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Abstract 

  
Semiology observation and characterization play a major role in the pre-surgical evaluation of epilepsy. However, the 

interpretation of patient movements has subjective and intrinsic challenges. In this paper, we develop approaches to attempt to 

automatically extract and classify semiological patterns from facial expressions. We address limitations of existing computer-

based analytical approaches of epilepsy monitoring, where facial movements have largely been ignored. This is an area that has 

seen limited advances in the literature. Inspired by recent advances in deep learning, we propose two deep learning models, 

landmark-based and region-based, to quantitatively identify changes in facial semiology in patients with Mesial Temporal Lobe 

Epilepsy (MTLE) from spontaneous expressions during phase 1 monitoring. A dataset has been collected from the Mater 

Advanced Epilepsy Unit, (Brisbane, Australia) and is used to evaluate our proposed approach. Our experiments show that a 

landmark-based approach achieves promising results in analysing facial semiology, where movements can be effectively marked 

and tracked when there is a frontal face on visualization. However, the region-based counterpart with spatio-temporal features 

achieves more accurate results when confronted with extreme head positions. A multi-fold cross-validation of the region based 

approach exhibited an average test accuracy of 95.19% and an average AUC of 0.98 of the ROC curve. Conversely, a leave-one-

subject-out cross-validation scheme for the same approach reveals a reduction in accuracy for the model, as it is affected by data 

limitations and achieves an average test accuracy of 50.85%. Overall, the proposed deep learning models have shown promise in 

quantifying ictal facial movements in patients with MTLE. In turn, this may serve to enhance the automated pre-surgical epilepsy 

evaluation by allowing for standardization, mitigating bias and assessing key features. The computer-aided diagnosis may help 

to support clinical decision making and prevent erroneous localization and surgery. 

Keywords: Epilepsy Evaluation, Facial Semiology, Deep Learning, Convolutional Neural Network (CNN), Long Short-Term 

Memory (LSTM). 

1. INTRODUCTION 

Epilepsy is among the most common of the neurological conditions. Mesial Temporal Lobe Epilepsy (MTLE) often with 

hippocampal sclerosis, is one of the most common causes of drug-resistant epilepsy [1]. Epilepsy surgery has been accepted as an 

effective treatment for patients with medically refractory epilepsy or who are non-responsive to medication [2]. The complete 

resection of the epileptogenic zone (i.e. the region of the brain that generates epileptic seizures) is the primary goal. Epileptic 

patients exhibit different clinical manifestations, based on the underlying networks activated. Semiology has played a pivotal role 

to provide localizing and lateralizing information in order to allow for successful surgery in addition to neurophysiological and 

imaging data [3, 4]. While semiology is important, a single sign in isolation is not helpful, but rather the progression of events that 
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underlie the integration of various neuronal networks. In MTLE for example, certain facial modifications are more commonly 

exhibited, (although not exclusive) including unilateral blinking, eye deviation, chewing automatisms, fear expression, disgust, 

unilateral mouth deviation and post ictal nose wiping [5-8].  

Epilepsy Monitoring relies on video analysis to assist with the diagnosis of seizures. However, this evaluation is subjective, 

dependent on observer experience and may lead to misdiagnosis [3]. Automated analysis of semiological patterns, i.e detection, 

quantification and recognition of body movement patterns, could help increase diagnostic precision [9] by standardising the 

assessment evaluation among evaluators and identifying features that are unambiguous. However, the automated analysis of 

semiology has made little progress over recent years [10, 11]. The majority of existing automated systems are limited to the ictal 

analysis of limb and head movements [10, 12]. While some attempts at automating the semiology of facial expressions have been 

made [13-16], the field is still largely unexplored. One reason for this includes the immense complexity in detecting and tracking 

key facial regions, especially in the clinical environment, where the face may often be obscured from view with electrodes, bedding, 

inadequate camera capture and positioning, poor illumination and movements during seizures [10]. 

Deep learning (DL) has entered the mainstream in computer vision and machine learning in the last several years, achieving 

near-human and super-human performance in many tasks such as object detection and sequence learning [17]. Using DL, 

researchers have also demonstrated state-of-the-art performance in analysing videos, outperforming traditional techniques in 

emotion recognition and facial expression analysis [18-20]. DL is now becoming widely-employed in biological and medical 

applications; however, despite its advantages, there has not been an application of this technology for the purpose of monitoring 

facial changes in seizures, particularly in the pre-surgical evaluation. While automated detection of EEG signals based on DL exists 

to help identify seizures [21, 22], apart from video recordings, there are no devices which detect ictal changes in semiology [10]. 

DL is a promising field for analysing video data due to its advantages in automatically learning key features extracted from raw 

data. DL is a technique that can be adapted to new problems because of its ability to perform transfer learning, i.e. learning on one 

dataset and applying the trained model to another. Thus this results in a richer representation and greater learning capability [17, 

23]. 

Given that epilepsy surgery requires considerable accuracy to help the patient [24], this research has been developed to improve 

the diagnostic precision using quantitative methods from clinical data. In this paper, we endeavour to develop quantitative methods 

that characterise motion semiology, using facial expression. We have concentrated our techniques to distinguish between ictal and 

non-ictal/random facial expressions in patients with MTLE. Localization of MTLE was confirmed in these patients with a 

combination of Stereo-EEG assessment or seizure freedom for over two years in the setting of a lesion, i.e Hippocampal sclerosis. 

The techniques and equipment employed in this study are a combination of video detection systems and advanced computer vision 

techniques. Deep learning architectures characterize the various semiological patterns from quantitative motion detection and 

training. The learnt patterns from ictal facial modification are extracted to identify between ictal and non-ictal pattern. We conduct 

experiments using our own dataset jointly developed by the Queensland University of Technology, Australia (QUT) and the Mater 

Advanced Epilepsy Unit, Brisbane, Australia. The remainder of this paper is organised as follows: Section 2 describes our dataset, 

the methodology and experimental plan; Section 3 presents the results and Section 4 discusses the main findings and the 

significance of the results. Finally, Section 5 draws the paper’s concluding remarks. 

 
 
Fig. 1. Selected example of facial semiology from mouth motion in MTLE patient. (Best in color) 
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2. MATERIALS AND METHODS 

2.1 Video Monitoring Dataset 

The video recordings were captured as a part of the routine long-term Video-EEG monitoring protocol at the Mater Hospital in 

Brisbane, Australia with the epilepsy patients who were undergoing phase 1 workup for their drug-resistant epilepsy. The patients 

were monitored over a time period ranging 2-7 days. The patients were selected if clinical evaluation suggested a possible surgical 

procedure may be suitable or if invasive studies were necessary to analyse the onset. A random sample of 16 patients with MTLE 

was retrospectively selected from the overall dataset. Localization of MTLE was confirmed either from a Stereo-EEG evaluation 

or if a temporal lobectomy had been performed in the setting of hippocampal sclerosis, with seizure freedom of no less than 2 

years.  

All seizures recorded from MTLE patients were assessed and categorised according to gestural motor behaviours including 

chewing, blinking, fear or wide-open eyes, eye-gaze and motions in the mouth area as illustrated by a selected example in Fig. 1. 

The observation of semiology was the essence of the first step of this study, where it was crucial to choose well-defined terms to 

describe different signs. Instances of seizures in the video recorded for the dataset were selected from the first epileptic discharge 

until the full expression of semiology prior to version and convulsion if it was experienced. All digitised recorded images from 

each video clip, recorded at a frame rate of 25 frames/second, were in the PNG format with an image dimension of 1280x720 

pixels.  

Following this preliminary study, we developed our dataset to perform the quantitative identification between facial expressions 

during ictal (Class 1) and non-ictal events (Class 2). Table I illustrates the demographic statistics of the 8 patients nominated as 

Class 1 with the most common ictal pattern, while for Class 2 we randomly selected 8 epileptic patients with video clips recording 

with non-ictal/random facial expressions such as answering questions from the doctors, eating, watching television and speaking 

with family members. To avoid incorrect instances of natural behaviour in Class 2, video recordings of interictal periods were not 

considered. A total of 55 videos clips from the day and night monitoring were recorded, representing 24 videos for Class 1 and 31 

videos for Class 2. 

 

 

 

 

 

 

 

 

 

Seizure events are uncommon and public data of semiology is absent. Inadequate training data hinders the validation of 

algorithms that could quantify semiology. For this reason, in order to exploit the ability of transfer learning of deep learning 

architectures in the epilepsy task, public datasets traditionally used in the facial analysis under unconstrained conditions were 

considered to train models used in the proposed approach, and will be described in Sections 2.2.1 and 2.2.2.  

TABLE I 
MESIAL TEMPORAL LOBE EPILEPSY (MTLE) PATIENTS  

DEMOGRAPHICS DURING ICTAL ACTIVITY 

Test 

Subject 

Number of  

Seizures 

Number of 

Frames 
Main Semiology 

1 1 1700 Mouth and tongue movement 

2 2 3750 Mouth movement and left eye blinking 
3 3 1700 Fear expressions 

4 2 1025 High blinking frequency 

5 2 2225 Mouth and tongue movement 
6 4 3750 Fear expressions and blinking 

7 4 3600 Mouth movement and swallowing 

8 6 6675 Mouth and tongue movement 

Total 24 24425  
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2.2 The Proposed System 

Given a sequence of colour images of a patient, our method estimates whether a facial expression sequence has an ictal pattern 

of MTLE. A facial expression can be observed as a dynamic variation of key parts, which are fused to form the variation of the 

whole face. The aim of our methodology is to capture such dynamic variation of facial physical structure from consecutive frames. 

In order to validate the research hypothesis which states that similar semiological patterns are sufficient to categorise patients with 

MTLE, an experimental design, displayed in Fig. 2, was proposed to assess semiology from facial movements. To analyse the 

facial expressions, two methods have been considered: landmark-based and region-based. A landmark-based method (geometry 

information) is based on a detector of anatomical points of reference in the face for the measurement and quantification of facial 

motions over time. In a region-based method, spatio-temporal features are extracted to model the variability in morphological and 

contextual factors of the whole face by employing a combination of convolutional neural network (CNN) and recurrent neural 

network (RNN). Spatial features provides information in the facial expressions of a single video frame. On the other hand, temporal 

features exhibits the relationship between facial expressions revealed in consecutive video frames. Both approaches were selected 

to evaluate and verify which method excels at classifying MTLE patients in the real conditions of clinical monitoring. 

Our supervised methodology is divided into two main phases: feature extraction and classification. Feature extraction can be 

viewed as finding a set of measured data which effectively represent the information content of an observation. The classification 

phase concerned to which of a set of categories or class a new observation belongs, on the basis of a training and validation set 

whose class membership is known. In order to extract features from facial expressions, we used well-established models pre-

trained with public datasets that have been used with success in facial research different from clinical applications. We analyse a 

broad range of available techniques of face detectors and facial landmarks estimators with the purpose to train our system to 

recognise a human face and its regions of interest (ROI). Subsequently, we implement and improve upon the selected model for 

the epilepsy evaluation task by comparing their performance on our dataset of epileptic patients and conducting a process of fine-

tuning. Once the spatio-temporal features are extracted from the sequence of the video clips recorded, training and validation are 

performed with the aim of training the system to classify facial semiology of MTLE from natural facial expressions. 

The landmark-based method, which is an important representation of the facial expression, was chosen to capture the 

kinematic information of specific landmarks located in the mouth and eyes to analyse the frequency and amplitude of the 

movements. This method models the face changes over time, which is effective to capture the dynamic variation of the facial 

physical structure. Pre-existing algorithms based on DL capable of achieving a high accuracy for the facial landmark estimation 

and alignment were used in the process of landmarks estimation for all frames. The movement detection is represented by the two-

dimensional movements, 𝑋 axis and 𝑌 axis, of each landmark during the facial expression. The resulting (𝑋, 𝑌) time series of each 

 

 
 

Fig. 2. Two approaches proposed for the automatic analysis of semiology in facial expressions. 
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marker are used to perform the movement quantification using metrics based on temporal domain to detect facial changes in 

acceleration or displacement of each landmark among frames. 

The region-based method, on the other hand, extracts spatial features from the whole face. This method aims to capture the 

dynamic change of facial physical structure from consecutive frames by exploiting temporal information as the facial expression 

changes. The region-based method extracts spatio-temporal features from the raw frames using an end-to-end deep learning model 

by implementing a CNN and a Long Short-Term Memory (LSTM) architecture [25], which is a special type of RNN. While a 

CNN excels at learning spatial features, an LSTM is ideal for learning the temporal features and the long-term dependencies present 

within sequential data.  

2.2.1 Face Detection 

The initial step to estimate facial features for both proposed approaches is to detect the area of interest, i.e. the face. This process 

should be robust to real-world conditions that occur during monitoring including scale and pose changes, occlusions, and 

illumination variations. Traditional techniques used for face detection such as cascade-based and deformable part models can be 

further improved by deep learning [26]. For instance, the widely-used Viola and Jones algorithm [27], provides real-time face 

detection, but only performs well on frontal and well-lit face images [14, 15]. However, more recent deep learning models better 

capture non-linear mappings between intrinsic facial features and facial muscle motions. 

We have evaluated representative state-of-the-art facial detectors [28-31] based on DL models and compared their performance 

on our epilepsy dataset using the Average Precision (AP) metric. The face detector proposed in [28] has been found to be a suitable 

option to conduct the detection of the patient’s face because of its precision, reduced running time and documentation to ensure 

full reproducibility. The precision of the method is considered as the number of items correctly labeled as belonging to the positive 

class. The face detector is based on the Faster R-CNN architecture [32] which has achieved state-of-the-art object detection 

accuracy with a reduced running time. The Faster R-CNN consists of two modules: a Region Proposal Network (RPN) which 

generates a set of object proposals; and an Object Detection Network, based on the Fast R-CNN detector [33] which refines the 

proposal location. In the RPN, the CNN architecture considered was the VGG-16 model [34]. The RPN can be trained in an end-

to-end manner using backpropagation and stochastic gradient descent (SGD) [35]. The face detector [28] was trained on a large 

scale public dataset, WIDER Face [36], and used the pre-trained ImageNet model, VGG-16 [34], to generate high-quality object 

proposals. The authors adopted the approximate joint learning strategy. This method trains the RPN module jointly with the Fast 

R-CNN network, rather than alternating between training the two. The performance was evaluated on the widely-used facial 

datasets FDDB [37] and IJB-A [38]. With the purpose to avoid false face detections of the patient because of the presence of 

clinical staff and family members inside the patients’ room, a preceding phase of human detection is also developed with the 

unified network Faster R-CNN.  

2.2.2 Landmark-Based Method 

Once the face detection is completed facial landmark estimation can be performed. Since the pioneering method of [39], Deep 

Convolutional Neural Networks (DCNN) have been successfully used in facial landmark localization, overcoming limitations of 

traditional techniques based on generative and discriminative methods. DL architectures are accurate because the geometric 

constraints among facial points are implicitly utilised, a huge amount of training data can be leveraged and they do not need any 

facial landmark initialization [40]. 

Recent approaches investigated the possibility of improving the detection robustness through multi-task learning with 

heterogeneous but subtly correlated tasks, e.g. facial landmark distribution and head pose estimation [41] including the spatial 

rotations yaw, pitch and roll. We have assessed a number of benchmark methods for facial keypoint detection based on DL [41-

45], analysing metrics such as the mean error and failure rate. In this study, we use the framework known as Tasks-Constrained 
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Deep Convolutional Network (TCDCN) [41], which is a near state-of-the-art facial landmark estimator system and returns precise 

landmark estimations for the faces in the epilepsy dataset. TCDCN incorporates auxiliary information into the fitting process such 

as head pose estimation or facial attribute inference. This architecture represents a method of transferring the representation from 

a network pre-trained with images annotated with sparse landmarks and attributes, to a network for dense landmark learning. The 

DCNN is pre-trained by five landmarks and then fine-tuned to predict the dense landmarks of 68 facial points required. The feature 

extraction stage contains 4 convolutional layers, 3 pooling layers and 1 fully connected layer [41]. The TCDCN model was trained 

and tested with the MAFL[41], 300-W (IBUG)[46], Helen[47], COFW[48] and AFLW [49] datasets. 

Once the landmark estimation is complete, and 𝑋-axis and 𝑌-axis trajectories of the facial expressions are extracted and temporal 

features are obtained by computing 10 metrics for each landmark. The landmarks movement is analysed using a temporal window 

of 25 consecutive video frames to study their significance level in discriminating MTLE patients. For each landmark trajectory, 

the velocity and acceleration over time are calculated and for each of these signals the standard deviation, median, mean, maximum 

and minimum are measured. Each video sequence has a feature vector with a dimensionality of [1,680], which corresponds 10 

features for each of the 68 landmarks. A Support Vector Machine (SVM) is proposed to classify facial semiology from patients 

with MTLE. 

2.2.3 Region-Based Method 

The region-based method is based on well-known approaches for visual recognition and description [50], and works by 

extracting spatio-temporal features from video sequences to predict classes through an end-to-end deep learning model. With this 

approach, we are classifying video sequences of facial expressions from patients with MTLE. Compared to the method based on 

facial key points, the performance can be enhanced by feeding the raw frames to deep learning models, allowing the model to learn 

optimal features from the entire facial area. 

The proposed approach uses the CNN fine-tuned for face detection to learn the spatial features of the face; then, these features 

are linked to an LSTM to exploit the temporal relationship between video frames. The hybrid deep learning framework combining 

CNN and LSTM to exploit the spatio-temporal information of facial semiology in video sequences is displayed in Fig. 3. A new 

dataset of sequences of facial semiology is created using the face detector. The image background is removed to avoid non-facial 

information or incorrect features by setting the input image as only the region bounded by the detected face. The sequences are 

analysed using a temporal window of 25 consecutive video frames. Each frame is processed through the CNN architecture to 

 
 
Fig. 3. The proposed framework of the region-based methodology with the CNN-LSTM architecture to classify sequences of facial semiology. A. A new dataset 

of facial semiology is created using face detection, obtaining over 20,000 images for both classes. B. With the CNN structure based on the Face Faster R-CNN 

architecture, the spatial features of the face image (224, 224, 3) are extracted from the fully-connected layer. C. The temporal evolution is analysed using a 
temporal window of 25 consecutive video frames for each video clip. D. The feature sequence is feed to a Long-Short-Term-Memory (LSTM) to exploit the 

temporal relation between video frames, to train and to predict the class of the sequence. (Best in color) 
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generate the visual features. The hidden layer activation is extracted from the last fully connected layer (fc7 layer) with a dimension 

of [1,4096], as the output of the fc7 layer in the VGG-16 network has 4096 units.  

Once the sequential features are extracted, they are fed to an LSTM network. The number of LSTM layers is one significant 

hyper-parameter to consider in the LSTM network. We adopt a many-to-one model where multiple stack LSTMs infer one output. 

We obtained the best performance with a network configured with 2 hidden layers of 128 and 64 hidden units respectively. The 

output of the second hidden recurrent layer is fed into a densely-connected layer with a sigmoid activation function to predict the 

class probability for the input data sequence. 

2.3  Experimental Approach 

We fine-tuned the face detector [28], to improve the performance of images recorded during patient night monitoring using a 

infrared camera which is present in our epilepsy dataset. The fine-tuning was performed only on the last fully connected layer of 

the VGG-16 architecture to preserve the earlier learnt filters. This process was performed following the instructions in [32, 51]. 

The framework is implemented in Python and uses the Caffe [51] and OpenCV libraries. Similarly, the dataset of epileptic patients 

is used to fine-tune the trained model from [41] to conduct the facial landmark estimation. 

In the case of the region-based method, the LSTM architecture used to exploit the temporal features, is a lightweight model with 

approximately 800,000 trainable parameters. Training of the LSTM network is carried out by optimizing the binary cross entropy 

loss function. The LSTM was optimised with the ADAM optimizer [52] with a learning factor of 10−3, and decay rate of first and 

second moments as 0.9 and 0.999 respectively. ADAM has been shown to achieve competitively fast convergence rates when used 

for multi-layer neural networks. It was found that the stochastic gradient descent optimizer (SGD) yielded worse performance. 

Dropout [53] with a probability of 0.35 and batch size set to 4 are also used as they are considered to be an effective method for 

reducing overfitting in deep neural networks when dealing with a huge number of parameters and a small training dataset. We 

balance the training data at the sequence level using the class weight parameters as in [54]. With an imbalanced dataset, it is 

probable that without class weights a model will get biased toward the prediction of the no-MTLE patients as this is the dominant 

case in the dataset. We perform the model training using 30 epochs and use the default initialization parameters from Keras package 

[54] for initializing the weights of LSTM hidden units. The LSTM is implemented in Python using Keras [54] with a Theano 

backend [55]. 

In the experiment, we adopt two approaches for cross-validation to evaluate the deep framework, a k-fold cross-validation and 

a leave-one-subject-out cross-validation. Both approaches ensure that data used for testing is completely separate to that used for 

training the models. The k-fold cross-validation [56] allows us to confirm the reliability of the model by evaluating the approach 

for facial semiology detection for MTLE on data that has not been seen during training. The leave-one-subject-out cross-validation 

[57] aims to validate the ability of the trained model to capture subject invariant features such that it can predict whether facial 

expressions are indicative of MTLE on subjects not seen in the training set. This is the expected clinical scenario when analysing 

seizures recorded for a new patient, and outputs the probability that the patient has MTLE. For the k-fold cross-validation, the 

sequences of all patients of the same class are randomly split into 70% for training, 20% for validation and 10% for testing k 

different folds (5-folds in this experiment). The average test accuracy of the framework is computed as the average performance 

of each fold. In a leave-one-subject-out cross-validation scheme, one patient with MTLE is left out as the test subject and the 

remaining are used for training and validation. The prediction accuracy is computed as the average of eight models (8 of the 8 

patients). During the training (without including the test patient), 70% of the data is used for training and 30% for validation.  
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3. RESULTS 

3.1 Face Detection 

The intersection-over-union (IoU) is used to quantitatively evaluate the face detection in the epilepsy dataset. The fine-tuned 

face detector [28] reached an average accuracy of 0.920 in the IoU, in selected videos manually annotated from the data. Fig. 4A 

shows the qualitative performance in different clinical scenarios: day and night monitoring. 

 

3.2 Landmark-based Classification 

The outcome of the landmarks estimation is the position (𝑥, 𝑦) for each facial key-point and the head rotation vector represented 

by the yaw, pitch and roll angles in degrees. The model has shown efficient qualitative results in faces with changes in illumination 

and with head rotation across the yaw axis that did not exceed the range of the training datasets, which is (−35°, +35°). Fig. 4B 

depicts the qualitative performance of the facial landmark estimation in different scenarios in our dataset. A landmark is labelled 

as valid or detected if the distance between the estimated point is within a certain range (four-pixel neighbourhood) when compared 

to the ground truth. The algorithm implemented is based on the architecture from [41], and reached an average accuracy of 92% 

of facial point detection across all the images annotated, which indicates an accurate level performance with semi-frontal faces. 

However, in our data corpus consisting of scenarios for epilepsy diagnosis, more than 75% of the images with semiology were 

observed in cases of extreme head pose. As a result, the facial landmark estimation for the 55 videos clips of our dataset was 

restricted by the performance of the detector. Consequently, the number of clips with the available 𝑋-axis and 𝑌-axis trajectories 

needed to compute the metrics and extract the feature vector was very low. With a disproportionate number of features for each 

class, the evaluation of the classification methodology using the proposed SVM method, resulted in a very low validation accuracy 

of 35%, which suggests that there are not sufficiently discriminative features to classify facial semiology from patients with MTLE. 

This experiment reveals that even the state-of-the-art landmark detection algorithms in the literature suffer when presented with 

these extreme pose cases and yield poor detection results.  

 
 

Fig. 4. A. Selected examples of face detection using deep learning. Automated face detection results are shown in the yellow bounding boxes. B. Selected 
examples of facial landmark estimation. The landmarks in the eyes are covered to protect the identity of the patient. (Best in color) 
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3.3 Region-based Classification 

3.3.1 Multi-fold Cross-validation (K-fold cross-validation) 

The LSTM model was capable of achieving an average of 95.19% accuracy on the test set. Table II displays the comparison 

between the validation accuracy and test accuracy set for each fold. We compared the performance of each model from the multi-

fold cross-validation computing the Receiver Operating Characteristic (ROC) curve and calculating the Area Under Curve (AUC). 

The area measures discrimination, i.e. the ability of the test to correctly classify those with and without MTLE epilepsy. For the 

five different models, the average area under the curve reached a value of 0.9926. 

 

 

 

 

 

 

 

3.3.2 Leave-one-subject-out cross-validation  

Table III illustrates the results of the performance of the validation during training and testing for each subject. The proportion 

of the subject in the total data indicates the number of video sequences for each patient with MTLE in the dataset for class 1, where 

subject 8 has more sequences of seizure recorded than any other. The deep learning framework reached an average validation 

accuracy of 97.69% and an average test accuracy of 50.85%. 

 

 

 

 

 

 

 

 

4. DISCUSSION 

Seizure semiology has proven to be a reliable data source in epilepsy evaluation, but it is extremely difficult to characterise and 

this evaluation requires standardisation among evaluators through quantitative methods. Automated analysis of facial semiology 

is challenging because of the immense complexity of extracting accurate features from key facial regions in the challenging 

conditions encountered during clinical monitoring. This study shows that quantitative facial expression analysis based on deep 

learning provides objective data that differentiates facial semiology from MTLE patients from spontaneous expressions during 

routine monitoring. The proposed deep learning model automatically learns spatio-temporal features from raw data, which reduces 

the need for feature engineering, one of the most time-consuming phases of machine learning in practice. The results of the face 

detector and facial landmark estimator illustrate the ability of deep transfer learning to adapt models trained on out-domain data to 

new problems. This is represented by the ability to learn to evaluate neurological diseases from features learned from facial 

expressions. Additionally, the architectures based on LSTM proved to be a useful method to accumulate and maintain temporal 

detail when processing sequence data, such as the evolution of a facial expression. 

TABLE III 

LEAVE-ONE-SUBJECT-OUT CROSS-VALIDATION PERFORMANCE 
MESIAL TEMPORAL LOBE EPILEPSY (MTLE) PATIENTS 

Test 
Subject 

Proportion subject 
in total data (%) 

Validation 
Accuracy (%) 

Test  
Accuracy (%) 

1 6.96 97.78 87.80 

2 15.35 98.10 41.11 

3 6.96 97.78 9.76 

4 4.19 96.97 16.67 

5 9.11 98.20 81.48 

6 15.35 97.63 60.00 
7 14.73 97.64 50.00 

8 27.32 97.42 60.85 

Average  97.69 50.85 

 

TABLE II 
MULTI-FOLD CROSS-VALIDATION PERFORMANCE 

MESIAL TEMPORAL LOBE EPILEPSY (MTLE) PATIENTS 

Fold 
Validation 

Accuracy (%) 

Test  

Accuracy (%) 
AUC 

1 96.20 96.20 0.9984 

2 93.67 94.94 0.9968 

3 98.10 92.41 0.9752 

4 96.84 96.20 0.9952 

5 98.10 96.20 0.9976 

Average 96.58 95.19 0.9926 
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We have shown that the landmark-based method is considerably limited by the landmark estimation performance, and the 

estimator is appropriate only in certain monitoring situations of our dataset. Although this method is more intuitive because the 

features extracted are visually related to the amplitude and frequency of the landmark motions and will likely yield good results if 

the landmarks are consistently detected across challenging scenarios, the performance is diminished in extreme cases of head pose 

which is a routine reality in the clinical monitoring environment. In the long term, the landmark-based method will be revisited 

when new, more accurate and robust facial landmark detection algorithms to assess facial expressions are introduced. In contrast, 

the region-based method has demonstrated robust performance within the challenging, unconstrained (in-the-wild) conditions 

encountered in the clinical environment including changes in head pose and illumination. This method allows the extraction of 

sufficient amount of features to conduct a process of categorisation of semiological behaviour.  

The high performance of the multi-fold cross-validation method compared with the leave-one-subject-out cross-validation 

technique for the region-based method (see Tables II and III) has verified the robustness to model variations in the data but at the 

same time highlights the disadvantage of small datasets when classifying semiology. This is evident from the performance of the 

leave-one-subject-out cross-validation and the differences between the average validation and test accuracies. In the particular case 

of the subject 3 and 4, the semiological patterns from these patients were not strongly present or similar to the semiological patterns 

of other patients of the dataset. This is likely because these two patients show a high blinking frequency and fear expressions which 

were not present in other patients, and thus are not properly modelled by the network during the training process. However, we 

note that for other patients such as patient 1 and 5, good classification results could be achieved due to their semiological patterns 

being exhibited by other patients in the dataset. This suggests that while performance at present is limited, a larger training dataset 

that better captures the variety of semilogical patterns that can occur will result in significantly improved performance. The k-fold 

cross-validation method classifies random sequences of any subject with a model that was trained using observations from all 

subjects, while the leave-one-subject-out cross-validation method evaluates the complete video corpus for one specific subject who 

is not seen at any moment during the training. This results in the leave one subject out evaluation being more sensitive to the small 

dataset. Although the region-based method has been affected by the available semiological cases recorded, the results have 

demonstrated that the automatic feature engineering from deep models achieves promising results and it is a novel method that 

should be considered for analysing epileptic patients as the landmark-based approach struggles in the real world conditions 

encountered in a hospital setting. 

The most significant limitation when studying semiology automatically is the underfitting of the models due to inadequate 

training data. As such, we are currently developing a larger seizure semiology database that may be used to mitigate this problem 

in the future. It remains to be seen how our model will scale when applied to a much larger dataset to explore facial expressions 

only during seizure events from different epilepsy types; however, early results are promising. 

5. CONCLUSION 

The main objective of this proposal is to provide quantitative motion information for supporting the assessment of epilepsy. In 

this paper, we have investigated facial-semiology for epilepsy evaluation from the deep learning perspective, overcoming a number 

of limitations of traditional techniques to quantify facial semiology including the extraction of robust facial features in a clinical 

monitoring environment, using a 2D video database. 

We have proposed two approaches, landmark-based and region-based, using modern deep learning models including CNN and 

LSTM for enabling the automatic assessment of facial movements during seizures. The validation of the deep network system 

presented here has confirmed that our method reveals quantified motion patterns from facial expressions that can differentiate ictal 

semiology from natural expressions in patients with MTLE. This information has value to clinicians in seizure classification and 
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may aid in the localization of the epileptogenic network by supporting the analysis performed by the epileptologist, particularly in 

the setting of the pre-surgical evaluation.  

A new version of the system will be validated to quantitatively classify Mesial Temporal (mTLE) and Extra-Temporal (ETLE) 

lobe epilepsies, relying on facial expressions and pose dynamics such as head and upper limb movements. Future work will explore 

features pertaining to facial expressions, hand and body movements which can be jointly extracted and combined to further enhance 

patient evaluation. From the clinical point of view, we expect that the quantified movement analysis could extract information that 

is imperceptible to visual inspection, provide additional evidence in the classification of epileptic seizures and contribute toward a 

more reliable diagnosis. The automatic computer-aided diagnosis of semiology could also be potentially useful for motion analysis 

in the evaluation of broader neurological diseases that experience movement disorders. 
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