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Abstract - Piecewise aggregate approximation is one of the methods 
used to reduce the dimensionality of time series by means of equal 
time frame, but it tends to have a lower accuracy. This 
investigation proposes an alternative to the PAA which can 
capture the essence of dimensionality reduction and minimise the 
loss of results. 
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I. INTRODUCTION 

Time series is ubiquitous amongst all domains of industries, 
research, education, and medicine. The amount of data produced 
by modern equipment and machines are a constant challenge to 
maintain, interpret, store, and extract. There are several 
dimensionality reduction methods available such as Discrete 
Fourier Transform(DFT), Discrete Wavelet Transform(DWT), 
Singular Value Decomposition (SVD), Adaptive Piecewise 
Constant Approximation (APCA) and Piecewise aggregate 
approximation (PAA)(1-4). What PAA does is to segment a time 
series of n size into smaller vector of the desired period M, =( ̅ , ̅ , … . . , ̅ 	), where M ≤ n. The  is calculated as; 

x = ( / )
/ ( )  

Adaptive Piecewise Constant Approximation(APCA) is 
enhancement of PAA where it is more adaptive to the data 
values and so it will have shorter period for area with high 
activity (5). So, the vector is: = ({ ̅ , }, { ̅ , } … . . , { ̅ , }	)    

Where, = ( … ) (5). 

The paper is organized as followed; in section 2, we 
described about our proposal for our alternate method of time 
series reduction. In section 3, we test the techniques against a 
series of time series data to show the various results that are 
derived from PAA versus those that are generated from our 
proposed method and with variation on the reducing 

parameters. In section 4, we discuss about the results and a 
conclusion. 

II. PROPOSAL

Our proposal is an alternate variance to both PAA and 
APCA(4, 5). The objective is to achieve higher dimensionality 
reduction but at the same time, the amount of variation can be 
controlled in the time series reduction. The key is to specify the 
value of reduction - either by value or percent.  

The algorithm will compute the mean for a predefined 
vector of time ‘w’. By using the mean of vector X at w length, 
it is compared with the next data point of w+1. If the difference 
is less than the reduction value, it will absorb into the vector and 
a new mean will be calculated. This new mean will then be 
compared to the next data point at time: TS(w+∆w)+1, and if the 
value is greater or less than the  mean (X(w+∆w)), then a new 
vector will be formed. The cycle repeats until it reached the 
entire length of the time series as followed; = ( , … . , ) 

Where w is the varying time window, and a is the average 
of all the data points in the time window, w. 

a = 1+ ∆w ∆
 

We traverse through w1 +1, sampling the value of y1+/- D1. 
We reached the limit of w1 when we find y(1+∆w) >< y1(+/-
D1). w1 and y1 are recorded and then proceed on again for w2, 
resetting w2=w0. The algorithm is as followed; 

1. The first initial width, w0, is defined.
2. The first average, average_0, is initialized with the

same value as ts[1], where ts is the time series.
3. The reduction value, d, is set.
4. The counter for the window: counter_w, is set to zero
5. The routine loops through the entire length of ts.
6. The difference between average_0 and the next data

point, ts[i] is compared.
7. If the different is less than the reduction value stated,

the value of ts[i] is added to sum_w.



8. counter_w is then incremented.
9. a0, the new average is calculated for the new window.

Otherwise, if the difference if more than the reduction,
Both the sum and the average will be initialized to the
current ts[i] value.

10. The counter will be reset.

III. RESULTS

The data used for this test is time series from a substation’s 
power distribution in a local Brisbane suburb and it is in 15mins 
interval. The first test is to use PAA method with fixed 
intervals. This chart shows that the result for each individual 
window periods is taken at average without consideration on the 
difference between the upper and lower bound values of the 
data points as shown in figure 1. 

Fig. 1. – times series and PAA results 

For the PAVA test, a reduction value of 3 is used. As figure 
2 shows, it has taken a wider time frame to sample the data 
points, there are much fewer windows frames with more 
aggressive would result in losing too many details in the pursuit 
of dimension reduction. The representation of the reduced TS 
of 200 data points contains 7 vectors.  

Results with reduction of 3, reduced time series is represented as; 
TS=[{13,10.540},{38,13.417},{9,10.137},{43,13.501},{8,12.719},{35,1
3.074},{38,8.879}] 

Fig. 2 – Time series reduction with PAVA and a reduction of 3 

In figure 3, there are more windows periods and the means 
are more sensitive to the variation in the data points’ values. 
There is still some loss in the details, but it contains more as 
compared to the higher reduction of 3. So the TS of 200 data 
points is now represented by 10 vectors. 

Results with reduction of 2, reduced time series is represented as; 
TS=[{12,10.345},{35,13.668},{13,10.429},{28,13.688},{7,14.940},{14, 
11.740},{34,13.397},{25,9.021},{9,7.6866}, {18,10.669}] 

Fig. 3. – Time series reduction with PAVA and a reduction of 2 

In Figure 4, the reduction value has reduced to 1. And with 
greater granularity, the number of vectors has increased to 36. 
As the chart shows, PAVA is now more responsive to the 
change in the data points’ values. So, it uses more window 
vectors to represent the time series. 
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Results with reduction of 1, reduced time series is represented as; 
TS=[{0,12.1724},{4,10.653},{5,9.569},{3,11.226},{2,13.318},{7,14.855
},{9,12.888},{14,13.857},{3,12.5896},{6,10.773},{5,9.624},{1,10.690},
{1,12.132},{2,13.669},{5,14.773},{1,13.4981},{13,12.833},{7,14.534},{
4,15.607},{3,14.050},{1,12.840},{11,11.382},{2,13.144},{5,15.259},{1
6,12.814},{10,13.831},{3,11.9526},{5,10.327},{11,8.693},{4,9.787},{3,
8.236},{9,7.342},{3,9.080},{6,10.86},{7,11.230},{4, 9.637}] 

Fig. 4. – time series with PAVA and a reduction of 1 

Table 1 shows the mean squared error (MSE) between PAA 
and PAVA with three different reduction values. While PAVA 
of higher reduction scored higher than PAA, the other two 
results with reduction of less than 2 have better scores.  

TABLE 1 – MSE OF PAA AND PAVA WITH 3 REDUCTION VALUES 
PAA PAVA(+/-3) PAVA(+/-2) PAVA(+/-1)

MSE 0.923691 1.016908 0.778338 0.409634 

The table in figure 5 showed the time series with the results 
from PAA and the PAVA with three set of deviating values. 
PAA abides strictly by the time vectors and averages out the 
data points within, thus the value of standard reduction in these 
vectors will be high especially when that is high fluctuation of 
values(Anstey, 2007 #66).  

The PAVA with different reduction values produced 
different numbers of vectors, each with a mean that is 
responsive to the individual vectors as what the reduction 
dictates. 

Figure 5 – time series with PAA and PAVA with all three reduction values 

IV. DISCUSSION AND CONCLUSION

In this work, we have shown that the PAVA method is 
another alternate and viable time series reducing method to 
APCA, plus it has the feature to throttle the reduction with a 
basic parameter.  Like APCA, PAVA can offer excellent 
reduction on time series where the data points have few 
fluctuations, but it will require more vectors to represent those 
data point with higher fluctuation (6). The reduced time series 
can be transposed easily back to a raw time series with 
minimum loss in details.(5) 

The key advantage of PAVA over the rest lies in the 
reduction parameter which allow users to choose and achieve a 
balance between information reduction vs the amount of details 
lost. But one of the shortcoming is the variances of time 
windows between a group of time series that have been reduced 
with PAVA method and different reducing factors. Comparison 
among them will require computation to either to derive precise 
values based on a common time intervals or revert them back to 
the original raw time series before comparison can be done.  

One of the future work to create a matrix of both varying 
time windows and reduction value to achieve much better 
dimension reduction while minimising the detail loss. Another 
option is to compare the moving average of window period to 
the previous one against the next data point in the time series to 
minimize the possibility of runaway gradual descend to global 
maxima. The vectors derived from a PAVA of a typical time 
series will not be the same with another time series that have 
been reduced by the same PAVA method. To compare two 
reduced time series using PAVA, we may need to explore future 
possibility of using Dynamic Time Warp (DFT) – PAVA 
ensemble method to achieve this. 
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