Combining sense and nonsense codon reassignment for site-selective protein modification with unnatural amino acids

, , Polinkovsky, Mark, Tnimov, Zakir, , Durek, Thomas, Jones, Alun, & (2017) Combining sense and nonsense codon reassignment for site-selective protein modification with unnatural amino acids. ACS Synthetic Biology, 6(3), pp. 535-544.

View at publisher

Description

Incorporation of unnatural amino acids (uAAs) via codon reassignment is a powerful approach for introducing novel chemical and biological properties to synthesized polypeptides. However, the site-selective incorporation of multiple uAAs into polypeptides is hampered by the limited number of reassignable nonsense codons. This challenge is addressed in the current work by developing Escherichia coli in vitro translation system depleted of specific endogenous tRNAs. The translational activity in this system is dependent on the addition of synthetic tRNAs for the chosen sense codon. This allows site-selective uAA incorporation via addition of tRNAs pre- or cotranslationally charged with uAA. We demonstrate the utility of this system by incorporating the BODIPY fluorophore into the unique AGG codon of the calmodulin(CaM) open reading frame using in vitro precharged BODIPY-tRNACysCCU. The deacylated tRNACysCCU is a poor substrate for Cysteinyl-tRNA synthetase, which ensures low background incorporation of Cys into the chosen codon. Simultaneously, p-azidophenylalanine mediated amber-codon suppression and its post-translational conjugation to tetramethylrhodamine dibenzocyclooctyne (TAMRA-DIBO) were performed on the same polypeptide. This simple and robust approach takes advantage of the compatibility of BODIPY fluorophore with the translational machinery and thus requires only one post-translational derivatization step to introduce two fluorescent labels. Using this approach, we obtained CaM nearly homogeneously labeled with two FRET-forming fluorophores. Single molecule FRET analysis revealed dramatic changes in the conformation of the CaM probe upon its exposure to Ca2+ or a chelating agent. The presented approach is applicable to other sense codons and can be directly transferred to eukaryotic cell-free systems

Impact and interest:

34 citations in Scopus
26 citations in Web of Science®
Search Google Scholar™

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

ID Code: 126566
Item Type: Contribution to Journal (Journal Article)
Refereed: Yes
ORCID iD:
Cui, Zhenlingorcid.org/0000-0002-5664-8303
Guo, Zhongorcid.org/0000-0003-0285-5021
Alexandrov, Kirillorcid.org/0000-0002-0957-6511
Measurements or Duration: 10 pages
DOI: 10.1021/acssynbio.6b00245
ISSN: 2161-5063
Pure ID: 33290972
Divisions: Past > Institutes > Institute for Future Environments
Past > QUT Faculties & Divisions > Science & Engineering Faculty
Current > Research Centres > Centre for Tropical Crops and Biocommodities
Copyright Owner: Consult author(s) regarding copyright matters
Copyright Statement: This work is covered by copyright. Unless the document is being made available under a Creative Commons Licence, you must assume that re-use is limited to personal use and that permission from the copyright owner must be obtained for all other uses. If the document is available under a Creative Commons License (or other specified license) then refer to the Licence for details of permitted re-use. It is a condition of access that users recognise and abide by the legal requirements associated with these rights. If you believe that this work infringes copyright please provide details by email to qut.copyright@qut.edu.au
Deposited On: 22 Feb 2019 01:33
Last Modified: 20 Jun 2024 09:17