

Queensland University of Technology Brisbane Australia

This may be the author's version of a work that was submitted/accepted for publication in the following source:

Behara, Krishna, Bhaskar, Ashish, & Chung, Edward (2018)

Classification of typical Bluetooth OD matrices based on structural similarity of travel patterns: Case study on Brisbane city.

In Proceedings of the Annual Meeting The Transportation Research Board (TRB) 97th Annual Meeting.

The Transportation Research Board (TRB), United States of America, pp. 1-17.

This file was downloaded from: https://eprints.qut.edu.au/126057/

© Consult author(s) regarding copyright matters

This work is covered by copyright. Unless the document is being made available under a Creative Commons Licence, you must assume that re-use is limited to personal use and that permission from the copyright owner must be obtained for all other uses. If the document is available under a Creative Commons License (or other specified license) then refer to the Licence for details of permitted re-use. It is a condition of access that users recognise and abide by the legal requirements associated with these rights. If you believe that this work infringes copyright please provide details by email to qut.copyright@qut.edu.au

Notice: Please note that this document may not be the Version of Record (*i.e.* published version) of the work. Author manuscript versions (as Submitted for peer review or as Accepted for publication after peer review) can be identified by an absence of publisher branding and/or typeset appearance. If there is any doubt, please refer to the published source.

https://trid.trb.org/view/1495255

Classification of typical Bluetooth OD matrices based on structural similarity of travel patterns- Case study on Brisbane city

3

4 Krishna N. S. Behara, Corresponding Author

- 5 Smart Transport Research Center
- 6 Queensland University of Technology
- 7 S Block #720-02, 2 George Street, Brisbane, QLD 4000
- 8 Tel: +61-426047487; Email: <u>krishnanikhilsumanth.behara@hdr.qut.edu.au</u>
- 9

10 Ashish Bhaskar

- 11 Smart Transport Research Center
- 12 Queensland University of Technology
- 13 S Block #723, 2 George Street, Brisbane, QLD 4000
- 14 Tel: +61 7 3138 9985; Fax: +61 7 3138 1170; Email: <u>ashish.bhaskar@qut.edu.au</u>
- 15

16 Edward Chung

- 17 Smart Transport Research Center
- 18 Queensland University of Technology
- 19 S Block #712, 2 George Street, Brisbane, QLD 4000
- 20 Tel: +61 7 3138 1143; Fax: +61 7 3138 1170; Email: <u>edward.chung@qut.edu.au</u>
- 21
- 22 Word count: 5750 words text + 7 tables/figures x 250 words (each) = 7500 words
- 23
- 24
- 25
- 26
- 27
- 28
- 29 Submission Date: 1st August, 2017

ABSTRACT

1 2

3 The structure of a daily Origin-Destination (OD) matrix represents the distribution of travel patterns in 4 terms of number of trips ending into different destinations within a region. However, the daily travel patterns 5 could be significantly different due to different characteristics such as regular working days, weekends, 6 long weekends, public holidays, school holidays and special event days etc. Most of the travel patterns are 7 recurrent in nature and they can be classified into different clusters of typical travel patterns represented by 8 their corresponding typical OD matrices. Among many statistical measures, Structural SIMilarity (SSIM) 9 index is identified as an approportate statistical measure to classify the typical daily OD matrices based on 10 the similarity of travel patterns. The paper discusses the strengths and practical limitations of state-of-theart application of SSIM for structural comparison of OD matrices for large scale networks and proposes a 11 new practical approach based on geographical window for using SSIM in transport applications. The SSIM 12 13 is then used as a proximity measure for clustering that provides basis for the identification of typical daily 14 OD matrices. The proposed approach is tested by a case study on real Bluetooth based proxy OD matrices 15 from Brisbane city, Australia. 16 17 18 19

- *Keywords*: Bluetooth OD matrix, Stuctural Similarity (SSIM) index, Geographical window, SSIM as
 Proximity measure, Clustering OD matrices, Travel Patterns analysis, Typical OD matrices,
 DBSCAN
- 23

1 INTRODUCTION

2 Origin-Destination (OD) matrix is a way of representing travel demand distributed between different origin 3 and destination pairs across the network over a period of time. While OD matrix plays a significant role in transport planning, it is a complex task to estimate the demand matrix for a large scale network. The actual 4 5 OD demand is not a direct observable measurement. The traditional way of estimating OD matrix is by 6 updating a priori matrix (obtained from scaled-up travel surveys or four-step models) until the deviation 7 between observed and estimated traffic counts is minimum. Travel surveys are time consuming, exhaustive 8 and very expensive and are conducted once in every 5-10 years and hence often outdated for planning 9 application after the survey period.

10

On the other hand, with the availability of seamless traffic data from advanced data sources such as Bluetooth, Cell phone etc., it is possible to measure travel more directly as compared to traditional survey based approaches. Although these emerging sources do not provide a detailed demographic and contextual information about the commuter trips, they do have high spatial and temporal resolution as compared to travel surveys (1). In cities like Brisbane (with over 845 Bluetooth Scanners), Bluetooth data sets are currently used for travel time and speed analysis (2). With a good penetration rate and detection layout, Bluetooth detections can also be used to build OD demand matrices (3-6).

18

19 The underlying structure of an OD matrix travel pattern information is in the form of travel demand 20 distributed to different destinations. The knowledge of structural information of OD matrices is helpful in identifying the differences between travel patterns over different times of the day, or between different daily 21 22 demands or recurrence of demand patterns over a period of time (7). The difference in the travel patterns are attributed to different characteristics of activities distributed spatio-temporally within a region. 23 24 Generally, characteristics of a typical weekend are different from that of a weekday because non-work 25 oriented trips such as shopping and entertainment occur mostly during the weekends. Also some studies identified that proportion of non-work trips to total trips is much higher in the sub-centers compared to the 26 27 CBD region (8). Not limiting the classification to just weekdays and weekends, travel patterns are also 28 observed to be different during long weekends, public holidays, school holidays and during special events 29 days (such as Ekka, The Royal Queensland Show held for 10 full days). Many questions in regards to travel 30 patterns are intriguing: What are the other significant travel patterns observed besides a typical weekday and weekend? How is a Saturday travel pattern different from that of a Sunday? How different are the travel 31 32 patterns during major festival days? How close the long weekend's patterns are to a Sunday pattern? 33

34 To compare and analyse the travel patterns of different days and answer the above questions, there 35 is a high need for potential statistical measures that can compare OD matrices by accounting the underlying structural information. Among many statistical tools, Structural SIMilarity (SSIM) index has recently 36 gained recognition in computing the structural similarity between OD matrices (9). Although SSIM has 37 attained immense popularity in the field of image processing, its practical applications in transportation are 38 yet to be fully explored (10). The initial objective of this study is to give a physical meaning to local SSIM 39 40 values so that the approach is more practical in transport applications. To achieve this, the concept of 41 geographical window is introduced (see page 8). The second objective is to further extend the SSIM application as a proximity measure for clustering OD matrices that provides basis for the identification of 42 43 typical daily OD matrices. To achieve this, mean SSIM values between typical daily OD matrices are 44 converted into distance values for clustering using DBSCAN algorithm.

45

This research study is based on zonal Bluetooth based origin-destination (bOD) matrices constructed by spatially aggregating Bluetooth data with Statistical Areas-3 (SA3s) of large scale Brisbane network. Generally, Transport Analysis Zones (TAZ) are aggregations of Statistical Areas (*11*) and any reference to OD matrix should be considered as bOD matrix. The bOD matrices and SA3s are used as proxies for the actual OD matrices and TAZs and by assuming so, it will not have any impact on the findings from the current research. The study is based on realistic assumption that traffic patterns are recurrent in 1 nature (12). This assumption helps to classify the corresponding OD matrices into different clusters and 2 identify the typical OD matrices representing each classified pattern. The knowledge attained by this 3 classification is useful for strategic modeling and policy development.

4

29

5 The rest of the paper is organised as follows. The paper introduces the study site and the Bluetooth 6 data used for travel patterns analysis; Traditional statistical measures and Structural SIMilarity (SSIM) 7 index are then introduced, followed by a discussion on the strengths of SSIM as compared to other 8 traditional measures for computing structural similarity of OD matrices. The paper then discusses the 9 practical limitations of existing SSIM approach and introduces the first contribution of the paper: a new 10 practical approach for computing SSIM based on geographical window. Next, the paper discusses its second major contribution: SSIM as a proximity measure for clustering and classifying typical daily Bluetooth OD 11 matrices based on the similarity of travel patterns followed by a brief discussion of results and then 12 13 conclusion.

14 STUDY SITE AND DATA

Brisbane City Council (BCC) region is chosen as the study site. Raw Bluetooth data, representing temporal 15 16 detections of MAC IDs (2), is collected by BCC from over 845 Bluetooth MAC Scanners installed along 17 many key corridors and intersections within the BCC region (FIGURE 1). Based on population distribution, 18 BCC region is divided into four Statistical Areas namely SA4, SA3, SA2 and SA1 (order from higher to 19 lower) respectively. Trips identified from Bluetooth detections (13) are critical construct for the bOD 20 matrices (of size 845 x 845) at scanner level. The dimensions of bOD matrices are then reduced to 20 x 20 21 by geographically integrating Bluetooth detections with Statistical Area-3 (SA3) obtained from Australian 22 Bureau of Statistics (14). The SA4 zonal information is used for splitting SA3 OD matrices into 25 local 23 geographical windows. In this study, Brisbane East refers to a portion of entire Brisbane East that is 24 equipped with Bluetooth scanners. The data used in this study are from the months of January, February, 25 March, May and August of the year 2016 and December, 2015. December, January and March are chosen 26 to account for School Holidays and Long weekends; February and May are chosen due to continuous 27 Regular Working days and month of August to analyse the travel patterns due to special events (Queensland

28 largest annual event, The Royal Queensland Show (Ekka) for 10 consecutive days during August).

- 30 FIGURE 1 Location of Bluetooth MAC Scanners (top) and Statistical Areas-SA4 (bottom left) and
- 31 SA3 (bottom right) of Brisbane City Council.

Behara, Bhaskar, Chung

1 STRUCTURAL SIMILARITY (SSIM) INDEX

2 Several researchers have used traditional measures such as Mean Square Error (MSE), Root Mean Square

3 Error (RMSE) and Maximum Absolute Error (MAE) etc., (15) for quantifying distances (differences)

between OD matrices. They are widely used because of their simplicity, statistical significance and ease in
 the optimization process.

6 The formulation for a few traditional measures, expressed as deviations of OD demands, are as 7 follows:

$$MSE = \frac{1}{W} \sum_{w \in W} (x_w - \hat{x}_w)^2$$
(1)

$$RMSE = \sqrt{\frac{1}{W} \sum_{w \in W} (x_w - \hat{x}_w)^2};$$
(2)

8

$$MAE = \frac{\sum |x_w - \hat{x}_w|}{W}$$
(3)

9 Where x_w and \hat{x}_w represent the values from the w^{th} cell of estimated OD and target/true OD, respectively.

Although most of the traditional measures compute statistical deviations but they lack the ability 10 to capture structural similarity between OD matrices. For example, it is hard to interpret the structural 11 12 difference in travel patterns from the above equations. In this light, Structural SIMilarity (SSIM) index is 13 identified as an appropriate tool to compute the structural similarity between OD matrices (9). This concept 14 had its early appearance in image processing, as a tool to compare two greyscale natural images (16). It is 15 computed as the mean of several comparisons of local image patches in both the images. Local image patch 16 from the query image is compared only with its corresponding local image patch from the reference image. Local sliding window is proposed to allow the metric's adaptability to compute local statistical 17 18 characteristics so that local image distortions were accounted better (17). For the first time in transportation, 19 Djukic et al. (9) applied Structural SIMilarity (SSIM) as a fitness function within the dynamic OD matrix 20 estimation process and as a performance measure to benchmark various dynamic OD estimation methods. 21 They proposed to re-order the OD matrix and use a sliding window of fixed size (explained with an example in FIGURE 2) or to compute SSIM on the entire OD matrix without any window. The underlying concept 22 of matrix reordering is to deploy the similar rationale - "neighbourhood pixels are correlated in natural 23 24 images" within the context of OD matrix. Generally, the correlations between OD pairs are possible due to 25 sharing similar activities, trip attractions, trip productions, distances, travel cost or similar geographical locations etc. According to Djukic et al. (9), correlations between OD pairs are reflected in their demand 26 27 volumes (especially if volumes are high) and by matrix reordering (i.e. sorting each row of the OD matrix 28 in the order of OD pair volumes), correlated OD pairs lie in the same neighbourhood.

29 In the existing SSIM application for OD matrices comparison, the local window slides cell by cell 30 over entire OD matrix. For example, consider a 4x4 OD matrix as shown in FIGURE 2. Here, the first and 31 second column represents two OD matrices (OD-1 and OD-2). These two OD matrices need to be compared using SSIM. The local sliding window for computing SSIM is a 2x2 sub-matrix and is represented in 32 33 coloured cells. Using sliding window of 2x2 sub-matrix there are 9 matrix pairs to be compared in order to achieve overall comparison of OD1 and OD2. These pairs are illustrated from a to l in FIGURE 2. The 34 35 local SSIM computes the structural similarity between the sub-matrices corresponding to the windows from 36 both the OD matrices. The final SSIM value, represented as Mean SSIM (MSSIM), is computed by 37 averaging all local SSIM values computed for all the sliding windows. The sliding window is generally a 38 square box of size N x N (where N x N << size of OD matrix).

			OD-1					OD-2		
		101	102	103	104		101	102	103	104
	101	20	40	20	50	101	10	20	10	30
	102	40	30	50	70	102	20	20	30	50
	103	20	50	30	60	103	10	30	10	20
(a)	104	50	70	60	40	104	30	50	20	30
		101	102	102	104		101	102	102	104
	101	101	102	103	104	101	101	102	103	104
	101	20	40	20	50	101	10	20	10	30
	102	40	30	50	70	102	20	20	30	50
(h)	103	20	50	30	60	103	10	30	10	20
(6)	104	50	/0	60	40	104	30	50	20	30
		101	102	103	104		101	102	103	104
	101	20	40	20	50	101	10	20	10	30
	102	40	30	50	70	102	20	20	30	50
	103	20	50	30	60	103	10	30	10	20
(c)	104	50	70	60	40	104	30	50	20	30
. /					· <u></u>					
		101	102	103	104		101	102	103	104
	101	20	40	20	50	101	10	20	10	30
	102	40	30	50	70	102	20	20	30	50
<i>.</i>	103	20	50	30	60	103	10	30	10	20
(d)	104	50	70	60	40	104	30	50	20	30
		101	102	103	104		101	102	103	104
	101	20	40	20	50	101	10	20	10	30
	102	40	30	50	70	102	20	20	30	50
	103	20	50	30	60	103	10	30	10	20

2 FIGURE 2 An example to demonstrate the sliding window for SSIM calculation.

3 The formulation for Structural Similarity Index (SSIM) is explained below $(2^{11} + c)$

$$l(\mathbf{x}, \hat{\mathbf{x}}) = \frac{(2\mu_{x}\mu_{\hat{x}} + C_{1})}{(\mu_{x}^{2} + \mu_{\hat{x}}^{2} + C_{1})}$$
(4a)

$$c(\mathbf{x}, \hat{\mathbf{x}}) = \frac{(2\sigma_{x}\sigma_{\hat{x}} + C_{2})}{(\sigma_{x}^{2} + \sigma_{\hat{x}}^{2} + C_{2})}$$
(4b)

$$\mathbf{s}(\mathbf{x}, \hat{\mathbf{x}}) = \frac{(2\sigma_{\mathbf{x}\hat{\mathbf{x}}} + C_3)}{(\sigma_{\mathbf{x}}\sigma_{\hat{\mathbf{x}}} + C_3)} \tag{4c}$$

 $\text{SSIM}(\mathbf{x}, \hat{\mathbf{x}}) = [l(\mathbf{x}, \hat{\mathbf{x}})^{\alpha}] [c(\mathbf{x}, \hat{\mathbf{x}})^{\beta}] [s(\mathbf{x}, \hat{\mathbf{x}})^{\Upsilon}]; \alpha > 0, \beta > 0 \text{ and } \Upsilon > 0;$

$$SSIM(\mathbf{x}, \hat{\mathbf{x}}) = \frac{(2\mu_{\mathbf{x}}\mu_{\mathbf{x}}^{2} + C_{1})(2\sigma_{\mathbf{x}\hat{\mathbf{x}}} + C_{2})}{(\mu_{\mathbf{x}}^{2} + \mu_{\mathbf{x}}^{2} + C_{1})(\sigma_{\mathbf{x}}^{2} + \sigma_{\mathbf{x}}^{2} + C_{2})}; [-1 \le SSIM \le 1]$$
(4d)

$$MSSIM(\mathbf{X}, \widehat{\mathbf{X}}) = \frac{1}{M} \sum_{m=1}^{M} SSIM(\mathbf{x}, \widehat{\mathbf{x}}); [-1 \le MSSIM \le 1]$$
(4e)

- 5 Where **X** and $\hat{\mathbf{X}}$ represent OD matrices OD-1 and OD-2, respectively; **x** and $\hat{\mathbf{x}}$ represent the group of OD pairs within local windows in both the matrices.
- 7 $l(\mathbf{x}, \hat{\mathbf{x}})$: compares the mean values ($\mu_{\mathbf{x}}$ and $\mu_{\hat{\mathbf{x}}}$) of group of OD pairs in both matrices
- 8 $c(\mathbf{x}, \hat{\mathbf{x}})$: compares the standard deviations ($\sigma_{\mathbf{x}}$ and $\sigma_{\hat{\mathbf{x}}}$) of group of OD pairs in both matrices
- 9 $s(\mathbf{x}, \hat{\mathbf{x}})$: compares the structure by computing correlation between normalised group of OD pairs in both
- 10 matrices. Normalized **x** and $\hat{\mathbf{x}}$ with unit standard deviation and zero mean are equal to $\frac{\mathbf{x} \mu_{\mathbf{x}}}{\sigma_{\mathbf{x}}}$ and $\frac{\hat{\mathbf{x}} \mu_{\hat{\mathbf{x}}}}{\sigma_{\hat{\mathbf{x}}}}$,
- 11 respectively.
- 12 C_1, C_2 and C_3 : Constants to stabilise the result when either mean or standard deviation is close to zero.

- 1 Generally, C_3 is assumed to be $C_2/2$. Previous studies suggest values of 10^{-10} and 10^{-2} for C_1 and C_2 2 respectively (10). However, in this study, they are assumed to be zero as the results are stable.
- 3 α , β and Υ : These parameters are used to adjust relative importance of mean, standard deviation and 4 structural components respectively. Generally, they are assumed to be equal to 1.
- 5 SSIM $(\mathbf{x}, \hat{\mathbf{x}})$: Structural Similarity of the group of OD pairs from both matrices. The size of the window over 6 which local SSIM is computed is N x N.
- 7 MSSIM $(\mathbf{X}, \hat{\mathbf{X}})$: Overall similarity of OD matrices, OD1 and OD2, computed by taking average of local 8 SSIM values of M number of windows. For instance, in FIGURE 2, M = 9.
- 9 The range of values for SSIM or MSSIM is between -1 and 1. While the OD matrices are exactly the same
- 10 if the value is 1 and they are extremely dissimilar if the value is -1.
- 11
- 12 To briefly summarise the differences between SSIM and traditional measures;
- Traditional measures are expressed as deviations of OD demands (see Equations (1-3)). SSIM is based
 on three components independent of each other mean, standard deviation and structural comparisons
 (see Equations (4a-4e)) to compute overall structural similarity of OD matrices.
- 16 2. Traditional indicators, compute statistics on all OD pairs of the OD matrix at a time. SSIM computes
- on local windows consisting group of OD pairs and considers the average value of local SSIM values
 as mean SSIM (MSSIM) value.

19 NEW PRACTICAL APPROACH FOR COMPARING OD MATRICES USING SSIM

20 Practical limitations of state-of-the art SSIM

21 Although the concept of SSIM was originally developed in the context of images comparison, the physical 22 meaning of it should be understood more clearly before implementing it into transport applications because 23 the correlation properties of pixels in natural images are different from that of OD pairs within OD matrices. 24 The state-of-the-art application of SSIM in transportation is still theoretical in nature and needs further 25 exploration of its potential in more realistic settings by emphasising on the physical meaning of it, so that 26 it can be applied best in practice (10). Also there is no clarity on the acceptable values of SSIM because 27 SSIM is sensitive to two important parameters namely, OD matrix arrangement and window size, as 28 discussed below.

29 OD matrix arrangement

SSIM is sensitive to the arrangement of OD matrix. For example, MSSIM value is 0.7675 for Monday and Sunday OD matrices arranged in a sequential order of the SA3 zonal ID numbers (see FIGURE 3 (a)); the MSSIM value is 0.6858 if the rows of OD matrix are sorted in ascending order (from left to right) of OD pair demand volumes (see FIGURE 3 (b)).

34

35 Djukic et al. proposed matrix re-ordering if sliding window has to be used. However, as discussed earlier, although the concept is borrowed from a different field, its applicability for OD matrices comparison 36 37 needs to be checked. If two daily OD matrices for a large scale network are individually row sorted based 38 on OD demand volumes then the order of the OD pairs in both the matrices may be different. For example, 39 consider two daily OD matrices from Sunday and Monday with significantly different travel patterns (i.e. 40 trips ending into different destinations). FIGURE 3 (c) demonstrates this, with destinations arranged in descending order of the number of trip attractions. The destinations order between 6 and 15 during Monday, 41 is entirely different as compared to that of Sunday. The SA3s "Nundah" and "Sunnybank" are 7th and 14th 42 43 most attractive destinations on Monday, while they are in 15th and 10th postions during Sunday. Thus matrix 44 re-ordering may not always result in a fair comparison of OD matrices.

1 Window size

2 To demonstrate the sensitivity of SSIM with the window size, consider mean SSIM (MSSIM) values computed using different window sizes (3x3 to 20x20) for Sunday-Monday (Blue line) and Tuesday-3 Monday (Red line) OD matrix pairs as shown in FIGURE 3(d). The example here is demonstrated for a 4 5 general OD matrix representation i.e. sequential arrangement of zonal ID numbers. It is observed in this study that, larger the size of sliding window, lesser is the sensitivity of SSIM towards fine correlation 6 7 distortions within the OD matrix. In FIGURE 3(d), x-axis represents the size of the local window and y-8 axis is the MSSIM value. The MSSIM values increase as the sliding window size increases. The rate of 9 increment of MSSIM values is less for Tuesday-Monday pair as compared to Sunday-Monday pair. This attributes to similar travel patterns between Tuesday-Monday (both of them being working days) as 10 compared to Sunday-Monday pair. Thus, if a sliding window is used, then there is no clear consensus on 11 12 the level of acceptability of the window size and its corresponding SSIM values.

(d) Size of the sliding window

FIGURE 3 (a) Monday and Sunday OD matrices arranged in sequential order of zonal IDs; (b)

3 Monday and Sunday OD matrices individually row sorted in ascending order (left to right) of OD

4 volumes; (c) Destinations preference for Monday and Sunday; (d) Increase in MSSIM values for Sun-

5 Mon and Tue-Mon OD matrices, with increase in sliding window size.

6 To address the aforementioned limitations a new approach is proposed to compute SSIM based on 7 geographical window (see below). Firstly by comparing OD pairs from the same geographical window, it 8 is ensured that the arrangement of OD pairs is not disturbed and secondly, there is no question of SSIM 9 sensitivity for different sizes of the window, because the size and shape of the window are defined by the 10 geographical boundaries of higher zonal level (SA4) OD pairs. The following section introduces 11 geographical window based SSIM for comparing OD matrices.

12 Proposed practical approach- Geographical window based SSIM

The paper proposes a new concept of considering geographical windows before computing SSIM for OD matrices comparison. The geographical window proposed in this study consists of lower zonal level (i.e. SA3) OD pairs belonging to the same higher zonal level (SA4) OD pair ensuring geographical correlation between OD pairs within the window. Since the highest zonal level for BCC region is Statistical Area-4 (SA4), the window boundaries represent geographical boundaries of SA4 OD pair, thus adding physical significance to the local window.

19

1

2

20 The SA4 zones for BCC region are Brisbane East, Brisbane North, Brisbane South, Brisbane West 21 and Brisbane Inner (see FIGURE 1). FIGURE 4 demonstrates the application of SA4 based geographical 22 windows for comparing SA3 (20 x 20) OD matrices of Monday (see FIGURE 4 (a)) and Sunday (see 23 FIGURE 4 (b)), respectively. For example consider a geographical window of SA4 OD pair "Brisbane East" 24 and "Brisbane North". It consists of SA3 OD pairs i.e. 30101-30201, 30101-30202, 30101-30203, 30101-25 30204, 30103-30201, 30103-30202, 30103-30203, and 30103-30204. These OD pairs are geographically 26 correlated because they have same origin i.e. "Brisbane East" and destination i.e. "Brisbane North" of 27 higher zonal level. Since "Brisbane East" and "Brisbane North" consist of 2 and 4 lower level (SA3) zones 28 respectively, the size of the local geographical window is 2 x 4. It is to be noted that, the geographical 29 window neither has a fixed size nor a fixed shape as it is constrained by the size of the higher level zones. 30 The local SSIM values are then calculated for all geographical windows exclusively and the overall MSSIM 31 is the average of all local SSIM values. For example, MSSIM for Sunday-Monday matrices pair, computed

3 By averaging, it implies that, the overall SSIM value is obtained by smoothing over all local 4 values. Although mean SSIM values are used in this study, the local SSIM values based on geographical 5 windows have physical significance in their own respects. For example, local SSIM computed for any local 6 window provides valuable insights towards local travel patterns between different suburbs of the region. If 7 the purpose is to compute the similarity of Sunday and Monday travel patterns between major suburbs, then 8 the concept of fixed size sliding window will not work. From FIGURE 4 (c), it can be observed that Sunday 9 travel patterns between the major suburbs "Brisbane South" and "Brisbane North" are less similar to their 10 corresponding patterns on Monday with a local SSIM value of 0.4653 (bold in the TABLE 1). On the other hand, for another major suburb pair- "Brisbane South to Brisbane West", Sunday travel patterns are similar 11 to that of Monday with an overwhelming SSIM value of 0.8037. SSIM values are also justified from visual 12 13 perception of travel patterns in FIGURE 4 (c), where the first column is the comparison between Brisbane 14 South and Brisbane North pair for Monday and Sunday and the second column is the comparison between 15 Brisbane South and Brisbane West for Monday and Sunday. These insights into different distributions of travel patterns is not possible if a sliding window without any physical meaning are chosen for SSIM 16 17 computations.

18

									N	IOND	AY										
Orticality	Dest	Brisbane East Brisbane N			e Nort	h	Brisbane South						Brisbane West				Brisbane Inner				
Origin		30101	30103	30201	30202	30203	30204	30301	30302	30303	30304	30305	30306	30401	30402	30403	30404	30501	30502	30503	30504
Brisbane	30101	1369	2375	9	17	79	25	157	61	36	14	18	6	0	19	13	5	106	49	127	20
East	30103	2184	18080	79	82	416	215	1308	491	438	192	207	135	20	216	89	58	635	720	496	140
	30201	8	103	5565	1637	804	1973	27	84	29	46	32	10	14	4	155	286	206	32	522	107
Brisbane	30202	20	85	1534	9195	756	814	38	194	58	78	38	26	20	3	158	483	523	38	1708	234
North	30203	90	618	716	882	12274	1669	192	282	170	187	213	76	54	11	367	146	782	73	2044	310
	30204	26	405	1690	868	1787	14200	118	113	80	71	56	44	17	3	115	90	246	36	568	99
	30301	141	1589	26	54	206	122	8296	1641	1004	272	122	89	23	371	117	48	966	740	430	207
Dutaha ma	30302	55	504	74	178	312	93	1661	15291	1847	2096	808	315	135	65	594	228	2978	789	1916	678
brisbane	30303	38	494	42	54	195	85	974	1951	19523	1355	6/9	1134	51	37	231	106	1245	192	/22	309
South	30304	16	220	55	104	238	/6	266	2621	1343	8889	1398	1636	/1	25	443	163	1643	294	118/	363
	30305	19	194	32	40	219	65	126	844	648	1509	1/893	2017	184	9	505	60	563	80	434	120
	30300	4	200	11	25	100	30	105	341	1234	1480	2137	//1/	38	8	90	20	455	40	260	222
Brishana	20401	16	124	2	2010	32	2	20	100	49	24	16	32	E2	905	504	51	102	21	254	10
West	30402	10	154	135	163	365	102	114	657	102	401	10	90	492	55	11/2/	392	103	114	1765	1900
west	30403	14	68	286	105	134	102	27	277	71	401	76	20	402	5	364	6153	640	51	1174	0/2
	30501	114	651	198	540	727	264	959	3370	1020	1107	539	399	181	10/	1273	616	3/177	980	5077	2015
Brisbane	30502	63	783	19	57	73	39	732	931	178	278	94	47	20	39	120	46	1094	3571	557	210
Innor	30503	116	597	501	1693	2099	643	435	2180	633	908	467	223	232	39	1757	1166	5310	593	26786	1919
inner	30504	25	135	99	241	270	97	225	783	290	219	131	68	221	21	1875	995	2040	219	2090	10052

19

									5	SUND	٩Y										
Origin	est	Brisba	ne East	B	risban	e Nort	h		B	risban	e Sout	h		E	Brisbar	ne Wes	st	E	Brisbar	ne Inne	er
Origin		30101	30103	30201	30202	30203	30204	30301	30302	30303	30304	30305	30306	30401	30402	30403	30404	30501	30502	30503	30504
Brisbane	30101	841	1515	7	10	19	15	122	31	42	14	6	4	1	21	6	2	45	34	77	10
East	30103	1495	11690	22	36	88	94	856	211	232	63	65	71	12	201	59	25	340	508	253	90
	30201	10	41	3765	1014	290	1509	13	39	15	12	11	12	14	1	120	214	105	12	199	75
Brisbane	30202	9	37	989	6576	403	454	21	110	46	36	11	13	13	5	115	305	278	24	1040	157
North	30203	19	120	297	453	4042	918	56	112	47	57	41	15	38	3	135	47	353	34	862	121
	30204	25	248	1393	468	892	10043	72	66	57	35	25	20	10	5	72	56	140	20	327	60
	30301	128	1086	15	32	50	63	7150	1068	837	177	58	93	16	289	82	45	553	578	326	133
	30302	27	191	46	163	163	79	1045	11067	1172	1122	410	194	86	26	473	218	2254	498	1505	502
Brisbane	30303	34	221	11	33	56	53	811	1175	13909	807	291	1071	44	25	156	75	666	114	411	193
South	30304	7	65	6	36	76	35	178	1188	815	5392	504	1090	54	15	193	34	651	122	470	109
	30305	5	67	8	24	43	18	60	437	294	529	7403	1289	102	7	263	24	266	37	157	53
	30306	4	66	6	14	36	24	78	187	1013	1085	1277	6534	31	4	75	21	355	34	210	68
	30401	2	11	9	13	25	10	14	84	39	53	103	28	4484	23	395	35	118	16	150	130
Brisbane	30402	9	108	2	2	5	2	168	25	23	5	9	6	38	657	19	7	37	15	18	14
West	30403	7	49	90	120	168	80	85	422	144	200	246	62	330	42	7752	251	768	96	1177	1121
	30404	4	31	190	323	45	78	50	160	56	26	27	19	25	5	223	4647	411	36	701	609
	30501	71	363	87	322	361	175	606	2262	705	669	261	335	122	49	901	436	24048	635	3507	1297
Brisbane	30502	39	503	11	32	37	22	618	523	112	161	37	36	16	22	113	47	694	2899	375	146
Inner	30503	82	336	190	982	884	381	347	1385	427	458	157	226	150	31	1178	694	3481	407	18112	1190
	30504	16	64	66	131	120	60	151	417	198	99	35	76	121	15	1201	624	1296	141	1191	7060

		MON	DAY						MON	DAY		
/	Dest		Brisban	e North			/	Dest		Brisban	e West	
Origin	\sim	30201	30202	30203	30204		Origin		30401	30402	30403	30404
	30301	26	54	206	122			30301	23	371	117	48
	30302	74	178	312	93			30302	135	65	594	228
Brisbane	30303	42	54	195	85		Brisbane	30303	51	37	231	106
South	30304	55	104	238	76		South	30304	71	25	443	163
	30305	32	40	219	65			30305	184	9	505	60
	30306	11	25	100	36			30306	38	8	90	26
		SUN	DAY						SUN	DAY		
	Dest		Brisban	e North			Dest Brisbane West					
Origin	\sim	30201	30202	30203	30204		Origin		30401	30402	30403	30404
	30301	15	32	50	63			30301	16	289	82	45
	30302	46	163	163	79			30302	86	26	473	218
Brisbane	30303	11	33	56	53		Brisbane	30303	44	25	156	75
South	30304	6	36	76	35		South	30304	54	15	193	34
	30305	8	24	43	18			30305	102	7	263	24
	30306	6	14	36	24			30306	31	4	75	21
	Local SSIM=0.4653							Lo	ocal SSIN	1=0.8037	,	

- 2 FIGURE 4 Splitting (a) Monday and (b) Sunday SA3 OD matrices into SA4 based geographical
- 3 windows; (c) Visual representation of difference in local SSIM values.

4	TABLE 1 Local SSIM values based on geographical windows computed for BCC region

	Brisbane	Brisbane	Brisbane	Brisbane	Brisbane
	East	North	South	West	Inner
Brisbane East	0.8319	0.2437	0.7650	0.9517	0.7755
Brisbane North	0.3311	0.7353	0.4034	0.7378	0.6299
Brisbane South	0.7771	0.4653	0.8062	0.8037	0.8117
Brisbane West	0.8340	0.7754	0.7562	0.8884	0.8165
Brisbane Inner	0.7716	0.6265	0.8257	0.8385	0.8750
Mean SSIM (MSSIM)					0.7231

5

6 TYPICAL BLUETOOTH OD MATRICES CLASSIFICATION

7 Clustering daily OD matrices using SSIM as proximity measure

8 In this era of big traffic data, there are many practical applications of data mining and clustering such as 9 clustering trajectories to identify major traffic flow groups in a network level (18); clustering transit riders 10 based on travel regularity to enable transit operators in targetting different transit user segments (19); 11 clustering historical traffic data to classify traffic profiles for real time traffic management (20); and 12 analysing transit riders travel patterns (21) etc. Proximity is a general term used to measure the closeness 13 in terms of dissimilarity, distance or similarity between two variables and the threshold proximity value is 14 the key for clustering (22).

15

The study performed clustering analysis for 163 days by exploring the inherent potential of SSIM 16 as a proximity measure. Mean SSIM values for 163x163 OD matrix pairs are computed based on the 17 18 proposed geographical window approach. Before clustering, SSIM values are converted into distance 19 values (ε) using equation (5). Density Based Scanning (DBSCAN) algorithm (23) is deployed for identifying different clusters of OD matrices. The two important parameters in DBSCAN algorithm that 20 define the number of clusters and their corresponding sizes are - distance threshold value (ε_T) and minimum 21 22 number of OD matrices (*Minpts*) in the ε_T neighbourhood of each OD matrix. Based on these two 23 parameters, 163 daily matrices are segmented into three types - core matrices, border matrices and noise. 24 Criteria for OD matrix "q" to become a core matrix is that, the number of its neighbourhood matrices within 25 the threshold value (ε_T) should be atleast equal to '*Minpts*'. If the number is less than '*Minpts*', but lies in ε_T neighbourhood of any core matrix, it is called a border matrix. The remaining matrices are categorised 26 27 as noise. A combination of core matrices within threshold reach (ε_T) forms a cluster.

 $\varepsilon = 1000(1$ -MSSIM)

1

9

- 2 The parameters used for clustering analysis are:
- ε_T: The study initially considers a range of distance threshold values (ε_T) i.e. 40, 35, 30, 25 and 20.
 Threshold values above 40 and below 20 are not considered because the clusters are not prominent.
 Before clustering, it is assumed that clusters have few expected characteristics such as regular
 weekdays, weekends, special-festival days, long weekends, school holidays and public holidays.
 Among the range of threshold values, ε_T of 20 is recommend in this study (explained in results and discussion section below).
 - 2. *Minpts* : The minimum number of daily matrices to form a cluster is considered to be 2.

10 Typical daily OD matrices

11 The purpose of generating typical OD matrices is to identify typical daily travel patterns within the region.

12 A typical OD matrix represents a typical daily travel pattern. One of the naïve ways to infer a typical OD

13 matrix is by considering arithmetic average of all OD matrices within the cluster. For ε_T of 20, seven typical 14 daily OD matrices are representing seven typical travel patterns for BCC region.

15 RESULTS AND DISCUSSION

16 TABLE 2 shows different types of clusters for different types of threshold values. Threshold values of 40, 17 35 and 30 formed less number (3, 5 and 5) of expected clusters as compared to those corresponding to

threshold values of 25 and 20 (7 clusters each). Regular Sundays and Saturdays are in one cluster for ε_T

19 value of 25 (see cluster 5). However, they are clearly distinguished as two separate clusters for ε_T value of

- 20 20. Thus clusters corresponding to ε_T value of 20 are recommended to classify typical travel patterns within
- 21 BCC region.

22 The following are the inferences made from clustering analysis for ε_T value of 20 (bold in TABLE 2).

- 23 1. It is interesting to note that, Public Holidays (NewYear, Ekka and Labor Day), Easter and Christmas 24 Long Weekends, School Holidays before-after Christmas and Ekka Sundays have similar travel 25 patterns and form one single cluster (see cluster 1). This cluster has a strategical importance associated 26 with it. For instance, if public holidays are shifted towards weekends, they can form more number of 27 long weekends. This encourages public to enjoy more and spend more via excursions, short-stay 28 holiday trips etc., boosting the nation's economy. For example in Australia, Queen's Birthday (Public 29 Holiday) is always on Monday. In Japan, Public Holidays have already been shifted into Long 30 Weekends as a strategic move to improve nation's ailing economy (24).
- There is no typical weekend travel pattern because Sundays (cluster 2) and Saturdays (cluster 5) are in two separate clusters. Also Sundays and Saturdays amidst of school holidays are not much different from regular Sundays and Saturdays. Australia Day is similar to regular Sunday and different from other Public Holidays.
- School holidays during normal weekdays (i.e. excluding those before-after Christmas) are not much
 different from regular weekdays (see cluster 4).
- 4. Last three school holidays of the year end (i.e. 29th, 30th and 31st of December in cluster 7) are different
 from the other school holidays as it is a peak holiday time. These days follow long weekend of
 Christmas and end into a public holiday for the New Year (1st Jan, 2017).
- 5. Ekka festival, that attracts half a million visitors every August, have entirely different travel patterns.
 Saturdays (Cluster 3) and weekdays before-after Ekka (Cluster 6) have entirely different travel patterns as compared to regular Saturdays and regular weekdays respectively.
- 43 From MSSIM matrix in TABLE 3 (left) the following inferences are made with respect to similarity of

(5)

- 1 travel patterns between typical daily OD matrices:
- The similarity of travel patterns between Sundays (*Typical OD2*) and Saturdays (*Typical OD5*) is
 0.9323;
- 4 2. Travel patterns during last three days (weekday school holidays) of December (*Typical OD7*) are
 5 similar by 0.9668 to that of regular Saturdays (*Typical OD5*);
- Regular Sundays (*Typical OD2*) are similar by 0.9735 as compared to the cluster of Public Holidays,
 Long Weekends, Ekka Sundays and School Holidays before-after Christmas (*Typical OD1*);
- 8 4. Ekka Saturdays (*Typical OD3*) are similar by 0.9622 to regular Saturdays (*Typical OD5*);
- 9 5. Before-after Ekka weekdays (*Typical OD6*) is close to regular weekdays (*Typical OD4*) with MSSIM
 value of 0.9601.
- 11 The significant differences between typical OD matrices is also validated from the fact that, no distance 12 values in the distance matrix shown in TABLE 3 (right), is less than or equal to the distance threshold 13 value (ε_T) of 20 recommended in this study.

14 CONCLUSION

15 This paper proposes a new practical approach to compute SSIM based on geographical window and then

- 16 explores SSIM as a proximity measure for classifying typical daily Bluetooth OD matrices. SSIM based on 17 geographical window rather than fixed size sliding window is practical oriented. The size and shape of the
- geographical window are defined by the geographical boundaries adding physical significance to local
- 19 SSIM values. Moreover, it also facilitates indepth investigation of local travel patterns comparison within
- 20 the region. From the correlation perspective, it accounts for the geographical correlation of OD pairs within
- 21 the window by ensuring all lower zonal level OD pairs belong to the same higher zonal level OD pair. The
- 22 zonal consistency is also guaranteed as the matrix is not re-arranged.
- SSIM is proposed, for the first time as a proximity measure for clustering and classifying typical daily Bluetooth OD matrices for Brisbane City Council region. Seven different types of typical daily travel patterns are identified and their corresponding daily Bluetooth OD matrices are computed. The study concludes that, there are other significant travel patterns besides typical weekdays and weekends and recognizing them can be strategically important in transport planning.
- As a part of future work different methods to classify typical daily OD matrices shall be explored and structural similarity of Bluetooth OD matrices as compared to Houeshold Travel Surveys and Journey to Work shall be evaluated to confirm the acceptability of Bluetooth based OD matrices.

31 ACKNOWLEDGEMENT

- 32 The Bluetooth data used in this study was provided by Brisbane City Council to Smart Transport Research
- 33 Center, Queensland University of Technology, Brisbane. The conclusions of this paper reflect the
- 34 understandings of the authors, who are responsible for the accuracy of the data.

TABLE 2 Clusters for different distance threshold values

Cluster No	Clusters for $\varepsilon_T = 40$	Clusters for $\varepsilon_T = 35$	Clusters for $\varepsilon_T = 30$	Clusters for $\varepsilon_T = 25$	Clusters for $\varepsilon_T=20$
Cluster 1	Public Holidays (New Year, Ekka and Christmas)	Public Holidays (New Year , Ekka and Christmas)	Public Holidays (New Year , Ekka, Christmas, Good Friday & Easter Sunday) + School Holiday before Christmas	Public Holidays (New Year , Ekka, Christmas, Good Friday & Easter Sunday) + School Holiday before-after Christmas	Public Holidays (New Year , Ekka, Labor Day) + Long Weekends (Easter, Christmas) + School Holiday before- after Christmas + Ekka Sundays
Cluster 2	Ekka Sundays	Ekka Sundays	Ekka Sundays	Ekka Sundays	Regular Sundays + School Holiday Sundays+ Public Holiday (Australia Day)
Cluster 3	Rest of the days	Public Holidays (Good Friday & Easter Sunday)	Ekka Saturdays	Ekka Saturdays	Ekka Saturdays
Cluster 4	NA	Regular Weekdays+ School Holiday Weekdays	Regular Weekdays+ School Holiday Weekdays	Regular Weekdays+ School Holiday Weekdays	Regular Weekdays+ School Holiday Weekdays
Cluster 5	NA	School Holiday Sundays and Saturdays + Regular Saturdays and Sundays + Public Holidays (Australia Day, Labor Day, Day After Good Friday & Easter Monday)	School Holiday Sundays and Saturdays + Regular Saturdays and Sundays + Public Holidays (Australia Day, Labor Day, Day After Good Friday & Easter Monday)	School Holiday Sundays and Saturdays +Regular Saturdays and Sundays + Public Holidays (Australia Day, Labor Day, Day After Good Friday & Easter Monday)	Regular Saturdays + School Holiday Saturdays
Cluster 6	NA	NA	NA	Before-after Ekka Weekdays	Before-after Ekka Weekdays
Cluster 7	NA	NA	NA	Last 3 days of December (School Holidays)	Last 3 days of December (School Holidays)

IAD

1 TABLE 3 MSSIM matrix (left) and Distance Matrix (right) for seven typical OD matrices

MSSIM matrix	Typical OD1	Typical OD2	Typical OD3	Typical OD4	Typical OD5	Typical OD6	Typical OD7	Distance matrix	Typical OD1	Typical OD2	Typical OD3	Typical OD4	Typical OD5	Typical OD6	Typical OD7
Typical OD1	1.0000	0.9735	0.6043	0.8771	0.8641	0.6598	0.9181	Typical OD1	0	26	396	123	136	340	82
Typical OD2	0.9735	1.0000	0.6876	0.9189	0.9323	0.7269	0.9501	Typical OD2	26	0	312	81	68	273	50
Typical OD3	0.6043	0.6876	1.0000	0.7942	0.8506	0.9601	0.8019	Typical OD3	396	312	0	206	149	40	198
Typical OD4	0.8771	0.9189	0.7942	1.0000	0.9622	0.8667	0.9512	Typical OD4	123	81	206	0	38	133	49
Typical	0.8641	0.9323	0.8506	0.9622	1.0000	0.8647	0.9668	Typical	136	68	149	38	0	135	33
Typical OD6	0.6598	0.7269	0.9601	0.8667	0.8647	1.0000	0.8359	Typical OD6	340	273	40	133	135	0	164
Typical OD7	0.9181	0.9501	0.8019	0.9512	0.9668	0.8359	1.0000	Typical OD7	82	50	198	49	33	164	0

1 **REFERENCES**

- Toole, J. L., S. Colak, B. Sturt, L. P. Alexander, A. Evsukoff, and M. C. González. The path most
 traveled: Travel demand estimation using big data resources. *Transportation research part C: emerging technologies*, Vol. 58, 2015, pp. 162-177.
- 5 2. Bhaskar, A., and E. Chung. Fundamental understanding on the use of Bluetooth scanner as a 6 complementary transport data. *Transportation research part C: emerging technologies*, Vol. 37, 2013, 7 pp. 42-72.
- 8 3. Carpenter, C., M. Fowler, and T. Adler. Generating route-specific origin-destination tables using
- Bluetooth technology. *Transportation Research Record: Journal of the Transportation Research Board*,
 No. 2308, 2012, pp. 96-102.
- Laharotte, P.-A., R. Billot, E. Come, L. Oukhellou, A. Nantes, and N.-E. El Faouzi. Spatiotemporal
 analysis of Bluetooth data: Application to a large urban network. *IEEE Transactions on intelligent transportation systems*, Vol. 16, No. 3, 2015, pp. 1439-1448.
- Michau, G., N. Pustelnik, P. Borgnat, P. Abry, A. Nantes, A. Bhaskar, and E. Chung. A primal-dual
 algorithm for link dependent origin destination matrix estimation. *IEEE Transactions on Signal and Information Processing over Networks*, Vol. 3, No. 1, 2017, pp. 104-113.
- Barceló, J., F. Gilliéron, M. Linares, O. Serch, and L. Montero. Exploring link covering and node
 covering formulations of detection layout problem. *Transportation Research Record: Journal of the Transportation Research Board*, No. 2308, 2012, pp. 17-26.
- 20 7. Kumar, A., and D. M. Levinson. Temporal variations on the allocation of time. 1995.
- Sordon, P., A. Kumar, and H. W. Richardson. Beyond the journey to work. *Transportation Research Part A: General*, Vol. 22, No. 6, 1988, pp. 419-426.
- 9. Djukic, T., S. Hoogendoorn, and H. Van Lint. Reliability assessment of dynamic OD estimation
 methods based on structural similarity index. In *Transportation Research Board 92nd Annual Meeting*,
 2013.
- Pollard, T., N. Taylor, T. van Vuren, and M. MacDonald. Comparing the Quality of OD Matrices
 in Time and Between Data Sources. In *Proceedings of the European Transport Conference*, 2013.
- 28 11. Australian Transport Assessment and Planning Guidelines. 2016.
- 12. Ul, S., I. Bajwa, and M. Kuwahara. A travel time prediction method based on pattern matching
 technique. *Publication of: ARRB Transport Research, Limited*, 2003.
- Michau, G., A. Nantes, E. Chung, P. Abry, and P. Borgnat. Retrieving trip information from a
 discrete detectors network: The case of Brisbane Bluetooth detectors. 2014.
- 14. ABS. Australian Standard Geographical Classification (ASGC).
 <u>http://www.abs.gov.au/ausstats/abs@.nsf/latestproducts/671F2CC1E1381235CA2574CF00138E27?op</u>
 <u>endocument</u>. Accessed 30 Nov, 2016.
- Bera, S., and K. Rao. Estimation of origin-destination matrix from traffic counts: the state of the
 art. *European Transport*, Vol. 49, 2011, pp. 2-23.
- Wang, Z., A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. Image quality assessment: from error
 visibility to structural similarity. *IEEE Transactions on image processing*, Vol. 13, No. 4, 2004, pp. 600-
- 40 612.
- 17. Brooks, A. C., X. Zhao, and T. N. Pappas. Structural similarity quality metrics in a coding context:
 Exploring the space of realistic distortions. *IEEE Transactions on image processing*, Vol. 17, No. 8, 2008, pp. 1261-1273.
- Kim, J., and H. S. Mahmassani. Spatial and temporal characterization of travel patterns in a traffic
 network using vehicle trajectories. *Transportation Research Procedia*, Vol. 9, 2015, pp. 164-184.
- 46 19. Kieu, L. M., A. Bhaskar, and E. Chung. Transit passenger segmentation using travel regularity
- 47 mined from Smart Card transactions data.In *Transportation Research Board 93rd Annual Meeting*,
 48 Washington, D.C., 2014.
- Barceló, J., L. Montero, M. Bullejos, and M. Linares. A practical proposal for using origin destination matrices in the analysis, modeling and simulation for traffic management. In *93rd TRB*

- 1 *annual meeting compendium of papers*, 2014. pp. 14-3793.
- 2 21. Ma, X., Y.-J. Wu, Y. Wang, F. Chen, and J. Liu. Mining smart card data for transit riders' travel 3 patterns. *Transportation research part C: emerging technologies*, Vol. 36, 2013, pp. 1-12.
- 4 22. Everitt, B. S., S. Landau, and M. Leese. *Cluster Analysis*. Arnold Publishers, 2001.
- 5 23. Ester, M., H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discovering clusters
- 6 in large spatial databases with noise.In *Kdd*, *No.* 96, 1996. pp. 226-231.
- 7 24. Chung, E. Classification of traffic pattern.In *Proc. of the 11th World Congress on ITS*, 2003. pp.
- 8 687-694.