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1.1 Proof of Lemma 3.1

(a) Let Ag = {(f1,f2):1>fo>fi+ fo>0and 0< f; <1— fy} for some fy > 0. Set T, =
|T fw| with f, = fo — f1 and (f1, f2) € Ag Write the estimation error as
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[Tf2] [Tf2]
Trfe = Thfe = [In® Z tht Z el s
=[Tf1] t=|Tf1]

A

and, under A2, {&, F;} is a covariance stationary mds with E (§;|F;—1) = 0 and sup, E <H§t||2>
o0, so that Tj;! ZtTJEFJf | & —as. 0 by a standard martingale strong law. Define wac2 =
ﬁ ZtLT{;Jf | x¢x;. Then, by a strong law for second order moments of linear processes (Phillips
and Solo (1992), Theorem 3.7), we have Qy, f, —a.s. Q =E (z;2}) > 0 and then

1 [T f2]

Rfife = Thfo = [In ® thfz} = Y & —as 0, (1)
t LTf1J

so that @¢, r, —as. 7f,f, = 7 under the maintained null of constant coefficients. The conver-
gence (1) also holds uniformly over f,, = fo — fi > fo by virtue of the martingale maximal

inequality.
(b) Because & = ¢4 — (ﬁ}l’ﬁ — Tr;chh) (I, ® x¢), we have

[T f2) [Tf2]

A 1 2 R
Qi p = Thul D e - Tful Yo e @mex) Fh.p— o)
=T Y =11
[Tf2]
~ p,
Z f1:f2 ﬂ}l,h) (I” ® thg) (R prfo = Thfa) = 2,
T wa
t= LTflj
. T N T A
sice \_T}wj Ztl':{;*JhJ 5t5{f —a.s. $2, Tfi fo ~7a.s. Tfy, fas |_Ti}wj Zl—:{r?flj &t —as. 0, and Qfl,fz —7a.s.
Q>0.

(c) Under A2 the martingale conditional variance satisfies the strong law

1 [T f2] 1 [T f2]
T, Y. E(&Fi) =02 T, D XX as 20Q >0,
t=|Tf1] t=|Tf1]



so that the stability condition for the martingale CLT is satisfied (Phillips and Solo, 1992,
Theorem 3.4). Next, the conditional Lindeberg condition is shown to hold hold, so that for

every § >0
1 [T f2]
— > E{lal? 1 (gl = VTuo) 1Fia ) Bo. (2)
V=T

Let Ap = {& : ||&]| > vTwé}. For some a € (0,¢/2) if follows that

B [ll® 1 (l6 > VTus)] = [ Nl P < —mea [ el ap

(VTu6)”
Hence,
B2 > B{lels (o= Vi) 1A | = S w{lel’s(led 2 v}
Tu ) t S A o A : il > VT

< T2 supE ||l&*°] < To/267 2K sup E e[+ — 0
t ¢
for some constant K < oo as T — oo since
E &)%Y = Ellei@x*** = E (H&:H%a th”ua) < KSQPE llee]|*F2* < oo,

in view of A2. Hence,

LT f2]
= > B{lal? 1 (el > vTus) 17} Bo
Y t=|Tf ]

which ensures that the Lindeberg condition (2) holds. Then, by the martingale invariance
principle for linear processes (Phillips and Solo, 1992, Theorems 3.4), for fixed fo > f; it follows

that 7-1/2% tLZ{;’Jh |§&= B (f2) — B(f1), where B is vector Brownian motion with covariance

matrix 2 ® Q.

The limit theory may be extended to allow for indexing by (fi, f2) € Ag. We define the
|Tr
t_

partial sum proces X% (r) = T~/ _1J & = B(r) on D[0,1]™ equipped with the uniform

topology, set gy, (X3) := X% (f;), and let gy, 7, (X3) == fu' (95 (X2) — g7, (XT)) . Since gy,
is continuous for ¢ = 1,2 and f, > fo > 0, so is the functional g¢, f, (X:[},). Moreover, the

functional g, f, () may be interpreted as a map of the space D [0, 1]"k onto a function that is



defined on Ag. We may then write subsequent functionals of gy, 1, as composed functionals of

X%. In particular, we may write the scaled estimation error \/T(T"rfth — T fs) @S

v [RTTRESES
T (ﬁfl,fz - Trfl,fz) = I, ® Qf1,f2 = &t
TuvT t=|Tf]
| lrn -1
L, ® TFw Z XXy (9512 (XF) + 0p (1)]
Y= |T# |
= [In ® Q] 9fi1,f2 (XT) +op (1)
kp g (X7) +0p (1), (3)

where ky, 1, (X9), like g7, 1, (X9, is a continuous linear functional of the process X9 indexed

by (fi, f2) € Ao. By the continuous mapping theorem, it follows that k¢, f, (X%) = k.5 (B),

giving
VT )= ‘}‘111% L,©Q g5 5, (B)
T ﬁ—flsz —Tf,f2) = L, ® Qf17f2 T = & =I.eQl" 9f1,f2 B
fu ﬁt:LTflJ

The limit in (4) may be interpreted as a linear functional of the limit process B (+), whose finite di-
mensional distribution for fixed f; and fs is simply N (O, Q® f;lQ_l) ,so that /T (T fo — Thi o) =
N (0, QR f;lQ_l), as stated.

1.2 Proof of Proposition 3.1

In view of (4), under the null hypothesis Ry, 1, = 0 we have
ﬁRﬁfth =R[,® Q]_l 9f1.f2 (B)=R [91/2 ® Q_l/z] 9f1.f2 (W),

where W is standard Brownian motion with covariance matrix L, and g¢, ¢, (W) = (W (f2) = W (f1)) / fw-
Setting Ty = |1 fu ], it follows that

Tf) = e

Zf, (fi):=|R Qf17f2® Z thi‘, R/ R7p 1,
t=|Tf1]



T 1 -1/2
A wa 1 REES / / f A
frd R Qflny ® TE Z tht R I‘Y:E{ﬂ-fl’f2
t=|Tf1]
= AP RQ@eQ YR RL QI g1,.p (XF) +0, (1)
= £ R(Q2Q )R] "RL®QI g5 (B).
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The Wald statistic has the form

Wy, (1) = Zg (1) Zg, (F)
= fugnn (X)) Lo QRR(Q2Q )R] RIL QI g7 1, (X2) +0, (1)
= fugns (X9) (2722 Q1 [0 0 Q@ AR R(Q0 Q)R] R[22 0 Q1
< [0722Q72 g g (X9) + 0, (1)
= Jugnp (X9) 072 2Q712| A (A'A) A (@720 QY2 gp, g, (XF) + 0, (1)
= h(X7) +0,(1),
with the nk x d matrix A = [Q'/2® Q2] R/. Now for (f1, f2) € Ao, we have hy, f, (X9) =
hy, 1, (B) where

his(B) = fugnp (B) |07 20 Q72 A (A'A)T A Q720 Q7 gy, 1, (B)

_ (W(f2) —W(ﬁ))'A(A,A)lA, (W(fQ) —W(f1)> |

1/2 1/2
w w

with the nk x d matrix A = [91/2 ® Q_l/z] R/
Next, we define the sup functional
h* (hpy g (X7)) = sup  hyyp (X7)
fw=fa—f12fo
which maps functions defined on Ag onto R. By virtue of the continuity of the map h*, the
continuity of hy, s, and the weak convergence of the process X% (r) = T—1/2 ZtLgJ & = B(r)
on D0, 1]"k , the continuous mapping theorem gives the weak convergence

h* (hf1=f2 (X%)) = sup hf17f2 (B)
fw=Ffa—f1>fo



~ e (W(fz)—W(f1)>’A(AIA)1A,<W(f2)—W(f1)>.

Fw=Fa—T1>fo 172 172

Finally, we note that Wy, (f1) = hy, s, (X3) + 0p (1) by virtue of the convergences Qi —p O
and T,;! ZLTM x¢X; —p Q, which hold uniformly over (f1, f2) € Ao, so that

t=|Tf1]
sup sz(fl) = h*(hfhf2 (X%))—i—op(l): sup hfhfz(X%)—i-op(l)
fw=fa—f12>fo fw=f2—f1€[fo,f2]
W () =W () o et oo (W (f2) =W (1)
- ( e >A<AA> A( i )
L (el = Wa () (W h) — Wa ()
w=f2—f12fo &/2 &,/2 ’

where =; denotes equivalence in distribution and Wy is standard Brownian motion with covari-
ance matrix Iy and d is the dimension of the restriction matrix R. Thus, the sup Wald statistic

satisfies the stated limit theory

SWy (fo) = sup [Wd (f2) 1—/2Wd (fl)] [Wd (f2) 1_/2Wd(f1)] ’
(f1,f2)EN0;fa=f w L

by virtue of continuous mapping and the weak convergence X%(-) = B(-).

2 Limit Theory under Conditional Heteroskedasticity of Un-
known Form

This section provides proofs of Lemma 3.2, 3.3 and 3.4 and Proposition 3.2 and 3.3 under AO
and A3.

2.1 Proof of Lemma 3.2

The proof of (a) follows directly from the strong law of large number for martingales (Hall and

Heyde, 1980, theorem 2.19) under A3(i).

For the proof of (b) and (¢), it is shown that for all A > 0,z > 0
P (leiei-nll = 2) = P (Il [let-nll = ) < P (lledll = 2/2) 4P (llev-nll = 2/2) < 29P (|lell” = 2)
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The last inequality follows by uniform integrability because P (||e¢]| > z) < vP (|le]| > z) for

each z > 0, t > 1 and for some constant v under A3(i). Therefore, from the martingale strong

law
1 [T f2) [Tf2)
E Z 6,562 —a.s 2 and T—w Z stsls —q.5 0 for s # t.
t=|Tf1] t=|Tf1]

See also Remarks 2.8(i) and (ii) of Phillips and Solo (1992).

For (d), by construction

LT f2] 1 [T f2] .
T, 2 xed=qy O e vl ey I
Yi=(Tf ] =|Th)
and, from (a), T, * ZISLZ{;JflJ et —rq.s 0. Next consider the product y; e} with 1 < h < p. Since
B o B [e.9]
Yi-ner = |Po + Z Wier_p—i| &y = Poey + Z Wier_h—icy,
=0 1=0
it follows from absolute summability that > o || ¥;]| < co and results (a) and (c), that 7,1 >~ tLTJEFJ Vi hEL —as
0, giving the required T}, ! Z}T{?f | Xt 1) —ras 0.

For (e), note that typical block elements of x;x} have the form y, py; , j and y;_p, So it

suffices to calculate the limits of the following sample moments

1 [T f2]
(1) — Z Yi—n, where 1 < h < p;
Y t=(Th]
[T f2]
(14) T Z yt,hyg_h_j, where 1 <h<pand1<j<p-h.
Y t=1Th]

Since y;_ — ®g = Yoo Wicr—n—i and Y .2 ||¥;| < oo by virtue of AO, it follows that

1 [T f2] ~ [Tf2] oo oo [Tf2]
T Z (Yt—h_q)0> Z Z‘I’ Et—h—i Z‘I’z Z Et—h—i | a.s 0,
Y= |TH | Y t=|Tf1] i=0 i=0 Y t=(Th]

by results in (a), and

1 [T f2] ~ o 1 [T f2] ) oo /
T Z <Yt—h - %) (Yt—h—j - q’o) Z <Z Uies po Z) <Z \I/igt_h_j_i>
i=0

Y =T Yi=|Th)



00
/
—a.s Z \Ili+jQ\Iji7
=0

by results in (b) and (c). Hence,

Tf2) ) \7f2) o
TJI Z Yi—h —a.s (I)Oa lel Z Yt_hyg_h_j —a.s (1)0(1)6 + Z \I/Z'Jrjﬂ\l’;,
t=|Tf ] t=|Tf] i=0
giving
[T /2] -
1 1 @ @
T—l B /! = 5 p < 0
w Z Xt lXt—l —a.s Q |: 1p Q (po Ip ® ®0¢6 + @ :| )
t=|Tf1]
with
I I 7o) AU FINY o )
O=D | =
i=0 \I/iQ\If;+p71 o ‘IIZQ\IJ;

2.2 Proof of Lemma 3.3

(a) We show that the following conditional Lindeberg condition holds for all 6 > 0:
1 T
2 P
72 E &1 (Il = VT6) 1Fia] B0 (5)
Let Ap = {& S > \/T(S} For some « € (0,¢/2)

B [l (16 = v79)] = [ el ap < (\FTla) /el ap < (ﬁla)E ().

Hence,
1 < 2 1 2
E {T > E g1 (gl = vTo) m_l]} ~7 2 E g1 (gl = vTa) |
< T supE (Jl6***) < T2 K sup E (Jlo****) = 0,
for some constant K < oo as T’ — 0o since

E (&P =E e @ x||*"* <E (HetH”a |th|12+a) < KE|e]*** < oo,



in view of A3(i) and the stability condition AO which ensures that [|x;|| < A> 526" ||e;—;| for

some constant A and |#| < 1. Then (5) holds by L; convergence.

(b) The stability condition involves the convergences

LT LT
T >k, T S E{&&IFi1} 2as T (6)
=1 t=1

By A3(i) and A0, it follows that E {\\gtgg\\1+5} —E {Hgtgguw thxguw} < KE || <
for some finite K > 0 and ¢ < ¢/4. Then, by the martingale strong law (Hall and Heyde, 1980,
theorem 2.19) we have T1 Zz;l {&¢&; — E (&€ Fi—1)} —a.s 0, where the limit

T
.1
TlggoT;E(afuft_l) =3, (7)

may be obtained by an explicit calculation using A3(ii) and (iii). By definition

2 / /
51,txtxt e EtEn XXy
!/ / / . . .
Gy = €16y @ XXy = : - : :
/ 2 /
51,t5n,txtxt ot EH’tXtXt
. — T o . .
and therefore limp_0o 771>, | E (7 ;x4x}|Fi—1). The other limits can be computed in the

same way. The leading block submatrix of £¢; is

2 2 </ 2
€1t E1tYt—1 T E1tYt—p
2 2 / 2 /
9 , E14Yt—1 E14¥Yt—-1Y¢—1 ~° E1tYi-1Yi—p
E1 XXy = . . .
2 2 / 2 /
E1eYt—p E1tYt—pYi—1 ~°° E1Yt-pYi—p

First, by the same martingale strong law 71 ZZ;I {sf’t —E (5%t|}},1)} —a.s 0 and from
Lemma 3.2(b) T-' 21 e} —as Qui, with 771 ST E (e (1 Fi-1) —as Qi1 from A3(ii). To
obtain the limit of 7! Ethl E (E%Jyt_ﬂft_l), note that

%ZE [E%,t <Yt—1 - ‘i’o) ’-Ft—l] = ;ET:E (€3 1| Fe-1) <Yt—1 - ‘io)
=1

- 00 00
ZE (5%,t’]:t—1) Z Vigr 14 = Z v;
i=0

t=1 =0

~

Nl

T

1

T ZE (Eg,t’ft—l) Et—l—i] —a.s 0,
1

t=
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from Assumption A3(iii) and AO. It follows that

T T
1 ~ 1 ~
T E E [5%7t}’t—1|}—t—1] —a.s 211Pp and T g E (Ef,ty,,g_ﬂ]:t—l) —a.s 119D,

t=1 t=1

Similarly, to obtain the limit of 77! Z’le E (E%,tytfhyé_h_jfﬂ—l) , observe that

Zi: |:€1t (Yt h— ‘I)o) (thhfj - @0), |]—“t_1]

t=1
1
=7 D B (] [ Fi) Z Wit j€t—h—j—i€—h—j—i Vi +op (1) x 11’
t=1 =0

T
E 51t|ft1€th]15th]1

U+ 0, (1) x 11/

00
Y
=0
1
—as Z Wi U317 Ol

from Assumption A3(iii) and AO0. It may be deduced that

T
1 1,1
f Z 61 th hYt h— j|~/_"t 1] —a.s Q11(I)O<I>0 + Z \Ilz+]F§L+])+l\I//
= =0
Therefore
1 X
T Z E (5itxtx£|ft,1)
t=1
Oy Q1P aE Q1P
| et 0119 + ZZ QUL W Oy Bo® + 5 i DL
a.s . . . ’
QB 1By “qfr(l” v QB+ 3 o,rth g
1P Q1 Pe®p + 7%, htjti fitp—1 11Po®y + X7 h+j+i
with similar calculations for the other components of the matrix partition, leading to the stability
condition (7), with 3 = {E ’])} Jelin] deﬁned in terms of the component matrix partitions
$(id) — Qi 1, ® Q%

lp X Qij(i)() Ip & sz(i)oéé + E(i’j)
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and

o v Fgﬁj)ﬂ‘lﬂ T \I/i+p_1I‘§;ij)+z\Il’
E i) = Z : : :
0 (4,5) (4,9)
. i Fh+]+l\IJ;+p 10 i Fh+j+z\11/

2.3 Proof of Lemma 3.4

(a) By definition and using Lemma 3.2 (iv) and (v), we have

-1

[T f2) [T /2]
“ 1 VT 1
Tffe = T fa = L, ® T E : th; T E & | —ras. 0,
w , w VT
t=|Tf1] t=|Tf1]

(b) Since & = & — (7?}17]@2 — W}1’f2> (I, ® x¢), it follows that

[Tf2] [T f2] 9 [T f2]
Z étég 5t5t e Z et (I® Xt), (ﬁf17f2 - Wfl,fz)
Y t=|T ] =|Tf1] Yi=Tf)
1 [T f2]
+ T, Z (ﬁ—}hh B 71—}17f2) (I ® th;t) (ﬁflsz - 7rf1,f2) —a.s. 2,
Yi=|Th)
. _ T N _ T
since Twlth }ErJf | g1} —q.s. S from Lemma 3.2, Tffo —Pas. Tfy far L ! ZtL:{;JM §&t —ras. 0,

and T,;! ZtLT{;Jf | XXy —rq.s. Q > 0.

(c) We follow a similar composite functional argument as that used in Lemma 3.1(c). In
particular, the scaled and centred estimation error process can be written in the following form

-1

[Tf2] [Tf2]
1 VT 1
VTw @ pf = Tpp) = [In® — Z XX NG Z St
T t=|Tf1] T \/Tt:LTflj
| Ts] -
-1
= I,® F Z thllt 9f1,f2 (Xf?“) - [In ® Q} 9fi,f2 (X%) +op (1)
Y t=|Th]

= kf17f2 (X%) +0p (1)

ok (B) = Leqt |22 =B

1/2
w

)
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where g, 1, (X?) and ky, s, (X$) are continuous linear functionals of the process X indexed
by (fi,f2) € Ap with the property that ky, ¢, (Xiop) = k¢, 4, (B), where B is vector Brown-
ian motion with covariance matrix 3. The finite dimensional distribution for fixed (fi, f2) is

VTw (R o =7 ) 2 N (0, VIEVT), where V = 1, Q.

(d) By definition

[T f2] [T f2]

Z &l = L Z (818} @ x4x})
Yi=|Th) =Tf1]
1 & / ! / / ! !
=7 Yo o= Fhp — 7o) Tox)] [e0 = (R g — Thop) T @ x0)] ® 30
t=|Tf1]
[T f2] [T f2]
= Y e ®xx; - T Y el @ext) G —Thop) © xix]
W= [Tf1] t=|Tf1]
1 [T f2]
+ T Z (fr}l,fz - ﬂ-/fl,fZ) (I ® th:t) (Ffifo — T f2) @ XX}
Y =T
[Tf2]
Z gt&t + Op —>a.s 3.
W= [Tf1]

from Lemma 3.2(d) and (e), Lemma 3.4(a), and Lemma 3.3(b).

2.4 Proof of Proposition 3.3 Under the Assumption of Conditional Het-
eroskedasticity

In view of Lemma 3.4(c), under the null hypothesis
VTR = [ PRVTHB(f2) = B ()] = [ PRVISV2 W (f2) = W (f1),
where W is vector standard Brownian motion with covariance matrix I, . It follows that
23, (5 = [R (Vi 800V R (VIR 1) ®)
= £ PR (VISVT) R PRVIISZ W (f) - W (A1)
Observe that the Wald statistic process
Wi, (f1) = Z3, (1) Z3, (f1)
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= S W (f2) = W (F1)) A (A'A) T AW (f2) =W ()
=1 fu ' Wa(f2) = Wa (f1)] [Wa (f2) = Wa (f1)],
with A = X/2V~1R/, whose finite dimensional distribution for fixed (f1, f2) is X?lv and where

Wy is vector Brownian motion with covariance matrix I;, as earlier. It follows by continuous

mapping that as T" — oo

SW3, (fo) = sup
(f1,f2)€N0;, fo=f

/
Wa (f2) = Wa(f1) | | Wa(f2) — Wa (f1)
1/2 1/2
w w
This completes the proof of Proposition 3.3 under the assumptions AO and A3.
The proof of Proposition 3.2 under the assumptions A0 and A3 (without the use of a het-
eroskedastic consistent statistic) follows in the same manner, with the quantity \7;11 2 3 f1.fo \7;11 2

R R -1
in (8) replaced by the quantity (Q fifs @ Qrpy, f2) . The details are omitted.

3 Appendix: Robustness Checks

3.1 Minimum Window Size and Critical Values

We conduct sensitivity analysis to check the robustness of the heteroskedastic consistent results
to the selection of the minimum window size and critical values. Figure 1 is for the causal
relationship running from the yield curve slope to the growth rate of industrial production and
Figure 2 is for causality running from the growth rate of industrial production to the yield curve
slope. The minimum window size is fy = 0.25 (instead of fy = 0.20) in the first column (i.e.,
(a), (c), and (e)), In the second column (i.e., (b), (d) and (f)), we control the empirical sizes
over a two-year (instead of three-year) period.

As evident in the graphs, when the minimum window size increases to 0.25, all three proce-
dures do not detect any episode of causality from the yield curve spread to industrial production
(Figure 1). This is in contrast to the findings in the main text with fy = 0.2, where the recursive
evolving procedure finds evidence of causality in the late 1990s and after the subprime mort-
gage crisis in 2009. For causality running from the growth rate of industrial production to the

output gap, the recursive evolving procedure detects an additional episode in 1995-1998. This is

13



consistent with our expectation that the optimal minimum window size is episode specific. As
the minimum window increases, we detect less episodes of causality in the former and more in
the latter. When we control size over a two-year period, the overall pattern of the test results
remains, although there are some small discrepancies in the exact start and end dates of the

first episode.

3.2 Output Gap

Next, we use the output gap as a proxy for real economic activity. The output gap is calculated
using the official Congressional Budget Office (CBO) measure of real potential output® (billions
of chained 2009 dollars, not seasonally adjusted) and GDP (billions of chained 2009 dollars,
seasonally adjusted annual rate) data. Inflation is measured from the core consumer price index
and calculated as log differences (multiplied by 400). Data are downloaded from the Federal
Reserve Bank of St. Louis FRED at the quarterly frequency. The data start from 1980 to the
first quarter of 2015 (7" = 141).

Figure 3 plots quaterly data on the output gap (left axis) and inflation (right axis). The
two measures of real economic activity, namely real GDP and industrial production, have an
important feature in common because both tend to fall sharply during recessions. There are,
however, several noticeable differences in these measures. Industrial production, being a higher
frequency monthly series, shows more evidence of heteroskedasticity. Also note that after the
2008-2009 recession, the growth rate of industrial production rebounds quite quickly and is
relatively stable until the end of the sample. By contrast the output gap is more persistent,
with actual output only narrowing the gap to potential output quite slowly. The quarterly
federal funds rate and the slope of the yield curve show similar dynamic pattern as in Figure 1b
and therefore omitted.

We calculate the heteroskedastic-consistent tests of Granger causality. In estimating the
VAR and implementing tests of Granger causality, the lag order is assumed the same for all

subsamples and selected using the Bayesian information criteria (BIC) for the whole sample

'Real potential GDP is the CBO’s estimate of the output the economy would produce with a high rate of
utilization of its capital and labor resources.
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period with a maximum potential lag length 12. The selected lag order is two. The minimum
window size is fy = 0.2, containing 28 observations. The critical values are obtained from
bootstrapping with 499 replications. The empirical size is 5% and is controlled over a three-year
period.

The forward procedure does not detect any period of causality in both directions. For
potential causality running from the yield curve slope to output gap, both the rolling and
recursive evolving algorithms identify one episode over the sample period, i.e. 1998Q3. In
testing for reverse causality, the rolling procedure finds no evidence of causality over the entire
sample period, whereas the recursive evolving algorithm suggest the existence of causal effects
over the period 1991 - 1995 and in 2000. The first episode runs from 1991:Q1 to 1995:Q1
(with a break in 1991:Q3) and the second episode starts from the third quarter of 2000 and
terminates at the end of the year. The change in causality in 2000 is also consistent with related
research based on data around that time period to the effect that macroeconomic factors are
important determinants of movements in bond yields primarily at the shorter maturities (Ang
and Piazzesi, 2003). The differences in the behaviour of the output gap and the growth rate of
industrial production have already been discussed, so the disparity in the conclusions between

quarterly and monthly measures of economic activity is perhaps expected.
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Figure 1: The heteroskedastic-consistent tests for Granger causality running from the yield curve
slope to the industrial production. Tests are obtained from a VAR model with a minimum
window size of fy = 0.25 in the first column and fy = 0.20 in the second column. The empirical
size is controlled over a three-year period in the first column and over a two-year period in the
second column. The lag order is 3 as for analysis in the main text.
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Figure 2: The heteroskedastic-consistent tests for Granger causality running from the industrial
production to the yield curve slope. Tests are obtained from a VAR model with a minimum
window size of fy = 0.25 in the first column and fy = 0.20 in the second column. The empirical
size is controlled over a three-year period in the first column and over a two-year period in the
second column. The lag order is 3 as for analysis in the main text.
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Figure 3: Time series plots of the output gap and inflation in the United States. Also
shown are official NBER recession periods shaded in grey, namely, 1980:M01-M07,1981:M07-
1982:M11,1990:M07-1991:M03, 2001:M03-M11 and 2007:M12-2009:MO06.
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Figure 4: The heteroskedastic-consistent tests for Granger causality running from the yield
curve slope to output gap in the first column (i.e., (a),(c), and (e)) and from output gap to the
yield curve slope in the second column (i.e., (b), (d) and (f)). The shaded areas are the NBER
recession periods, the vertical lines are the dates of the onset of an inverted yield curve and
causal periods are shown in text.
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