tunnel was traversed four times. During
first three traverses, the reference database, which con-
tains three sets of images (“left” , “middle” and “right”),
was collected. We drove as much to the left, middle,
and right of the road as possible when collecting the
“left”, “middle” and “right” sets of reference image, re-
spectively. During the fourth traverse, the query images
were collected. We drove deliberately in a “zigzag” pat-
tern to increase the difficulty of localisation. Each of the
four traverses contains ∼5000 frames as the vehicle goes
from the start point through the tunnel, turns around
and drives back. A sample frame consisting four images
taken at nearby locations during four traverses is shown
in Fig. 6. The relative road positioning of the vehicle is
evident in the figure from each traverse.

Mine tunnel representative dataset
This dataset consists of 11 triplets of images selected
from the “middle” traverse of the “mine tunnel multi-
traverse dataset” to be analysed in details. The images
were selected to reflect typical conditions in the mining
context: Ventilation pipelines, meshes, rock bolts, com-
promised with dust and motion blur. Each triplet of
images consists of 3 consecutive frames, the time inter-
val between adjacent frames is ∼ 70 milliseconds, corre-
sponding to a frame rate of ∼ 14 fps (frames per second).
The triplets are independent of each other and are or-
dered simply based on the time stamp.



(a) (b) (c) (d)

Figure 6: A sample frame from the “mine tunnel multi-
traverse dataset”, which consists of images from tra-
verses (a) “left”, (b) “middle”, (c) “right”, and (d)
“zigzag”.

Office ceiling dataset

This dataset features synchronised lab ceiling image se-
quences captured by four cameras with ∼ 100◦ FOV and
a resolution of 640 × 480. A square path in lab area
with ceiling ∼1.5 metre above the cameras were travelled
twice. Three of the cameras (CamL, CamM , CamR)
were fixed to the left, middle and right of a metal bar,
with ∼44 cm separation to collect reference images. The
fourth camera (CamQ) was used to collect query images,
it was fixed first between CamL and CamM for the first
loop of travel (frames 0 to 799), then between CamM

and CamR for the second loop (frames 800 to 1599).
The FOV of all cameras were cropped to 200 × 200 pix-
els, and an additional back-and-forth motion (switching
direction every 130 frames) was applied to the 200 × 200
crop window of CamQ to simulate zigzag motion.

4.2 Preprocessing

The barrel distortions in mine tunnel ceiling images
taken by the fish-eye camera were compensated and
cropped to 544 × 500 pixels, converted into 8-bit gray-
scale, down-sampled 272 × 250 pixels for use in I2-S2.

4.3 Ground truth

Mine tunnel multi-traverse dataset

To build ground truth for evaluation of the reference
select module, images from the four traverses were syn-
chronised into frames that contain one image from each
traverse (“left”, “middle”, “right”, and “zigzag”). Each
frame of four synchronised images were manually exam-
ined to see if one of the three reference traverses exhibits
an overwhelmingly better viewing-angle resemblance to
the query image from the “zigzag” traverse. If yes, the
most similar traverse was marked as the ground truth;
if no - most likely because the vehicle was indeed at
approximately the same location when at least two of
the reference images were taken - no ground truth was
marked for that particular frame.

Mine tunnel representative dataset

For each pair of images, four patches (Pquery) that
contain distinctive features suitable for manual align-
ment were selected and MAP (V (pquery,gt), V (pref,gt))
was manually aligned. The homography corresponding
to this MAP was used as the ground truth.

Office ceiling dataset

The ground truth for evaluation of reference selection
module was manually labelled in a similar manner as
that of “mine tunnel multi-traverse dataset”.

4.4 Benchmark against State of the Art

The open-source Python implementation of MR-FLOW
[Wulff et al., 2017] was used to benchmark I2-S2’s im-
age registration performance on the “mine tunnel rep-
resentative dataset”. Each triplet of 544 × 500 colour
images were fed into MR-FLOW, which output the op-
tical flow between the 2nd and 3rd images. In order
to give the algorithm every reasonable advantage pos-
sible, MR-FLOW was supplied with full initialisation
(including four initial flow fields) except for the “pre-
computed rigidity map”, which is not available. The
four initial flow fields were obtained by running MR-
FLOW on corresponding triplets of images without ini-
tialisation. Note that the full-fledged initialisation es-
sentially granted MR-FLOW five image frames around
the queried frame, thus no recursive effort to improve
those initial fields was made. In contrast, the only im-
ages provided to I2-S2 were Iquery (2nd image) and Iref
(3rd image), with no initialisation stage. The built-in
optimisation was turned on for all MR-FLOW runs.

4.5 Parameters

The parameters used for I2-S2 on the “mine tunnel repre-
sentative dataset” was summarised in Table 1. A slightly
different set was used on “office ceiling dataset” due to
the difference in image and general feature sizes.

Table 1: PARAMETER LIST

Parameter Value Description

Row(I) 250 pixels downsampled row number
Col(I) 272 pixels downsampled column number

LSR 70 pixels half size of search box
lq 15 sequence length
dq 5 pixels sample sequence step length

lpatch 20 pixels patch size
lG 20 pixels sample grid spacing

∆α 30 degrees incremental sequence angle

5 Results

In this section, image registration performance based
on sparse optical-flow-field from simple patch matching
(subsection 3.1), I2-S2 and the benchmark MR-FLOW is
presented and compared. Simple patch matching, hence-
forth the “vanilla” approach, is simply I2-S2 with se-
quence length lq set to 1. The sub-metre accuracy of
I2-S2 is first shown. Next, the reference select module is
demonstrated to be effective in addressing the problem



of limited FOV. Finally, I2-S2 is shown to be compatible
with real-time applications.

5.1 Image Registration Performance

The image registration performance on the “mine tunnel
representative dataset” is shown in Fig. 7. The optical
flow vectors sampled at an 11×11 grid are plotted for
the three methods. The optical flow vectors in blue were
considered “out-of-range” by the vanilla method and I2-
S2 and discarded before the remaining vectors entered
the same OpenCV based RANSAC post-processor for
out-lier filtering. Green and grey vectors correspond to
the in-liers and out-liers labelled by the RANSAC algo-
rithm, respectively. The homography is calculated using
the in-liers only. Manually labelled ground truth vectors
are coloured yellow.

Images in the dataset have been selected to repre-
sent typical mine tunnel ceiling appearance. Specifically,
the 11 triplets cover: Forward motion - Fig. 7(b-d, h-
l); backward motion - Fig. 7(g); rotation - Fig. 7(e);
idle with flying dust - Fig. 7(f); slow (Fig. 7(g, h)) and
fast (Fig. 7(b-d, i-l)) movement; with (Fig. 7(b-j, l)) and
without (Fig. 7(k)) various combinations of large objects
on the ceiling.

From the optical flow fields, all three methods per-
formed well for the “rotation”, “idle with flying dust”
and “slow movement” cases. It is worth noting that de-
spite the fact that only coherent correspondence between
patches in Qquery and Qref was enforced, and com-
paring sequences of patches in I2-S2 treated the query
pixel pquery and reference candidate pixel pref (x, y) no
differently from other pixels, those exact pixels could
still be precisely matched, as shown by the idle case.
MR-FLOW underestimated the optical flow for the fast
movement cases (Fig. 7(d, j, l)). Prominent objects on
the ceiling affected the local optical flow for all three
methods, with the vanilla method most susceptible. The
optical flow field from I2-S2 in the neighbourhood of
large ceiling objects were significantly better than the
vanilla method, resulting in more in-liers after subse-
quent filtering, thanks to the effect of sampling a se-
quence of patches around the query pixel to blend in a
larger context surrounding the ceiling object. The blue
optical flow vectors near the top of the images in the
forward moving cases were labelled “out-of-range”and
discarded because the best-match is on the boundary of
search range BSR. These were correct decisions since the
corresponding pixels those query pixels match to indeed
went out of scope in the next frame as a result of the vehi-
cle movement. The in-liers determined by the RANSAC
algorithm were used to calculate the homography, the
accuracy of which were evaluated in the following way:
A set of four pquery,test are obtained by projecting the
four pref,gt using the homography, and the reprojection

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 7: (a) Annotation for subplots in the rest of this
figure. First row left: 2nd frame in triplet, right: 3rd
frame in triplet. Row 2 to 4: Results from the vanilla
approach (subsection 3.1), I2-S2, and MR-FLOW. (b-h)
Estimated optical flow field on the “mine tunnel rep-
resentative dataset”. Optical flow vectors are colour
coded as follows: Yellow - manually labelled ground
truth; green - in-liers after RANSAC; gray - out-liers
after RANSAC; blue - considered out of range by the
vanilla method and I2-S2.



error dreproj defined below is used as the metric for com-
parison:

dreproj =
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(4)
in which V = V (pquery,gt). The reprojection error for
the 11 image triplets shown in Fig. 7 is plotted in Fig. 8.
On average, I2-S2 has ∼50% lower reprojection er-

ror than MR-FLOW, and ∼ 21% lower than the vanilla
approach. Differences in reprojection error that are
larger than the estimated error (∼ 2 pixels) in the man-
ually aligned ground truth are significant. For cases
(c)(e)(f)(g) the performance for these three methods is
similar because the difference is below 2 pixels. For the
remaining cases, I2-S2 performs better than the vanilla
approach. I2-S2 also shows better performance than
MR-FLOW except for case(i), where the results are com-
parable, and case (h), in which case I2-S2 correctly esti-
mated the optical flow on the right to be larger in mag-
nitude than those on the left, leading RANSAC filter
to consider them as out-liers, whereas the more uniform
(but less accurate) flow field from MR-FLOW did not
have this effect. This directly results from their corre-
sponding accuracy of sparse optical flow field in Fig. 7.

Figure 8: Reprojection error on the manually labelled
“mine tunnel representative dataset” by the vanilla ap-
proach, I2-S2 and the benchmark algorithm MR-FLOW.
The query number corresponds to those in Fig. 7.

The average reprojection error of I2-S2 on the “mine
tunnel representative dataset” is ∼7 pixels, which corre-
sponds to approximately 1.4% of the image size (544 ×
500). Since the FOV is estimated to be ∼3×3 metres,
1.4% error corresponds to an accuracy of ∼4 centime-
tres. Even if we use the maximum error of 21 pixels (case
(b)), the accuracy is still ∼10 centimetres. Though this
number is based on these image frames that we evalu-

ated, it is safe to say that sub-metre accuracy is achieved
with I2-S2 when at least one reference image containing
overlapping features with the query is provided. Next,
we will show that such reference images can be selected
from multiple candidates in a database.

(a) “Office ceiling dataset”

(b) “Mine tunnel multi-traverse dataset”

Figure 9: Sample frames demonstrating the effectiveness
of reference select module. In (a) and (b), first row left:
Query image from CamQ, first row right: Selected refer-
ence image. Second row: Query image overlapped with
optical flow field w.r.t various reference image candidates
in the third row, generated by I2-S2. Third row: Ref-
erence image candidates within ±t frames in the three
traverses (t = 10 in (a), t = 3 in (b), CamL: Blue,
CamM : Green, CamR: Red). The image selected is the
“current” frame from CamR in both cases.

5.2 Reference Select Module Performance

The reference select module was first evaluated using the
“office ceiling dataset”. As shown in Fig. 9a, the query
image was matched to three reference images from each
of the three reference traverses and the candidate that
offered the most in-lier optical flow vectors was selected.
This metric effectively selects the candidate reference
that is most similar in terms of viewing angle w.r.t the
query image, such as the “current” frame from CamR in
the example shown in Fig. 9a. Suppose only those refer-
ence images from CamM were available, in order for the
frames from CamM to give more consistent optical flow
field, the size LSR of the search box would have needed
to be dramatically increased to bring the corresponding
features (e.g. those on the pipe) into the search range.
Now it is unnecessary since a good reference candidate
was available from CamR. Also note that the mirror
image of the pipe reflected by the glass that could cause
visual aliasing did not affect I2-S2 in this case.
The reference select module was then applied to the

“mine tunnel multi-traverse dataset”. An example frame



(a) “Office ceiling dataset”

(b) “Mine tunnel multi-traverse dataset”

Figure 10: Blue dots: Traverse selected for each frame by
reference select module. Orange dots: Manually labelled
ground truth, if present, means the image from the in-
dicated reference traverse is more similar to the query
image than the other two for that frame. No ground
truth is indicated when at least two reference images
look nearly identical.

for which a best matched reference was correctly identi-
fied is shown in Fig. 9b. The results for other frames in
these two datasets are summarised in Figures 10a and
10b, respectively. The transition between the references
selected are plotted in blue and the manually-labelled
ground truth is overlapped in orange. Note that for the
“office ceiling dataset”, when CamQ was placed between
CamL and CamM during the first loop (frames 0 to
799), the selected references were mostly from these two
cameras. The selected frames were mostly from CamR

and CamM during the second loop, corresponding to
the change in CamQ’s position. The period of transi-
tion in the ground truth is consistent with the period
of 130 frames - the artificially generated motion of the
crop window (subsection 4.1). It is clear that reference
select module correctly captured the “zigzag” motions
in both cases. For frames where ground truth is not
present, most likely at least two of the reference images
are similar. With such frames excluded, the percentage
of correct reference selection w.r.t. manually labelled
ground truth is 96% on the “office ceiling dataset” and
78% on the “mine tunnel multi-traverse dataset”.

The above results show that I2-S2, integrated with the
reference select module, constitute a framework that can
perform sub-metre underground localisation. Finally,
the framework was run on an Intel Core i7-7700K CPU
@ 4.20GHz to generate the visual odometry part of the
video attachment for this paper, during which the aver-
aged homography output frame rate was ∼0.5 fps. By
tweaking the number of sample points (56 in the video)
along with sample grid spacing lG, this frame rate can
be adjusted to suit real-time applications. As a com-

parison, it took MR-FLOW ∼7 minutes to calculate the
dense optical flow for a single frame (initialisation in-
cluded).

6 Discussions

Visual aliasing resulting from repetitive features and oc-
clusions in mine tunnel ceiling images can affect per-
formance of the benchmark method MR-FLOW. Com-
mon error messages from MR-FLOW on these images
were “too few structure matches” and “too many pixels
are occluded”. The error in the MR-FLOW optical flow
field gets large when the estimated rigidity map is incor-
rect, and increases with vehicle velocity. I2-S2 is more
robust to visual aliasing problems because it does not
rely on rigidity estimation or semantics of objects. The
matches between image patches are determined based on
a holistic impression around the query matches’ neigh-
bourhood. This is evident from Figure 7 by comparing
the optical flow vectors sampled on objects, such as wires
and pipes, calculated by the three methods. Because
these wires and pipes are self-similar structures along
their own longitudinal directions, the image patch sam-
pled on them are strongly aliased to patches sampled on
other parts of the same object. We can see how visual
aliasing confused the vanilla method and MR-FLOW by
observing the amount of out-lier optical flow vectors that
are inconsistent with in-lier vectors as well as the manual
ground truth; on the other hand, I2-S2 is more robust
and less affected by visual aliasing.

I2-S2 analyses each frame independently and locali-
sation error does not accumulate; it takes almost no
time to recover from a mismatched frame, which hap-
pens rarely as long as one of the reference candidates
overlaps the query image with features less than LSR

pixels apart. Such robustness is desirable in automation
for continuous mining production. As shown in Fig. 7,
erroneous patch matches can be filtered out by RANSAC
algorithm and the homography is based solely on high-
quality matches.

7 Conclusion

In this paper, I2-S2, a pixel correspondence matching al-
gorithm and an accompanying reference selection mod-
ule designed for vision-based underground mining vehicle
localisation are presented. Robust to visual aliasing, I2-
S2 provides localisation refinement down to sub-metre
accuracy based on sparse optical flow estimations. No
pre-training is required and images are processed indi-
vidually. The light-weight sequence sampling method is
augmented by the coherent-trajectory matching process
efficiently implemented with dynamic programming. It
is shown to achieve ∼50% more accurate optical flow
estimation than the state-of-the-art deep-learning based



MR-FLOW on a mine tunnel dataset while requiring less
input information and computation resource. The accu-
racy of I2-S2 remains stable regardless of flow vector
magnitudes. The size of search box can be constrained
by incorporating multiple references. The homography
estimation w.r.t multiple references can further enhance
the localisation accuracy. The uncertainty of vehicle lo-
cation is insensitive to direction, in contrast to that of a
laser scanner, which is often only good in the direction
perpendicular to the tunnel.

In future, we will optimise the performance of I2-S2
for a live demonstration inside a mine tunnel. For in-
stance, comparing intra-image sequences captured with
different α angles can be a promising pathway to further
improvements, especially w.r.t. camera rotation. It also
becomes possible to use the optical flow information from
I2-S2 as a visual odometry prior, useful for integration
with other localisation modules for a fully automated
underground mining system.
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