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1.1 Proof of Lemma 3.1

(a) Let Λ0 = {(f1, f2) : 1 ≥ f2 ≥ f1 + f0 > 0 and 0 ≤ f1 ≤ 1− f0} for some f0 > 0. Set Tw =

bTfwc with fw = f2 − f1 and (f1, f2) ∈ Λ0 Write the estimation error as

π̂f1,f2 − πf1,f2 =

In ⊗
bTf2c∑
t=bTf1c

xtx
′
t

−1  bTf2c∑
t=bTf1c

ξt

 ,
and, under A2, {ξt,Ft} is a covariance stationary mds with E (ξt|Ft−1) = 0 and supt E

(
‖ξt‖2

)
<

∞, so that T−1
w

∑bTf2c
t=bTf1c ξt →a.s. 0 by a standard martingale strong law. Define Q̂f1,f2 =

1
Tw

∑bTf2c
t=bTf1c xtx

′
t. Then, by a strong law for second order moments of linear processes (Phillips

and Solo (1992), Theorem 3.7), we have Q̂f1,f2 →a.s. Q =E (xtx
′
t) > 0 and then

π̂f1,f2 − πf1,f2 =
[
In ⊗ Q̂f1,f2

]−1

 1

Tw

bTf2c∑
t=bTf1c

ξt

→a.s. 0, (1)

so that π̂f1,f2 →a.s. πf1,f2 = π under the maintained null of constant coefficients. The conver-

gence (1) also holds uniformly over fw = f2 − f1 ≥ f0 by virtue of the martingale maximal

inequality.

(b) Because ε̂t = εt −
(
π̂′f1,f2 − π

′
f1,f2

)
(In ⊗ xt), we have

Ω̂f1,f2 =
1

bTfwc

bTf2c∑
t=bTf1c

εtε
′
t −

2

bTfwc

bTf2c∑
t=bTf1c

εt (In ⊗ xt)
′ (π̂f1,f2 − πf1,f2)

+
1

bTfwc

bTf2c∑
t=bTf1c

(
π̂′f1,f2 − π

′
f1,f2

) (
In ⊗ xtx

′
t

)
(π̂f1,f2 − πf1,f2)

p→ Ω,

since 1
bTfwc

∑bTf2c
t=bTf1c εtε

′
t →a.s. Ω, π̂f1,f2 →a.s. πf1,f2 ,

1
bTfwc

∑bTf2c
t=bTf1c ξt →a.s. 0, and Q̂f1,f2 →a.s.

Q > 0.

(c) Under A2 the martingale conditional variance satisfies the strong law

1

Tw

bTf2c∑
t=bTf1c

E
(
ξtξ
′
t|Ft−1

)
= Ω⊗ 1

Tw

bTf2c∑
t=bTf1c

xtx
′
t →a.s. Ω⊗Q > 0,
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so that the stability condition for the martingale CLT is satisfied (Phillips and Solo, 1992,

Theorem 3.4). Next, the conditional Lindeberg condition is shown to hold hold, so that for

every δ > 0

1

Tw

bTf2c∑
t=bTf1c

E
{
‖ξt‖2 .1

(
‖ξt‖ ≥

√
Twδ

)
|Ft−1

}
p→ 0. (2)

Let AT =
{
ξt : ‖ξt‖ ≥

√
Twδ

}
. For some α ∈ (0, c/2) if follows that

E
[
‖ξt‖2 1

(
‖ξt‖ ≥

√
Twδ

)]
=

∫
AT

‖ξt‖2 dP ≤
1(√
Twδ

)α ∫
AT

‖ξt‖2+α dP

Hence,

E

 1

Tw

bTf2c∑
t=bTf1c

E
{
‖ξt‖2 1

(
‖ξt‖ ≥

√
Twδ

)
|Ft−1

} =
1

Tw

bTf2c∑
t=bTf1c

E
{
‖ξt‖2 1

(
‖ξt‖ ≥

√
Twδ

)}
≤ T−α/2w δ−α sup

t
E
[
‖ξt‖2+α

]
≤ T−α/2w δ−α/2K sup

t
E ‖εt‖4+2α → 0

for some constant K <∞ as T →∞ since

E ‖ξt‖2+α = E ‖εt⊗xt‖2+α = E
(
‖εt‖2+α ‖xt‖2+α

)
≤ K sup

t
E ‖εt‖4+2α <∞,

in view of A2. Hence,

1

Tw

bTf2c∑
t=bTf1c

E
{
‖ξt‖2 .1

(
‖ξt‖ ≥

√
Twδ

)
|Ft−1

}
L1→ 0,

which ensures that the Lindeberg condition (2) holds. Then, by the martingale invariance

principle for linear processes (Phillips and Solo, 1992, Theorems 3.4), for fixed f2 > f1 it follows

that T−1/2
∑bTf2c

t=bTf1c ξt ⇒ B (f2)− B (f1) , where B is vector Brownian motion with covariance

matrix Ω⊗Q.

The limit theory may be extended to allow for indexing by (f1, f2) ∈ Λ0. We define the

partial sum proces X0
T (r) = T−1/2

∑bTrc
t=1 ξt ⇒ B (r) on D [0, 1]nk equipped with the uniform

topology, set gfi
(
X0
T

)
:= X0

T (fi) , and let gf1,f2
(
X0
T

)
:= f−1

w

(
gf2
(
X0
T

)
− gf1

(
X0
T

))
. Since gfi

is continuous for i = 1, 2 and fw ≥ f0 > 0, so is the functional gf1,f2
(
X0
T

)
. Moreover, the

functional gf1,f2 (·) may be interpreted as a map of the space D [0, 1]nk onto a function that is
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defined on Λ0. We may then write subsequent functionals of gf1,f2 as composed functionals of

X0
T . In particular, we may write the scaled estimation error

√
T (π̂f1,f2 − πf1,f2) as

√
T (π̂f1,f2 − πf1,f2) =

[
In ⊗ Q̂f1,f2

]−1

 T

Tw

1√
T

bTf2c∑
t=bTf1c

ξt


=

In ⊗
1

Tfw

bTf2c∑
t=bTf1c

xtx
′
t

−1 [
gf1,f2

(
X0
T

)
+ op (1)

]
= [In ⊗Q]−1 gf1,f2

(
X0
T

)
+ op (1)

=: kf1,f2
(
X0
T

)
+ op (1) , (3)

where kf1,f2
(
X0
T

)
, like gf1,f2

(
X0
T

)
, is a continuous linear functional of the process X0

T indexed

by (f1, f2) ∈ Λ0. By the continuous mapping theorem, it follows that kf1,f2
(
X0
T

)
⇒ kf1,f2 (B) ,

giving

√
T (π̂f1,f2 − πf1,f2) =

[
In ⊗ Q̂f1,f2

]−1

 1

fw

1√
T

bTf2c∑
t=bTf1c

ξt

⇒ [In ⊗Q]−1 gf1,f2 (B)

= kf1,f2 (B) = [In ⊗Q]−1

[
B (f2)−B (f1)

fw

]
. (4)

The limit in (4) may be interpreted as a linear functional of the limit processB (·), whose finite di-

mensional distribution for fixed f1 and f2 is simplyN
(
0,Ω⊗ f−1

w Q−1
)
, so that

√
T (π̂f1,f2 − πf1,f2)⇒

N
(
0,Ω⊗ f−1

w Q−1
)
, as stated.

1.2 Proof of Proposition 3.1

In view of (4), under the null hypothesis Rπf1,f2 = 0 we have

√
TRπ̂f1,f2 ⇒ R [In ⊗Q]−1 gf1,f2 (B) = R

[
Ω1/2 ⊗Q−1/2

]
gf1,f2 (W ) ,

whereW is standard Brownian motion with covariance matrix Ink and gf1,f2 (W ) = (W (f2)−W (f1)) /fw.

Setting Tw = bTfwc, it follows that

Zf2 (f1) :=

R

Ω̂f1,f2 ⊗

 bTf2c∑
t=bTf1c

xtx
′
t

−1R′

−1/2

Rπ̂f1,f2
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=

R

Ω̂f1,f2 ⊗

Tfw
T

1

Tw

bTf2c∑
t=bTf1c

xtx
′
t

−1R′

−1/2

√
TRπ̂f1,f2

= f1/2
w

[
R
(
Ω⊗Q−1

)
R′
]−1/2

R [In ⊗Q]−1 gf1,f2
(
X0
T

)
+ op (1)

⇒ f1/2
w

[
R
(
Ω⊗Q−1

)
R′
]−1/2

R [In ⊗Q]−1 gf1,f2 (B) .

The Wald statistic has the form

Wf2 (f1) = Zf2 (f1)′ Zf2 (f1)

= fwgf1,f2
(
X0
T

)′
[In ⊗Q]−1 ′R′

[
R
(
Ω⊗Q−1

)
R′
]−1

R [In ⊗Q]−1 gf1,f2
(
X0
T

)
+ op (1)

= fwgf1,f2
(
X0
T

)′ [
Ω−1/2 ⊗Q−1/2

] [
Ω1/2 ⊗Q−1/2

]
R′
[
R
(
Ω⊗Q−1

)
R′
]−1

R
[
Ω1/2 ⊗Q−1/2

]
×
[
Ω−1/2 ⊗Q−1/2

]
gf1,f2

(
X0
T

)
+ op (1)

= fwgf1,f2
(
X0
T

)′ [
Ω−1/2 ⊗Q−1/2

]
A
(
A′A

)−1
A′
[
Ω−1/2 ⊗Q−1/2

]
gf1,f2

(
X0
T

)
+ op (1)

=: h
(
X0
T

)
+ op (1) ,

with the nk × d matrix A =
[
Ω1/2 ⊗Q−1/2

]
R′. Now for (f1, f2) ∈ Λ0, we have hf1,f2

(
X0
T

)
⇒

hf1,f2 (B) where

hf1,f2 (B) = fwgf1,f2 (B)′
[
Ω−1/2 ⊗Q−1/2

]
A
(
A′A

)−1
A′
[
Ω−1/2 ⊗Q−1/2

]
gf1,f2 (B)

=

(
W (f2)−W (f1)

f
1/2
w

)′
A
(
A′A

)−1
A′

(
W (f2)−W (f1)

f
1/2
w

)
.

with the nk × d matrix A =
[
Ω1/2 ⊗Q−1/2

]
R′.

Next, we define the sup functional

h∗
(
hf1,f2

(
X0
T

))
= sup

fw=f2−f1≥f0
hf1,f2

(
X0
T

)
,

which maps functions defined on Λ0 onto R. By virtue of the continuity of the map h∗, the

continuity of hf1,f2 , and the weak convergence of the process X0
T (r) = T−1/2

∑bTrc
t=1 ξt ⇒ B (r)

on D [0, 1]nk , the continuous mapping theorem gives the weak convergence

h∗
(
hf1,f2

(
X0
T

))
⇒ sup

fw=f2−f1≥f0
hf1,f2 (B)
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= sup
fw=f2−f1≥f0

(
W (f2)−W (f1)

f
1/2
w

)′
A
(
A′A

)−1
A′

(
W (f2)−W (f1)

f
1/2
w

)
.

Finally, we note that Wf2 (f1) = hf1,f2
(
X0
T

)
+ op (1) by virtue of the convergences Ω̂f1,f2 →p Ω

and T−1
w

∑bTf2c
t=bTf1c xtx

′
t →p Q, which hold uniformly over (f1, f2) ∈ Λ0, so that

sup
fw=f2−f1≥f0

Wf2 (f1) = h∗
(
hf1,f2

(
X0
T

))
+ op (1) = sup

fw=f2−f1∈[f0,f2]
hf1,f2

(
X0
T

)
+ op (1)

⇒ sup
fw=f2−f1≥f0

(
W (f2)−W (f1)

f
1/2
w

)′
A
(
A′A

)−1
A′

(
W (f2)−W (f1)

f
1/2
w

)

=d sup
fw=f2−f1≥f0

(
Wd (f2)−Wd (f1)

f
1/2
w

)′(
Wd (f2)−Wd (f1)

f
1/2
w

)
,

where =d denotes equivalence in distribution and Wd is standard Brownian motion with covari-

ance matrix Id and d is the dimension of the restriction matrix R. Thus, the sup Wald statistic

satisfies the stated limit theory

SWf (f0)⇒ sup
(f1,f2)∈Λ0;f2=f

[
Wd (f2)−Wd (f1)

f
1/2
w

]′ [
Wd (f2)−Wd (f1)

f
1/2
w

]
,

by virtue of continuous mapping and the weak convergence X0
T (·)⇒ B(·).

2 Limit Theory under Conditional Heteroskedasticity of Un-
known Form

This section provides proofs of Lemma 3.2, 3.3 and 3.4 and Proposition 3.2 and 3.3 under A0

and A3.

2.1 Proof of Lemma 3.2

The proof of (a) follows directly from the strong law of large number for martingales (Hall and

Heyde, 1980, theorem 2.19) under A3(i).

For the proof of (b) and (c), it is shown that for all h ≥ 0, z > 0

P
(∥∥εtε′t−h∥∥ ≥ z) = P

(
‖εt‖

∥∥ε′t−h∥∥ ≥ z) ≤ P (‖εt‖ ≥ z1/2
)

+P
(
‖εt−h‖ ≥ z1/2

)
≤ 2γP

(
‖ε‖2 ≥ z

)
.
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The last inequality follows by uniform integrability because P (‖εt‖ ≥ z) ≤ γP (‖ε‖ ≥ z) for

each z ≥ 0, t ≥ 1 and for some constant γ under A3(i). Therefore, from the martingale strong

law

1

Tw

bTf2c∑
t=bTf1c

εtε
′
t →a.s Ω and

1

Tw

bTf2c∑
t=bTf1c

εtε
′
s →a.s 0 for s 6= t.

See also Remarks 2.8(i) and (ii) of Phillips and Solo (1992).

For (d), by construction

1

Tw

bTf2c∑
t=bTf1c

xt−1ε
′
t =

1

Tw

bTf2c∑
t=bTf1c

[
εt εty

′
t−1 · · · εty

′
t−p

]′
.

and, from (a), T−1
w

∑bTf2c
t=bTf1c εt →a.s 0. Next consider the product yt−hε

′
t with 1 ≤ h ≤ p. Since

yt−hε
′
t =

[
Φ̃0 +

∞∑
i=0

Ψiεt−h−i

]
ε′t = Φ̃0ε

′
t +

∞∑
i=0

Ψiεt−h−iε
′
t,

it follows from absolute summability that
∑∞

i=0 ‖Ψi‖ <∞ and results (a) and (c), that T−1
w

∑bTf2c
t=bTf1c yt−hε

′
t →a.s

0, giving the required T−1
w

∑bTf2c
t=bTf1c xt−1ε

′
t →a.s 0.

For (e), note that typical block elements of xtx
′
t have the form yt−hy

′
t−h−j and yt−h, so it

suffices to calculate the limits of the following sample moments

(i)
1

Tw

bTf2c∑
t=bTf1c

yt−h, where 1 ≤ h ≤ p;

(ii)
1

Tw

bTf2c∑
t=bTf1c

yt−hy
′
t−h−j , where 1 ≤ h ≤ p and 1 ≤ j ≤ p− h.

Since yt−h − Φ̃0 =
∑∞

i=0 Ψiεt−h−i and
∑∞

i=0 ‖Ψi‖ <∞ by virtue of A0, it follows that

1

Tw

bTf2c∑
t=bTf1c

(
yt−h − Φ̃0

)
=

1

Tw

bTf2c∑
t=bTf1c

∞∑
i=0

Ψiεt−h−i =
∞∑
i=0

Ψi

 1

Tw

bTf2c∑
t=bTf1c

εt−h−i

→a.s 0,

by results in (a), and

1

Tw

bTf2c∑
t=bTf1c

(
yt−h − Φ̃0

)(
yt−h−j − Φ̃0

)′
=

1

Tw

bTf2c∑
t=bTf1c

( ∞∑
i=0

Ψiεt−h−i

)( ∞∑
i=0

Ψiεt−h−j−i

)′
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→a.s

∞∑
i=0

Ψi+jΩΨ′i,

by results in (b) and (c). Hence,

T−1
w

bTf2c∑
t=bTf1c

yt−h →a.s Φ̃0, T−1
w

bTf2c∑
t=bTf1c

yt−hy
′
t−h−j →a.s Φ̃0Φ̃′0 +

∞∑
i=0

Ψi+jΩΨ′i,

giving

T−1
w

bTf2c∑
t=bTf1c

xt−1x
′
t−1 →a.s Q ≡

[
1 1′p ⊗ Φ̃′0

1p ⊗ Φ̃0 Ip ⊗ Φ̃0Φ̃′0 + Θ

]
,

with

Θ =
∞∑
i=0

 ΨiΩΨ′i · · · Ψi+p−1ΩΨ′i
...

. . .
...

ΨiΩΨ′i+p−1 · · · ΨiΩΨ′i

 .
2.2 Proof of Lemma 3.3

(a) We show that the following conditional Lindeberg condition holds for all δ > 0:

1

T

T∑
t=1

E
[
‖ξt‖2 1

(
‖ξt‖ ≥

√
Tδ
)
|Ft−1

]
p→ 0. (5)

Let AT =
{
ξt : ‖ξt‖ ≥

√
Tδ
}

. For some α ∈ (0, c/2)

E
[
‖ξt‖2 1

(
‖ξt‖ ≥

√
Tδ
)]

=

∫
AT

‖ξt‖2 dP ≤
1(√
Tδ
)α ∫

AT

‖ξt‖2+α dP ≤ 1(√
Tδ
)αE(‖ξt‖2+α

)
.

Hence,

E

{
1

T

T∑
t=1

E
[
‖ξt‖2 1

(
‖ξt‖ ≥

√
Tδ
)
|Ft−1

]}
=

1

T

T∑
t=1

E
[
‖ξt‖2 1

(
‖ξt‖ ≥

√
Tδ
)]

≤ T−α/2δ−α sup
t

E
(
‖ξt‖2+α

)
≤ T−α/2δ−αK sup

t
E
(
‖εt‖4+2α

)
→ 0,

for some constant K <∞ as T →∞ since

E ‖ξt‖2+α = E ‖εt ⊗ xt‖2+α ≤ E
(
‖εt‖2+α ‖xt‖2+α

)
≤ KE ‖ε‖4+2α <∞,
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in view of A3(i) and the stability condition A0 which ensures that ‖xt‖ ≤ A
∑∞

i=0 θ
i ‖εt−i‖ for

some constant A and |θ| < 1. Then (5) holds by L1 convergence.

(b) The stability condition involves the convergences

1

T

T∑
t=1

ξtξ
′
t,

1

T

T∑
t=1

E
{
ξtξ
′
t|Ft−1

}
→a.s Σ. (6)

By A3(i) and A0, it follows that E
{
‖ξtξ′t‖

1+δ
}

= E
{
‖εtε′t‖

1+δ ‖xtx′t‖
1+δ
}
≤ KE ‖ε‖4+4δ <∞

for some finite K > 0 and δ < c/4. Then, by the martingale strong law (Hall and Heyde, 1980,

theorem 2.19) we have T−1
∑T

t=1 {ξtξ′t − E (ξtξ
′
t|Ft−1)} →a.s 0, where the limit

lim
T→∞

1

T

T∑
t=1

E
(
ξtξ
′
t|Ft−1

)
= Σ, (7)

may be obtained by an explicit calculation using A3(ii) and (iii). By definition

ξtξ
′
t = εtε

′
t ⊗ xtx

′
t =

 ε2
1,txtx

′
t · · · ε1,tεn,txtx

′
t

...
. . .

...
ε1,tεn,txtx

′
t · · · ε2

n,txtx
′
t

 ,
and therefore limT→∞ T

−1
∑T

t=1 E
(
ε2

1,txtx
′
t|Ft−1

)
. The other limits can be computed in the

same way. The leading block submatrix of ξtξ
′
t is

ε2
1,txtx

′
t =


ε2

1,t ε2
1,ty

′
t−1 · · · ε2

1,ty
′
t−p

ε2
1,tyt−1 ε2

1,tyt−1y
′
t−1 · · · ε2

1,tyt−1y
′
t−p

...
...

. . .
...

ε2
1,tyt−p ε2

1,tyt−py
′
t−1 · · · ε2

1,tyt−py
′
t−p

 .
First, by the same martingale strong law T−1

∑T
t=1

{
ε2

1,t − E
(
ε2

1,t|Ft−1

)}
→a.s 0 and from

Lemma 3.2(b) T−1
∑T

t=1 ε
2
1,t →a.s Ω11, with T−1

∑T
t=1 E

(
ε2

1,t|Ft−1

)
→a.s Ω11 from A3(ii). To

obtain the limit of T−1
∑T

t=1 E
(
ε2

1,tyt−1|Ft−1

)
, note that

1

T

T∑
t=1

E
[
ε2

1,t

(
yt−1 − Φ̃0

)
|Ft−1

]
=

1

T

T∑
t=1

E
(
ε2

1,t|Ft−1

) (
yt−1 − Φ̃0

)
=

1

T

T∑
t=1

E
(
ε2

1,t|Ft−1

) ∞∑
i=0

Ψiεt−1−i =
∞∑
i=0

Ψi

[
1

T

T∑
t=1

E
(
ε2

1,t|Ft−1

)
εt−1−i

]
→a.s 0,
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from Assumption A3(iii) and A0. It follows that

1

T

T∑
t=1

E
[
ε2

1,tyt−1|Ft−1

]
→a.s Ω11Φ̃0 and

1

T

T∑
t=1

E
(
ε2

1,ty
′
t−1|Ft−1

)
→a.s Ω11Φ̃′0.

Similarly, to obtain the limit of T−1
∑T

t=1 E
(
ε2

1,tyt−hy
′
t−h−j |Ft−1

)
, observe that

1

T

T∑
t=1

E
[
ε2

1,t

(
yt−h − Φ̃0

)(
yt−h−j − Φ̃0

)′
|Ft−1

]

=
1

T

T∑
t=1

E
(
ε2

1,t|Ft−1

)( ∞∑
i=0

Ψiεt−h−i

)( ∞∑
i=0

Ψiεt−h−j−i

)

=
1

T

T∑
t=1

E
(
ε2

1,t|Ft−1

) ∞∑
i=0

Ψi+jεt−h−j−iε
′
t−h−j−iΨ

′
i + op (1)× 11′

=

∞∑
i=0

Ψi+j

[
1

T

T∑
t=1

E
(
ε2

1,t|Ft−1

)
εt−h−j−iε

′
t−h−j−i

]
Ψ′i + op (1)× 11′

→a.s

∞∑
i=0

Ψi+jΓ
(1,1)
h+j+iΨ

′
i,

from Assumption A3(iii) and A0. It may be deduced that

1

T

T∑
t=1

E
[
ε2

1,tyt−hy
′
t−h−j |Ft−1

]
→a.s

[
Ω11Φ̃0Φ̃′0 +

∞∑
i=0

Ψi+jΓ
(1,1)
h+j+iΨ

′
i

]
.

Therefore

1

T

T∑
t=1

E
(
ε2

1,txtx
′
t|Ft−1

)

→a.s


Ω11 Ω11Φ̃′0 · · · Ω11Φ̃′0

Ω11Φ̃0 Ω11Φ̃0Φ̃′0 +
∑∞

i=0 ΨiΓ
(1,1)
h+j+iΨ

′
i · · · Ω11Φ̃0Φ̃′0 +

∑∞
i=0 Ψi+p−1Γ

(1,1)
h+j+iΨ

′
i

...
...

. . .
...

Ω11Φ̃0 Ω11Φ̃0Φ̃′0 +
∑∞

i=0 ΨiΓ
(1,1)
h+j+iΨ

′
i+p−1 · · · Ω11Φ̃0Φ̃′0 +

∑∞
i=0 ΨiΓ

(1,1)
h+j+iΨ

′
i

 ,
with similar calculations for the other components of the matrix partition, leading to the stability

condition (7), with Σ =
{
Σ(i,j)

}
i,j∈[1,n]

defined in terms of the component matrix partitions

Σ(i,j) =

[
Ωij 1′p ⊗ ΩijΦ̃

′
0

1p ⊗ ΩijΦ̃0 Ip ⊗ ΩijΦ̃0Φ̃′0 + Ξ(i,j)

]
,
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and

Ξ(i,j) ≡
∞∑
i=0


ΨiΓ

(i,j)
h+j+iΨ

′
i · · · Ψi+p−1Γ

(i,j)
h+j+iΨ

′
i

...
. . .

...

ΨiΓ
(i,j)
h+j+iΨ

′
i+p−1 · · · ΨiΓ

(i,j)
h+j+iΨ

′
i

 .
2.3 Proof of Lemma 3.4

(a) By definition and using Lemma 3.2 (iv) and (v), we have

π̂f1,f2 − πf1,f2 =

In ⊗
1

Tw

bTf2c∑
t=bTf1c

xtx
′
t

−1 √T
Tw

1√
T

bTf2c∑
t=bTf1c

ξt

→a.s. 0,

(b) Since ε̂t = εt −
(
π̂′f1,f2 − π

′
f1,f2

)
(In ⊗ xt), it follows that

1

Tw

bTf2c∑
t=bTf1c

ε̂tε̂
′
t =

1

Tw

bTf2c∑
t=bTf1c

εtε
′
t −

2

Tw

bTf2c∑
t=bTf1c

εt (I⊗ xt)
′ (π̂f1,f2 − πf1,f2)

+
1

Tw

bTf2c∑
t=bTf1c

(
π̂′f1,f2 − π

′
f1,f2

) (
I⊗ xtx

′
t

)
(π̂f1,f2 − πf1,f2)→a.s. Ω,

since T−1
w

∑bTf2c
t=bTf1c εtε

′
t →a.s. Ω from Lemma 3.2, π̂f1,f2 →a.s. πf1,f2 , T

−1
∑bTf2c

t=bTf1c ξt →a.s. 0,

and T−1
w

∑bTf2c
t=bTf1c xtx

′
t →a.s. Q > 0.

(c) We follow a similar composite functional argument as that used in Lemma 3.1(c). In

particular, the scaled and centred estimation error process can be written in the following form

√
Tw (π̂f1,f2 − πf1,f2) =

In ⊗
1

Tw

bTf2c∑
t=bTf1c

xtx
′
t

−1  √T√
Tw

1√
T

bTf2c∑
t=bTf1c

ξt


=

In ⊗
1

Tfw

bTf2c∑
t=bTf1c

xtx
′
t

−1

gf1,f2
(
X0
T

)
= [In ⊗Q]−1 gf1,f2

(
X0
T

)
+ op (1)

= kf1,f2
(
X0
T

)
+ op (1)

⇒ kf1,f2 (B) = [In ⊗Q]−1

[
B (f2)−B (f1)

f
1/2
w

]
,

11



where gf1,f2
(
X0
T

)
and kf1,f2

(
X0
T

)
are continuous linear functionals of the process X0

T indexed

by (f1, f2) ∈ Λ0 with the property that kf1,f2
(
X0
T

)
⇒ kf1,f2 (B) , where B is vector Brown-

ian motion with covariance matrix Σ. The finite dimensional distribution for fixed (f1, f2) is
√
Tw (π̂f1,f2 − πf1,f2)

L→ N
(
0,V−1ΣV−1

)
, where V = In⊗ Q.

(d) By definition

1

Tw

bTf2c∑
t=bTf1c

ξ̂tξ̂
′
t =

1

Tw

bTf2c∑
t=bTf1c

(
ε̂tε̂
′
t ⊗ xtx

′
t

)

=
1

Tw

bTf2c∑
t=bTf1c

[
εt −

(
π̂′f1,f2 − π

′
f1,f2

)
(In ⊗ xt)

] [
εt −

(
π̂′f1,f2 − π

′
f1,f2

)
(In ⊗ xt)

]′ ⊗ xtx
′
t

=
1

Tw

bTf2c∑
t=bTf1c

εtε
′
t ⊗ xtx

′
t −

2

Tw

bTf2c∑
t=bTf1c

[(
εtIn ⊗ εtx′t

)
(π̂f1,f2 − πf1,f2)⊗ xtx

′
t

]

+
1

Tw

bTf2c∑
t=bTf1c

(
π̂′f1,f2 − π

′
f1,f2

) (
I⊗ xtx

′
t

)
(π̂f1,f2 − πf1,f2)⊗ xtx

′
t

=
1

Tw

bTf2c∑
t=bTf1c

ξtξ
′
t + op (1)→a.s Σ.

from Lemma 3.2(d) and (e), Lemma 3.4(a), and Lemma 3.3(b).

2.4 Proof of Proposition 3.3 Under the Assumption of Conditional Het-
eroskedasticity

In view of Lemma 3.4(c), under the null hypothesis√
TwRπ̂f1,f2 ⇒ f−1/2

w RV−1 [B (f2)−B (f1)] = f−1/2
w RV−1Σ1/2 [W (f2)−W (f1)] ,

where W is vector standard Brownian motion with covariance matrix Ink. It follows that

Z∗f2 (f1) :=
[
R
(
V̂−1
f1,f2

Σ̂f1,f2V̂
−1
f1,f2

)
R′
]−1/2 (√

TwRπ̂f1,f2

)
(8)

⇒ f−1/2
w

[
R
(
V−1ΣV−1

)
R′
]−1/2

RV−1Σ1/2 [W (f2)−W (f1)] .

Observe that the Wald statistic process

W∗f2 (f1) = Z∗f2 (f1)′ Z∗f2 (f1)
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⇒ f−1
w [W (f2)−W (f1)]′A

(
A′A

)−1
A′ [W (f2)−W (f1)]

=d f−1
w [Wd (f2)−Wd (f1)]′ [Wd (f2)−Wd (f1)] ,

with A = Σ1/2V−1R′, whose finite dimensional distribution for fixed (f1, f2) is χ2
d, and where

Wd is vector Brownian motion with covariance matrix Id, as earlier. It follows by continuous

mapping that as T →∞

SW∗f2 (f0)⇒ sup
(f1,f2)∈Λ0;,f2=f

[
Wd (f2)−Wd (f1)

f
1/2
w

]′ [
Wd (f2)−Wd (f1)

f
1/2
w

]

This completes the proof of Proposition 3.3 under the assumptions A0 and A3.

The proof of Proposition 3.2 under the assumptions A0 and A3 (without the use of a het-

eroskedastic consistent statistic) follows in the same manner, with the quantity V̂−1
f1,f2

Σ̂f1,f2V̂
−1
f1,f2

in (8) replaced by the quantity
(
Ω̂f1,f2 ⊗ Q̂f1,f2

)−1
. The details are omitted.

3 Appendix: Robustness Checks

3.1 Minimum Window Size and Critical Values

We conduct sensitivity analysis to check the robustness of the heteroskedastic consistent results

to the selection of the minimum window size and critical values. Figure 1 is for the causal

relationship running from the yield curve slope to the growth rate of industrial production and

Figure 2 is for causality running from the growth rate of industrial production to the yield curve

slope. The minimum window size is f0 = 0.25 (instead of f0 = 0.20) in the first column (i.e.,

(a), (c), and (e)), In the second column (i.e., (b), (d) and (f)), we control the empirical sizes

over a two-year (instead of three-year) period.

As evident in the graphs, when the minimum window size increases to 0.25, all three proce-

dures do not detect any episode of causality from the yield curve spread to industrial production

(Figure 1). This is in contrast to the findings in the main text with f0 = 0.2, where the recursive

evolving procedure finds evidence of causality in the late 1990s and after the subprime mort-

gage crisis in 2009. For causality running from the growth rate of industrial production to the

output gap, the recursive evolving procedure detects an additional episode in 1995-1998. This is

13



consistent with our expectation that the optimal minimum window size is episode specific. As

the minimum window increases, we detect less episodes of causality in the former and more in

the latter. When we control size over a two-year period, the overall pattern of the test results

remains, although there are some small discrepancies in the exact start and end dates of the

first episode.

3.2 Output Gap

Next, we use the output gap as a proxy for real economic activity. The output gap is calculated

using the official Congressional Budget Office (CBO) measure of real potential output1 (billions

of chained 2009 dollars, not seasonally adjusted) and GDP (billions of chained 2009 dollars,

seasonally adjusted annual rate) data. Inflation is measured from the core consumer price index

and calculated as log differences (multiplied by 400). Data are downloaded from the Federal

Reserve Bank of St. Louis FRED at the quarterly frequency. The data start from 1980 to the

first quarter of 2015 (T = 141).

Figure 3 plots quaterly data on the output gap (left axis) and inflation (right axis). The

two measures of real economic activity, namely real GDP and industrial production, have an

important feature in common because both tend to fall sharply during recessions. There are,

however, several noticeable differences in these measures. Industrial production, being a higher

frequency monthly series, shows more evidence of heteroskedasticity. Also note that after the

2008-2009 recession, the growth rate of industrial production rebounds quite quickly and is

relatively stable until the end of the sample. By contrast the output gap is more persistent,

with actual output only narrowing the gap to potential output quite slowly. The quarterly

federal funds rate and the slope of the yield curve show similar dynamic pattern as in Figure 1b

and therefore omitted.

We calculate the heteroskedastic-consistent tests of Granger causality. In estimating the

VAR and implementing tests of Granger causality, the lag order is assumed the same for all

subsamples and selected using the Bayesian information criteria (BIC) for the whole sample

1Real potential GDP is the CBO’s estimate of the output the economy would produce with a high rate of
utilization of its capital and labor resources.
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period with a maximum potential lag length 12. The selected lag order is two. The minimum

window size is f0 = 0.2, containing 28 observations. The critical values are obtained from

bootstrapping with 499 replications. The empirical size is 5% and is controlled over a three-year

period.

The forward procedure does not detect any period of causality in both directions. For

potential causality running from the yield curve slope to output gap, both the rolling and

recursive evolving algorithms identify one episode over the sample period, i.e. 1998Q3. In

testing for reverse causality, the rolling procedure finds no evidence of causality over the entire

sample period, whereas the recursive evolving algorithm suggest the existence of causal effects

over the period 1991 - 1995 and in 2000. The first episode runs from 1991:Q1 to 1995:Q1

(with a break in 1991:Q3) and the second episode starts from the third quarter of 2000 and

terminates at the end of the year. The change in causality in 2000 is also consistent with related

research based on data around that time period to the effect that macroeconomic factors are

important determinants of movements in bond yields primarily at the shorter maturities (Ang

and Piazzesi, 2003). The differences in the behaviour of the output gap and the growth rate of

industrial production have already been discussed, so the disparity in the conclusions between

quarterly and monthly measures of economic activity is perhaps expected.
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Figure 1: The heteroskedastic-consistent tests for Granger causality running from the yield curve
slope to the industrial production. Tests are obtained from a VAR model with a minimum
window size of f0 = 0.25 in the first column and f0 = 0.20 in the second column. The empirical
size is controlled over a three-year period in the first column and over a two-year period in the
second column. The lag order is 3 as for analysis in the main text.
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Figure 2: The heteroskedastic-consistent tests for Granger causality running from the industrial
production to the yield curve slope. Tests are obtained from a VAR model with a minimum
window size of f0 = 0.25 in the first column and f0 = 0.20 in the second column. The empirical
size is controlled over a three-year period in the first column and over a two-year period in the
second column. The lag order is 3 as for analysis in the main text.
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Figure 3: Time series plots of the output gap and inflation in the United States. Also
shown are official NBER recession periods shaded in grey, namely, 1980:M01-M07,1981:M07-
1982:M11,1990:M07-1991:M03, 2001:M03-M11 and 2007:M12-2009:M06.
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Figure 4: The heteroskedastic-consistent tests for Granger causality running from the yield
curve slope to output gap in the first column (i.e., (a),(c), and (e)) and from output gap to the
yield curve slope in the second column (i.e., (b), (d) and (f)). The shaded areas are the NBER
recession periods, the vertical lines are the dates of the onset of an inverted yield curve and
causal periods are shown in text.
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(b) Forward - from output gap to the yield curve slope
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(f) Recursive Evolving - from output gap to the yield
curve slope
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