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ABSTRACT 1 

 2 

The structure of a daily Origin-Destination (OD) matrix represents the distribution of travel patterns in 3 

terms of number of trips ending into different destinations within a region. However, the daily travel patterns 4 

could be significantly different due to different characteristics such as regular working days, weekends, 5 

long weekends, public holidays, school holidays and special event days etc. Most of the travel patterns are 6 

recurrent in nature and they can be classified into different clusters of typical travel patterns represented by 7 

their corresponding typical OD matrices. Among many statistical measures, Structural SIMilarity (SSIM) 8 

index is identified as an approporiate statistical measure to classify the typical daily OD matrices based on 9 

the similarity of travel patterns. The paper discusses the strengths and practical limitations of state-of-the-10 

art application of SSIM for structural comparison of OD matrices for large scale networks and proposes a 11 

new practical approach based on geographical window for using SSIM in transport applications. The SSIM 12 

is then used as a proximity measure for clustering that provides basis for the identification of typical daily 13 

OD matrices. The proposed approach is tested by a case study on real Bluetooth based proxy OD matrices 14 

from Brisbane city, Australia. 15 

 16 

 17 

 18 

 19 

Keywords: Bluetooth OD matrix, Stuctural Similarity (SSIM) index, Geographical window, SSIM as 20 

Proximity measure, Clustering OD matrices, Travel Patterns analysis, Typical OD matrices, 21 

DBSCAN 22 

23 
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INTRODUCTION 1 

Origin-Destination (OD) matrix is a way of representing travel demand distributed between different origin 2 

and destination pairs across the network over a period of time. While OD matrix plays a significant role in 3 

transport planning, it is a complex task to estimate the demand matrix for a large scale network. The actual 4 

OD demand is not a direct observable measurement. The traditional way of estimating OD matrix is by 5 

updating a priori matrix (obtained from scaled-up travel surveys or four-step models) until the deviation 6 

between observed and estimated traffic counts is minimum. Travel surveys are time consuming, exhaustive 7 

and very expensive and are conducted once in every 5-10 years and hence often outdated for planning 8 

application after the survey period.  9 

 10 

On the other hand, with the availability of seamless traffic data from advanced data sources such 11 

as Bluetooth, Cell phone etc., it is possible to measure travel more directly as compared to traditional survey 12 

based approaches. Although these emerging sources do not provide a detailed demographic and contextual 13 

information about the commuter trips, they do have high spatial and temporal resolution as compared to 14 

travel surveys (1). In cities like Brisbane (with over 845 Bluetooth Scanners), Bluetooth data sets are 15 

currently used for travel time and speed analysis (2). With a good penetration rate and detection layout, 16 

Bluetooth detections can also be used to build OD demand matrices (3-6). 17 

  18 

The underlying structure of an OD matrix travel pattern information is in the form of travel demand 19 

distributed to different destinations. The knowledge of structural information of OD matrices is helpful in 20 

identifying the differences between travel patterns over different times of the day, or between different daily 21 

demands or recurrence of demand patterns over a period of time (7). The difference in the travel patterns 22 

are attributed to different characteristics of activities distributed spatio-temporally within a region. 23 

Generally, characteristics of a typical weekend are different from that of a weekday because non-work 24 

oriented trips such as shopping and entertainment occur mostly during the weekends. Also some studies 25 

identified that proportion of non-work trips to total trips is much higher in the sub-centers compared to the 26 

CBD region (8). Not limiting the classification to just weekdays and weekends, travel patterns are also 27 

observed to be different during long weekends, public holidays, school holidays and during special events 28 

days (such as Ekka, The Royal Queensland Show held for 10 full days). Many questions in regards to travel 29 

patterns are intriguing: What are the other significant travel patterns observed besides a typical weekday 30 

and weekend? How is a Saturday travel pattern different from that of a Sunday? How different are the travel 31 

patterns during major festival days? How close the long weekend’s patterns are to a Sunday pattern? 32 

 33 

To compare and analyse the travel patterns of different days and answer the above questions, there 34 

is a high need for potential statistical measures that can compare OD matrices by accounting the underlying 35 

structural information. Among many statistical tools, Structural SIMilarity (SSIM) index has recently 36 

gained recognition in computing the structural similarity between OD matrices (9). Although SSIM has 37 

attained immense popularity in the field of image processing, its practical applications in transportation are 38 

yet to be fully explored (10). The initial objective of this study is to give a physical meaning to local SSIM 39 

values so that the approach is more practical in transport applications. To achieve this, the concept of 40 

geographical window is introduced (see page 8). The second objective is to further extend the SSIM 41 

application as a proximity measure for clustering OD matrices that provides basis for the identification of 42 

typical daily OD matrices. To achieve this, mean SSIM values between typical daily OD matrices are 43 

converted into distance values for clustering using DBSCAN algorithm. 44 

  45 

This research study is based on zonal Bluetooth based origin-destination (bOD) matrices 46 

constructed by spatially aggregating Bluetooth data with Statistical Areas-3 (SA3s) of large scale Brisbane 47 

network. Generally, Transport Analysis Zones (TAZ) are aggregations of Statistical Areas (11) and any 48 

reference to OD matrix should be considered as bOD matrix. The bOD matrices and SA3s are used as 49 

proxies for the actual OD matrices and TAZs and by assuming so, it will not have any impact on the findings 50 

from the current research. The study is based on realistic assumption that traffic patterns are recurrent in 51 
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nature (12). This assumption helps to classify the corresponding OD matrices into different clusters and 1 

identify the typical OD matrices representing each classified pattern. The knowledge attained by this 2 

classification is useful for strategic modeling and policy development. 3 

 4 

The rest of the paper is organised as follows. The paper introduces the study site and the Bluetooth 5 

data used for travel patterns analysis; Traditional statistical measures and Structural SIMilarity (SSIM) 6 

index are then introduced, followed by a discussion on the strengths of SSIM as compared to other 7 

traditional measures for computing structural similarity of OD matrices. The paper then discusses the 8 

practical limitations of existing SSIM approach and introduces the first contribution of the paper: a new 9 

practical approach for computing SSIM based on geographical window. Next, the paper discusses its second 10 

major contribution: SSIM as a proximity measure for clustering and classifying typical daily Bluetooth OD 11 

matrices based on the similarity of travel patterns followed by a brief discussion of results and then 12 

conclusion.     13 

STUDY SITE AND DATA 14 

Brisbane City Council (BCC) region is chosen as the study site. Raw Bluetooth data, representing temporal 15 

detections of MAC IDs (2), is collected by BCC from over 845 Bluetooth MAC Scanners installed along 16 

many key corridors and intersections within the BCC region (FIGURE 1). Based on population distribution, 17 

BCC region is divided into four Statistical Areas namely SA4, SA3, SA2 and SA1 (order from higher to 18 

lower) respectively. Trips identified from Bluetooth detections (13)  are critical construct for the bOD 19 

matrices (of size 845 x 845) at scanner level. The dimensions of bOD matrices are then reduced to 20 x 20 20 

by geographically integrating Bluetooth detections with Statistical Area-3 (SA3) obtained from Australian 21 

Bureau of Statistics (14). The SA4 zonal information is used for splitting SA3 OD matrices into 25 local 22 

geographical windows. In this study, Brisbane East refers to a portion of entire Brisbane East that is 23 

equipped with Bluetooth scanners. The data used in this study are from the months of January, February, 24 

March, May and August of the year 2016 and December, 2015. December, January and March are chosen 25 

to account for School Holidays and Long weekends; February and May are chosen due to continuous 26 

Regular Working days and month of August to analyse the travel patterns due to special events (Queensland 27 

largest annual event, The Royal Queensland Show (Ekka) for 10 consecutive days during August). 28 

 29 

FIGURE 1 Location of Bluetooth MAC Scanners (top) and Statistical Areas-SA4 (bottom left) and 30 

SA3 (bottom right) of Brisbane City Council. 31 
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STRUCTURAL SIMILARITY (SSIM) INDEX  1 

Several researchers have used traditional measures such as Mean Square Error (MSE), Root Mean Square 2 

Error (RMSE) and Maximum Absolute Error (MAE) etc., (15) for quantifying distances (differences) 3 

between OD matrices. They are widely used because of their simplicity, statistical significance and ease in 4 

the optimization process.  5 

The formulation for a few traditional measures, expressed as deviations of OD demands, are as 6 

follows: 7 

MSE=  
1

𝑊
∑ (𝑥𝑤 − 𝑥𝑤)2

𝑤∈𝑊   (1) 

RMSE=√
1

𝑊
∑ (𝑥𝑤 − 𝑥𝑤)2

𝑤∈𝑊 ; (2) 

 8 

MAE =
∑ |𝑥𝑤−𝑥̂𝑤|

𝑊
  (3) 

Where 𝑥𝑤 and 𝑥𝑤represent the values from the wth cell of estimated OD and target/true OD, respectively. 9 

Although most of the traditional measures compute statistical deviations but they lack the ability 10 

to capture structural similarity between OD matrices. For example, it is hard to interpret the structural 11 

difference in travel patterns from the above equations. In this light, Structural SIMilarity (SSIM) index is 12 

identified as an appropriate tool to compute the structural similarity between OD matrices (9). This concept 13 

had its early appearance in image processing, as a tool to compare two greyscale natural images (16). It is 14 

computed as the mean of several comparisons of local image patches in both the images. Local image patch 15 

from the query image is compared only with its corresponding local image patch from the reference image. 16 

Local sliding window is proposed to allow the metric’s adaptability to compute local statistical 17 

characteristics so that local image distortions were accounted better (17). For the first time in transportation, 18 

Djukic et al. (9) applied Structural SIMilarity (SSIM) as a fitness function within the dynamic OD matrix 19 

estimation process and as a performance measure to benchmark various dynamic OD estimation methods. 20 

They proposed to re-order the OD matrix and use a sliding window of fixed size (explained with an example 21 

in FIGURE 2) or to compute SSIM on the entire OD matrix without any window. The underlying concept 22 

of matrix reordering is to deploy the similar rationale - “neighbourhood pixels are correlated in natural 23 

images” within the context of OD matrix. Generally, the correlations between OD pairs are possible due to 24 

sharing similar activities, trip attractions, trip productions, distances, travel cost or similar geographical 25 

locations etc. According to Djukic et al. (9), correlations between OD pairs are reflected in their demand 26 

volumes (especially if volumes are high) and by matrix reordering (i.e. sorting each row of the OD matrix 27 

in the order of OD pair volumes), correlated OD pairs lie in the same neighbourhood.  28 

In the existing SSIM application for OD matrices comparison, the local window slides cell by cell 29 

over entire OD matrix. For example, consider a 4x4 OD matrix as shown in FIGURE 2. Here, the first and 30 

second column represents two OD matrices (OD-1 and OD-2). These two OD matrices need to be compared 31 

using SSIM.  The local sliding window for computing SSIM is a 2x2 sub-matrix and is represented in 32 

coloured cells. Using sliding window of 2x2 sub-matrix there are 9 matrix pairs to be compared in order to 33 

achieve overall comparison of OD1 and OD2. These pairs are illustrated from a to l in FIGURE 2. The 34 

local SSIM computes the structural similarity between the sub-matrices corresponding to the windows from 35 

both the OD matrices. The final SSIM value, represented as Mean SSIM (MSSIM), is computed by 36 

averaging all local SSIM values computed for all the sliding windows. The sliding window is generally a 37 

square box of size N x N (where N x N << size of OD matrix). 38 

 39 
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 1 

FIGURE 2 An example to demonstrate the sliding window for SSIM calculation. 2 

The formulation for Structural Similarity Index (SSIM) is explained below 3 

l(𝐱, 𝐱̂) =
(2µxµx̂ + C1)

(µx
2 +  µx̂

2 + C1)
 (4a) 

c(𝐱, 𝐱̂) =
(2σxσx̂ + C2)

(σx
2 +  σx̂

2 + C2)
 (4b) 

s(𝐱, 𝐱̂) =
(2σxx̂ + C3)

(σxσx̂ + C3)
 (4c) 

SSIM(𝐱, 𝐱̂) = [l(𝐱, 𝐱̂)α][c(𝐱, 𝐱̂)β][s(𝐱, 𝐱̂)Υ]; α > 0, β > 0 and Υ > 0; 

 

SSIM(𝐱, 𝐱̂) =
(2µ𝐱µ𝐱̂+C1)(2σ𝐱𝐱̂+C2)

(µ𝐱
2+ µ𝐱̂

2+C1)(σ𝐱
2+ σ𝐱̂

2+C2)
; [-1<=SSIM<=1] 

 

(4d) 

 

MSSIM(𝐗, 𝐗̂) =
1

M
∑ SSIM(𝐱, 𝐱̂)M

m=1  ; [-1<=MSSIM<=1] 
(4e) 

 4 

Where 𝐗 and 𝐗̂ represent OD matrices OD-1 and OD-2, respectively;  𝐱 and 𝐱̂ represent the group of OD 5 

pairs within local windows in both the matrices.  6 

l(𝐱, 𝐱̂): compares the mean values (µ𝐱and µ𝐱̂) of group of OD pairs in both matrices 7 

c(𝐱, 𝐱̂): compares the standard deviations (σ𝐱and σ𝐱̂)of group of OD pairs in both matrices 8 

s(𝐱, 𝐱̂): compares the structure by computing correlation between normalised group of OD pairs in both 9 

matrices. Normalized 𝐱  and 𝐱̂   with unit standard deviation and zero mean are equal to 
𝐱−µ𝐱

𝛔𝐱
  and  

𝐱̂−µ𝐱̂

𝛔𝐱̂
  , 10 

respectively.  11 

C1, C2 and C3: Constants to stabilise the result when either mean or standard deviation is close to zero. 12 

101 102 103 104 101 102 103 104

101 20 40 20 50 101 10 20 10 30

102 40 30 50 70 102 20 20 30 50

103 20 50 30 60 103 10 30 10 20

104 50 70 60 40 104 30 50 20 30

101 102 103 104 101 102 103 104

101 20 40 20 50 101 10 20 10 30

102 40 30 50 70 102 20 20 30 50

103 20 50 30 60 103 10 30 10 20

104 50 70 60 40 104 30 50 20 30

101 102 103 104 101 102 103 104

101 20 40 20 50 101 10 20 10 30

102 40 30 50 70 102 20 20 30 50

103 20 50 30 60 103 10 30 10 20

104 50 70 60 40 104 30 50 20 30

101 102 103 104 101 102 103 104

101 20 40 20 50 101 10 20 10 30

102 40 30 50 70 102 20 20 30 50

103 20 50 30 60 103 10 30 10 20

104 50 70 60 40 104 30 50 20 30

… …

… …

… …

… …

… …

101 102 103 104 101 102 103 104

101 20 40 20 50 101 10 20 10 30

102 40 30 50 70 102 20 20 30 50

103 20 50 30 60 103 10 30 10 20

104 50 70 60 40 104 30 50 20 30

(a)

(b)

(c )

(d)

(l)

OD-1 OD-2
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Generally, C3  is assumed to be C2/2 . Previous studies suggest values of 10−10  and 10−2  for C1  and C2 1 

respectively (10). However, in this study, they are assumed to be zero as the results are stable. 2 

α, β and Υ  : These parameters are used to adjust relative importance of mean, standard deviation and 3 

structural components respectively. Generally, they are assumed to be equal to 1. 4 

SSIM(𝐱, 𝐱̂): Structural Similarity of the group of OD pairs from both matrices. The size of the window over 5 

which local SSIM is computed is N x N.   6 

MSSIM(𝐗, 𝐗̂): Overall similarity of OD matrices, OD1 and OD2, computed by taking average of local 7 

SSIM values of M number of windows. For instance, in FIGURE 2, M = 9.  8 

The range of values for SSIM or MSSIM is between -1 and 1. While the OD matrices are exactly the same 9 

if the value is 1 and they are extremely dissimilar if the value is -1.  10 

 11 

To briefly summarise the differences between SSIM and traditional measures;  12 

1. Traditional measures are expressed as deviations of OD demands (see Equations (1-3)). SSIM is based 13 

on three components independent of each other – mean, standard deviation and structural comparisons 14 

(see Equations (4a-4e)) to compute overall structural similarity of OD matrices.  15 

2. Traditional indicators, compute statistics on all OD pairs of the OD matrix at a time. SSIM computes 16 

on local windows consisting group of OD pairs and considers the average value of local SSIM values 17 

as mean SSIM (MSSIM) value.  18 

NEW PRACTICAL APPROACH FOR COMPARING OD MATRICES USING SSIM  19 

Practical limitations of state-of-the art SSIM  20 

Although the concept of SSIM was originally developed in the context of images comparison, the physical 21 

meaning of it should be understood more clearly before implementing it into transport applications because 22 

the correlation properties of pixels in natural images are different from that of OD pairs within OD matrices. 23 

The state-of-the-art application of SSIM in transportation is still theoretical in nature and needs further 24 

exploration of its potential in more realistic settings by emphasising on the physical meaning of it, so that 25 

it can be applied best in practice (10). Also there is no clarity on the acceptable values of SSIM because 26 

SSIM is sensitive to two important parameters namely, OD matrix arrangement and window size, as 27 

discussed below.  28 

OD matrix arrangement 29 

SSIM is sensitive to the arrangement of OD matrix. For example, MSSIM value is 0.7675 for Monday and 30 

Sunday OD matrices arranged in a sequential order of the SA3 zonal ID numbers (see FIGURE 3 (a)); the 31 

MSSIM value is 0.6858 if the rows of OD matrix are sorted in ascending order (from left to right) of OD 32 

pair demand volumes (see FIGURE 3 (b)). 33 

 34 

Djukic et al. proposed matrix re-ordering if sliding window has to be used. However, as discussed 35 

earlier, although the concept is borrowed from a different field, its applicability for OD matrices comparison 36 

needs to be checked. If two daily OD matrices for a large scale network are individually row sorted based 37 

on OD demand volumes then the order of the OD pairs in both the matrices may be different. For example, 38 

consider two daily OD matrices from Sunday and Monday with siginificantly different travel patterns (i.e. 39 

trips ending into different destinations). FIGURE 3 (c) demonstrates this, with destinations arranged in 40 

descending order of the number of trip attractions. The destinations order between 6 and 15 during Monday, 41 

is entirely different as compared to that of Sunday. The SA3s “Nundah” and “Sunnybank” are 7th and 14th 42 

most attractive destinations on Monday, while they are in 15th and 10th postions during Sunday. Thus matrix 43 

re-ordering may not always result in a fair comparison of OD matrices. 44 
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Window size  1 

To demonstrate the sensitivity of SSIM with the window size, consider mean SSIM (MSSIM) values 2 

computed using different window sizes (3x3 to 20x20) for Sunday-Monday (Blue line) and Tuesday-3 

Monday (Red line) OD matrix pairs as shown in FIGURE 3(d). The example here is demonstrated for a 4 

general OD matrix representation i.e. sequential arrangement of zonal ID numbers. It is observed in this 5 

study that, larger the size of sliding window, lesser is the sensitivity of SSIM towards fine correlation 6 

distortions within the OD matrix. In FIGURE 3(d), x-axis represents the size of the local window and y-7 

axis is the MSSIM value. The MSSIM values increase as the sliding window size increases. The rate of 8 

increment of MSSIM values is less for Tuesday-Monday pair as compared to Sunday-Monday pair. This 9 

attributes to similar travel patterns between Tuesday-Monday (both of them being working days) as 10 

compared to Sunday-Monday pair. Thus, if a sliding window is used, then there is no clear consensus on 11 

the level of acceptability of the window size and its corresponding SSIM values. 12 

 13 

(a)   (b)    14 

(c)  15 
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(d)  1 

FIGURE 3 (a) Monday and Sunday OD matrices arranged in sequential order of zonal IDs; (b) 2 

Monday and Sunday OD matrices individually row sorted in ascending order (left to right) of OD 3 

volumes; (c) Destinations preference for Monday and Sunday; (d) Increase in MSSIM values for Sun-4 

Mon and Tue-Mon OD matrices, with increase in sliding window size. 5 

To address the aforementioned limitations a new approach is proposed to compute SSIM based on 6 

geographical window (see below). Firstly by comparing OD pairs from the same geographical window, it 7 

is ensured that the arrangement of OD pairs is not disturbed and secondly, there is no question of SSIM 8 

sensitivity for different sizes of the window, because the size and shape of the window are defined by the 9 

geographical boundaries of higher zonal level (SA4) OD pairs. The following section introduces 10 

geographical window based SSIM for comparing OD matrices.  11 

Proposed practical approach- Geographical window based SSIM 12 

The paper proposes a new concept of considering geographical windows before computing SSIM for OD 13 

matrices comparison. The geographical window proposed in this study consists of lower zonal level (i.e. 14 

SA3) OD pairs belonging to the same higher zonal level (SA4) OD pair ensuring geographical correlation 15 

between OD pairs within the window. Since the highest zonal level for BCC region is Statistical Area-4 16 

(SA4), the window boundaries represent geographical boundaries of SA4 OD pair, thus adding physical 17 

siginificance to the local window.  18 

 19 

The SA4 zones for BCC region are Brisbane East, Brisbane North, Brisbane South, Brisbane West 20 

and Brisbane Inner (see FIGURE 1). FIGURE 4 demonstrates the application of SA4 based geographical 21 

windows for comparing SA3 (20 x 20) OD matrices of Monday (see FIGURE 4 (a)) and Sunday (see 22 

FIGURE 4 (b)), respectively. For example consider a geographical window of SA4 OD pair “Brisbane East” 23 

and “Brisbane North”. It consists of SA3 OD pairs i.e. 30101-30201, 30101-30202, 30101-30203, 30101-24 

30204, 30103-30201, 30103-30202, 30103-30203, and 30103-30204. These OD pairs are geographically 25 

correlated because they have same origin i.e. “Brisbane East” and destination i.e. “Brisbane North” of 26 

higher zonal level. Since “Brisbane East” and “Brisbane North” consist of 2 and 4 lower level (SA3) zones 27 

respectively, the size of the local geographical window is 2 x 4. It is to be noted that, the geographical 28 

window neither has a fixed size nor a fixed shape as it is constrained by the size of the higher level zones. 29 

The local SSIM values are then calculated for all geographical windows exclusively and the overall MSSIM 30 

is the average of all local SSIM values. For example, MSSIM for Sunday-Monday matrices pair, computed 31 

(N=3X3) (N=6X6) (N=8X8) (N=15X15) (N=20X20)

Sun-Mon 0.7337 0.7892 0.807 0.8164 0.8292

Tue-Mon 0.9939 0.9975 0.9985 0.9986 0.9986

0.72

0.77

0.82

0.87

0.92

0.97

M
S

S
IM

 v
a
lu

es

Size of the sliding window



Behara, Bhaskar, Chung   9 

 

based on geographical window is 0.7231 (see TABLE 1).   1 

 2 

By averaging, it implies that, the overall SSIM value is obtained by smoothing over all local 3 

values. Although mean SSIM values are used in this study, the local SSIM values based on geographical 4 

windows have physical siginificance in their own respects. For example, local SSIM computed for any local 5 

window provides valuable insights towards local travel patterns between different suburbs of the region. If 6 

the purpose is to compute the similarity of Sunday and Monday travel patterns between major suburbs, then 7 

the concept of fixed size sliding window will not work. From FIGURE 4 (c), it can be observed that Sunday 8 

travel patterns between the major suburbs “Brisbane South” and “Brisbane North” are less similar to their 9 

corresponding patterns on Monday with a local SSIM value of 0.4653 (bold in the TABLE 1). On the other 10 

hand, for another major suburb pair- “Brisbane South to Brisbane West”, Sunday travel patterns are similar 11 

to that of Monday with an overwhelming SSIM value of 0.8037. SSIM values are also justified from visual 12 

perception of travel patterns in FIGURE 4 (c), where the first column is the comparison between Brisbane 13 

South and Brisbane North pair for Monday and Sunday and the second column is the comparision between 14 

Brisbane South and Brisbane West for Monday and Sunday. These insights into different distributions of 15 

travel patterns is not possible if a sliding window without any physical meaning are chosen for SSIM 16 

computations. 17 

   18 

(a)  19 

(b)  20 

 21 
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(c)  1 

FIGURE 4 Splitting (a) Monday and (b) Sunday SA3 OD matrices into SA4 based geographical 2 

windows; (c) Visual representation of difference in local SSIM values. 3 

TABLE 1 Local SSIM values based on geographical windows computed for BCC region 4 

 

Brisbane 

East 

Brisbane 

North 

Brisbane 

South 

Brisbane 

West 

Brisbane 

Inner 

Brisbane East 0.8319 0.2437 0.7650 0.9517 0.7755 

Brisbane North 0.3311 0.7353 0.4034 0.7378 0.6299 

Brisbane South 0.7771 0.4653 0.8062 0.8037 0.8117 

Brisbane West 0.8340 0.7754 0.7562 0.8884 0.8165 

Brisbane Inner 0.7716 0.6265 0.8257 0.8385 0.8750 

Mean SSIM (MSSIM) 0.7231 

 5 

TYPICAL BLUETOOTH OD MATRICES CLASSIFICATION 6 

Clustering daily OD matrices using SSIM as proximity measure 7 

In this era of big traffic data, there are many practical applications of data mining and clustering such as 8 

clustering trajectories to identify major traffic flow groups in a network level (18); clustering transit riders 9 

based on travel regularity to enable transit operators in targetting different transit user segments (19); 10 

clustering historical traffic data to classify traffic profiles for real time traffic management (20); and 11 

analysing transit riders travel patterns (21) etc. Proximity is a general term used to measure the closeness 12 

in terms of dissimilarity, distance or similarity between two variables and the threshold proximity value is 13 

the key for clustering (22).  14 

 15 

The study perfomed clustering analysis for 163 days by exploring the inherent potential of SSIM 16 

as a proximity measure. Mean SSIM values for 163x163 OD matrix pairs are computed based on the 17 

proposed geographical window approach. Before clustering, SSIM values are converted into distance 18 

values (ε) using equation (5). Density Based Scanning (DBSCAN) algorithm (23) is deployed for 19 

identifying different clusters of OD matrices. The two important parameters in DBSCAN algorithm that 20 

define the number of clusters and their corresponding sizes are - distance threshold value (𝜀𝑇) and minimum 21 

number of OD matrices (Minpts) in the 𝜀𝑇  neighbourhood of each OD matrix. Based on these two 22 

parameters, 163 daily matrices are segmented into three types – core matrices, border matrices and noise. 23 

Criteria for OD matrix “q” to become a core matrix is that, the number of its neighbourhood matrices within 24 

the threshold value (𝜀𝑇) should be atleast equal to ‘Minpts’. If the number is less than ‘Minpts’, but lies in 25 

𝜀𝑇 neighbourhood of any core matrix, it is called a border matrix. The remaining matrices are categorised 26 

as noise. A combination of core matrices within threshold reach (𝜀𝑇) forms a cluster. 27 

 28 
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ε = 1000(1-MSSIM)  (5) 

 1 

The parameters used for clustering analysis are: 2 

1. 𝜀𝑇: The study initially considers a range of distance threshold values (𝜀𝑇) i.e. 40, 35, 30, 25 and 20. 3 

Threshold values above 40 and below 20 are not considered because the clusters are not prominent. 4 

Before clustering, it is assumed that clusters have few expected characteristics such as regular 5 

weekdays, weekends, special-festival days, long weekends, school holidays and public holidays. 6 

Among the range of threshold values, 𝜀𝑇 of 20 is recommened in this study (explained in results 7 

and discussion section below). 8 

2. 𝑀𝑖𝑛𝑝𝑡𝑠 : The minimum number of daily matrices to form a cluster is considered to be 2.      9 

Typical daily OD matrices 10 

The purpose of generating typical OD matrices is to identify typical daily travel patterns within the region. 11 

A typical OD matrix represents a typical daily travel pattern. One of the naïve ways to infer a typical OD 12 

matrix is by considering arithmetic average of all OD matrices within the cluster. For 𝜀𝑇 of 20, seven typical 13 

daily OD matrices are representing seven typical travel patterns for BCC region.  14 

RESULTS AND DISCUSSION 15 

TABLE 2 shows different types of clusters for different types of threshold values. Threshold values of 40, 16 

35 and 30 formed less number (3, 5 and 5) of expected clusters as compared to those corresponding to 17 

threshold values of 25 and 20 (7 clusters each). Regular Sundays and Saturdays are in one cluster for 𝜀𝑇 18 

value of 25 (see cluster 5). However, they are clearly distinguished as two separate clusters for 𝜀𝑇 value of 19 

20. Thus clusters corresponding to 𝜀𝑇 value of 20 are recommended to classify typical travel patterns within 20 

BCC region.  21 

The following are the inferences made from clustering analysis for 𝜀𝑇 value of 20 (bold in TABLE 2). 22 

1. It is interesting to note that, Public Holidays (NewYear , Ekka and Labor Day), Easter and Christmas 23 

Long Weekends, School Holidays before-after Christmas and Ekka Sundays have similar travel 24 

patterns and form one single cluster (see cluster 1). This cluster has a strategical importance associated 25 

with it. For instance, if public holidays are shifted towards weekends, they can form more number of 26 

long weekends. This encourages public to enjoy more and spend more via excursions, short-stay 27 

holiday trips etc., boosting the nation’s economy. For example in Australia, Queen’s Birthday (Public 28 

Holiday) is always on Monday. In Japan, Public Holidays have already been shifted into Long 29 

Weekends as a strategic move to improve nation’s ailing economy (24).       30 

2. There is no typical weekend travel pattern because Sundays (cluster 2) and Saturdays (cluster 5) are in 31 

two separate clusters. Also Sundays and Saturdays amidst of school holidays are not much different 32 

from regular Sundays and Saturdays. Australia Day is similar to regular Sunday and different from 33 

other Public Holidays. 34 

3. School holidays during normal weekdays (i.e. excluding those before-after Christmas) are not much 35 

different from regular weekdays (see cluster 4). 36 

4. Last three school holidays of the year end (i.e. 29th, 30th and 31st of December in cluster 7) are different 37 

from the other school holidays as it is a peak holiday time. These days follow long weekend of 38 

Christmas and end into a public holiday for the New Year (1st Jan, 2017). 39 

5. Ekka festival, that attracts half a million visitors every August, have entirely different travel patterns.  40 

Saturdays (Cluster 3) and weekdays before-after Ekka (Cluster 6) have entirely different travel patterns 41 

as compared to regular Saturdays and regular weekdays respectively. 42 

From MSSIM matrix in TABLE 3 (left) the following inferences are made with respect to similarity of 43 
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travel patterns between typical daily OD matrices:  1 

1. The similarity of travel patterns between Sundays (Typical OD2) and Saturdays (Typical OD5) is 2 

0.9323;  3 

2. Travel patterns during last three days (weekday school holidays) of December (Typical OD7) are 4 

similar by 0.9668 to that of regular Saturdays (Typical OD5);  5 

3. Regular Sundays (Typical OD2) are similar by 0.9735 as compared to the cluster of Public Holidays, 6 

Long Weekends, Ekka Sundays and School Holidays before-after Christmas (Typical OD1);  7 

4. Ekka Saturdays (Typical OD3) are similar by 0.9622 to regular Saturdays (Typical OD5);  8 

5. Before-after Ekka weekdays (Typical OD6) is close to regular weekdays (Typical OD4) with MSSIM 9 

value of 0.9601. 10 

The significant differences between typical OD matrices is also validated from the fact that, no distance 11 

values in the distance matrix shown in TABLE 3 (right), is less than or equal to the distance threshold 12 

value (𝜀𝑇) of 20 recommended in this study.  13 

CONCLUSION 14 

This paper proposes a new practical approach to compute SSIM based on geographical window and then 15 

explores SSIM as a proximity measure for classifying typical daily Bluetooth OD matrices. SSIM based on 16 

geographical window rather than fixed size sliding window is practical oriented. The size and shape of the 17 

geographical window are defined by the geographical boundaries adding physical siginificance to local 18 

SSIM values. Moreover, it also facilitates indepth investigation of local travel patterns comparison within 19 

the region. From the correlation perspective, it accounts for the geographical correlation of OD pairs within 20 

the window by ensuring all lower zonal level OD pairs belong to the same higher zonal level OD pair. The 21 

zonal consistency is also guaranteed as the matrix is not re-arranged. 22 

SSIM is proposed, for the first time as a proximity measure for clustering and classifying typical 23 

daily Bluetooth OD matrices for Brisbane City Council region. Seven different types of typical daily travel 24 

patterns are identified and their corresponding daily Bluetooth OD matrices are computed. The study 25 

concludes that, there are other significant travel patterns besides typical weekdays and weekends and 26 

recognizing them can be strategically important in transport planning.  27 

As a part of future work different methods to classify typical daily OD matrices shall be explored 28 

and structural similarity of Bluetooth OD matrices as compared to Houeshold Travel Surveys and Journey 29 

to Work shall be evaluated to confirm the acceptability of Bluetooth based OD matrices.     30 
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 1 

TABLE 2 Clusters for different distance threshold values  2 

 3 
Cluster No Clusters for  𝜀𝑇=40 Clusters for  𝜀𝑇=35 Clusters for  𝜀𝑇=30 Clusters for  𝜀𝑇=25 Clusters for  𝜀𝑇=20 

Cluster 1 Public Holidays 

(New Year , Ekka 

and Christmas) 

Public Holidays (New 

Year , Ekka and 

Christmas) 

Public Holidays (New Year , 

Ekka, Christmas, Good 

Friday & Easter Sunday) + 

School Holiday before 

Christmas  

Public Holidays (New Year 

, Ekka, Christmas, Good 

Friday & Easter Sunday) + 

School Holiday before-after 

Christmas  

Public Holidays (New 

Year , Ekka, Labor Day) 

+  Long Weekends 

(Easter, Christmas) + 

School Holiday before-

after Christmas + Ekka 

Sundays 

Cluster 2 Ekka Sundays Ekka Sundays Ekka Sundays Ekka Sundays Regular Sundays + 

School Holiday 

Sundays+ Public Holiday 

(Australia Day) 

Cluster 3 Rest of the days Public Holidays 

(Good Friday & 

Easter Sunday) 

Ekka Saturdays Ekka Saturdays Ekka Saturdays 

Cluster 4 NA Regular Weekdays+ 

School Holiday 

Weekdays 

Regular Weekdays+ School 

Holiday Weekdays 

Regular Weekdays+ School 

Holiday Weekdays 

Regular Weekdays+ 

School Holiday 

Weekdays 

Cluster 5 NA School Holiday 

Sundays and 

Saturdays + Regular 

Saturdays and 

Sundays + Public 

Holidays (Australia 

Day, Labor Day,  Day 

After Good Friday & 

Easter Monday) 

School Holiday Sundays and 

Saturdays +  Regular 

Saturdays and Sundays  + 

Public Holidays (Australia 

Day, Labor Day,  Day After 

Good Friday & Easter 

Monday) 

School Holiday Sundays 

and Saturdays +Regular 

Saturdays and Sundays + 

Public Holidays (Australia 

Day, Labor Day,  Day After 

Good Friday & Easter 

Monday) 

Regular Saturdays + 

School Holiday 

Saturdays 

Cluster 6 NA NA NA Before-after Ekka 

Weekdays 

Before-after Ekka 

Weekdays 

Cluster 7 NA NA NA Last 3 days of December 

(School Holidays) 

Last 3 days of December 

(School Holidays) 

 4 
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 TABLE 3 MSSIM matrix (left) and Distance Matrix (right) for seven typical OD matrices 1 

MSSIM 

matrix 

Typical 

OD1 

Typical 

OD2 

Typical 

OD3 

Typical 

OD4 

Typical 

OD5 

Typical 

OD6 

Typical 

OD7  

Distance 

matrix 

Typical 

OD1 

Typical 

OD2 

Typical 

OD3 

Typical 

OD4 

Typical 

OD5 

Typical 

OD6 

Typical

OD7 

Typical 

OD1 

1.0000 0.9735 0.6043 0.8771 0.8641 0.6598 0.9181 

 

Typical 

OD1 

0 26 396 123 136 340 82 

Typical 

OD2 

0.9735 1.0000 0.6876 0.9189 0.9323 0.7269 0.9501 
 

Typical 

OD2 

26 0 312 81 68 273 50 

Typical 

OD3 

0.6043 0.6876 1.0000 0.7942 0.8506 0.9601 0.8019 
 

Typical 

OD3 

396 312 0 206 149 40 198 

Typical 

OD4 

0.8771 0.9189 0.7942 1.0000 0.9622 0.8667 0.9512 
 

Typical 

OD4 

123 81 206 0 38 133 49 

Typical 

OD5 

0.8641 0.9323 0.8506 0.9622 1.0000 0.8647 0.9668 
 

Typical 

OD5 

136 68 149 38 0 135 33 

Typical 

OD6 

0.6598 0.7269 0.9601 0.8667 0.8647 1.0000 0.8359 
 

Typical 

OD6 

340 273 40 133 135 0 164 

Typical 

OD7 

0.9181 0.9501 0.8019 0.9512 0.9668 0.8359 1.0000 
 

Typical 

OD7 

82 50 198 49 33 164 0 

2 
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